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ABSTRACT 

One of the main objectives of WP2 is to develop reliable digital twin (DT) 

platforms for training and monitoring AI-AI methods. These platforms utilize 

virtual twins to simulate physical twins, enabling continuous cycles of 

simulation, prediction, analysis, and optimization. To ensure the reliability of DT 

systems, a Bayesian framework is proposed to manage model uncertainty 

arising from data limitations. This framework supports ensembling-based 
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methods for enhanced control and prediction. Moreover, a novel calibration 

scheme for ray tracing is introduced. This scheme employs a variational 

expectation maximization algorithm to correct phase errors, significantly 

improving prediction accuracy for tasks such as beamforming and user 

positioning. Additionally, a DT-aided semi-supervised learning approach is 

proposed. This method enhances AI model training by leveraging synthetic 

labels and mitigating biases through a tuned cross-prediction-powered 

inference scheme. These solutions enhance the management and optimization 

of AI models within DT platforms, ensuring their efficacy and reliability. 
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Executive summary  

This document aims to provide an overview of the developed algorithms within T2.3 of WP2, 

aiming at enhancing the reliability of digital twin (DT) platforms for training and monitoring 

AI-AI methods for 6G networks. The proposed solutions encompass a comprehensive 

approach: managing AI model uncertainty, calibrating data generated within the DT, and 

seamlessly integrating real data from the physical twin (PT) with synthetic data from the DT.  

Bayesian Framework for DTs: a general Bayesian framework with the aim of quantifying and 

accounting for model uncertainty at the DT that is caused by limitations in the amount and 

quality of data available at the DT from the PT. In the proposed framework, the DT builds a 

Bayesian model of the communication system, which is leveraged to enable core DT 

functionalities such as control via multi-agent reinforcement learning (MARL), monitoring of 

the PT for anomaly detection, prediction, data-collection optimization, and counterfactual 

analysis. To exemplify the application of the proposed framework, a case-study system 

encompassing multiple sensing devices that report to a common receiver is investigated. 

Experimental results validate the effectiveness of the proposed Bayesian framework as 

compared to standard frequentist model-based solutions. 

Calibrating Wireless Ray Tracing: a novel channel response-based scheme that estimates and 

compensates for the phase errors in the RT-generated channel responses. The proposed 

approach builds on the variational expectation maximization algorithm with a flexible choice 

of the prior phase-error distribution that bridges between a deterministic model with no 

phase errors and a stochastic model with uniform phase errors. The algorithm is 

computationally efficient, and is demonstrated, by leveraging the open-source differentiable 

RT software available within the Sionna library, to outperform existing methods in terms of 

the accuracy of RT predictions. 

Reliable Semi-Supervised Learning via DTs: a novel semi-supervised learning scheme, 

referred to as tuned cross-prediction-powered inference (CPPI), is proposed. This scheme 

leverages synthetic labels generated by an ML model while accounting for inherent biases 

relative to true labels. Applied to beam alignment using channel knowledge maps in mmWave 

MIMO systems, simulation results demonstrate the superiority of this approach over 

conventional methods that rely solely on labeled data or standard pseudo-labeling strategies 

from semi-supervised learning. 
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1 Introduction 

The CENTRIC project is dedicated to pioneering a cutting-edge, AI-native air interface aimed 

at advancing sustainable solutions for 6G networks. A central objective of the project is to 

design and evaluate an advanced training and AI lifecycle monitoring environment utilizing 

Digital Twins (DTs). To achieve this goal, several critical challenges must be addressed, 

including managing AI model uncertainty arising from data limitations, calibrating synthetic 

data generated by the DT (such as wireless channels), and effectively leveraging synthetic 

data to improve AI model accuracy. 

This report presents innovative solutions to these challenges. Specifically, it introduces a 

comprehensive Bayesian framework that enables the DT to quantify and manage model 

uncertainty due to data scarcity. Additionally, a novel calibration algorithm is developed to 

correct phase errors in ray tracing-generated channel responses, ensuring more accurate 

simulations of wireless environments. Furthermore, the report unveils a new semi-supervised 

learning scheme designed to optimally utilize synthetic labels while minimizing biases, 

thereby enhancing the precision of AI models. 

1.1 A Bayesian Framework for Digital Twins 

A key challenge in the deployment of DT systems is to ensure that virtual control optimization, 

monitoring, and analysis at the DT are safe and reliable, avoiding incorrect decisions caused 

by model exploitation [1]. To address this challenge, a general Bayesian framework is 

presented with the aim of quantifying and accounting for model uncertainty at the DT that is 

caused by limitations in the amount and quality of data available at the DT from the PT. 

In the proposed framework, the DT builds a Bayesian model of the communication system 

dynamics based on data received from the PT. Unlike conventional frequentist parametric 

models, Bayesian models can quantify model uncertainty by maintaining a distribution over 

the model parameters [1], [2]. This enables ensembling-based control, prediction, and 

analysis methods, whereby policies, predictions, and recommendations are obtained by 

accounting for the agreements and disagreements among several models that are consistent 

with the available information. 

1.2 Calibrating Wireless Ray Tracing for Digital Twins 

DTs offer a natural framework for the deployment of software-based disaggregated wireless 

networks that follow the open radio access network (RAN) paradigm [3] [4]. Among the key 

advantages of DTs in this context is their capacity to synthesize data that can be leveraged to 

train, as well as to feed at run time, artificial intelligence (AI) models. Ray tracing (RT) is widely 

seen as an enabling technology for DTs of the RAN. By leveraging the predicted path 

components, a DT can simulate the propagation conditions for a given network deployment. 

The synthesized channels can then be used to train AI models that carry out tasks such as 

beamforming [4] user positioning [5], and channel charting [6].  

In practical scenarios, it is not uncommon to observe small discrepancies, of the scale of a 

fraction of the carrier wavelength, between the ground-truth geometric properties and their 
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virtual counterpart. These discrepancies hinder the accuracy of the predicted phases of the 

simulated propagation paths, which are usually deemed to be unreliable [7]. Errors in the 

predicted phases can provide inaccurate interference patterns at the receiver when the 

temporal and/or spatial resolution of the system is not high enough to resolve each path 

individually. To solve this issue, a novel channel response-based calibration scheme for RT 

that estimates and mitigates per-path phase errors is proposed. Specifically, we introduce a 

novel phase error-aware calibration strategy for RT. The proposed approach builds on the 

variational expectation maximization (VEM) algorithm [2] with a tailored choice of the 

variational distribution on the phase errors. The algorithm is computationally efficient, and is 

demonstrated, by leveraging the open-source differentiable RT software available within the 

Sionna library, to outperform existing methods in terms of the accuracy of RT predictions. 

1.3 Reliable Semi-Supervised Learning via Digital Twins 

Next-generation wireless systems are expected to rely extensively on machine learning (ML) 

and data-driven decision-making [8]. Optimizing effective ML algorithms hinges on the 

availability of high-quality labeled data. However, obtaining labeled data is a challenging task 

in numerous wireless scenarios. Semi-supervised learning via pseudo-labeling provides a 

promising alternative by leveraging synthetic labels produced by ML models for unlabeled 

data [9]. However, predictions generated by ML models may be of insufficient quality. 

Therefore, making reliable use of synthetic labels requires an additional effort to reduce the 

bias caused by the discrepancy between synthetic and real labels.  

Inspired by the recently developed prediction-powered inference (PPI) framework, we 

investigate how to leverage the synthetic labels produced by an ML model, while accounting 

for the inherent bias with respect to true labels. To this end, we first review PPI and its recent 

extensions, namely tuned PPI and cross-prediction-powered inference (CPPI). Then, we 

introduce a novel variant of PPI, referred to as tuned CPPI, that provides CPPI with an 

additional degree of freedom in adapting to the quality of the ML-based labels. We showcase 

an application of PPI-based techniques in wireless systems, namely beam alignment based on 

channel knowledge maps in millimeter-wave systems. Simulation results show the 

advantages of PPI-based techniques over conventional approaches that rely solely on labeled 

data or that apply standard pseudo-labeling strategies from semi-supervised learning. 

Furthermore, the proposed tuned CPPI method is observed to guarantee the best 

performance among all benchmark schemes. 
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2 A Bayesian Framework for Digital Twin 

A critical obstacle in deploying DT systems is guaranteeing safe and dependable decision-

making at the virtual control level. This is due to the potential for model exploitation arising 

from uncertainties within the data used by the DT [1].  To overcome this challenge, we 

introduce a novel framework based on Bayesian statistics. This framework quantifies and 

incorporates model uncertainties originating from data limitations within the DT, specifically 

data received from the PT (Figure 1). 

The proposed framework equips the DT with the ability to construct a Bayesian model of the 

communication system dynamics using data from the PT. Unlike traditional frequentist 

models, Bayesian models inherently quantify model uncertainty by maintaining a probabilistic 

distribution over the model parameters [2, 3]. This enables the utilization of ensemble-based 

control, prediction, and analysis techniques. In essence, these techniques generate policies, 

predictions, and recommendations that consider the agreements and disagreements 

between multiple models built with the available information.  High levels of disagreement 

among these models serve as a quantifiable indicator of significant model uncertainty.  

 

 

Figure 1: A DT platform controlling, monitoring, and analyzing the operation of a communication system 
operates along the phases of data collection, model learning, policy optimization, and data collection policy 
optimization. 

 

The Bayesian model at the DT can naturally incorporate domain knowledge about the 

communication systems, including traffic and channel models, while enabling data-driven 

exploration of the system dynamics. With the available Bayesian model, the DT can carry out 

the core functionalities of control, monitoring, prediction, data-collection optimization, and 

counterfactual analysis, while providing uncertainty-aware outputs. We specifically 

investigate and detail control via model-based Bayesian multi-agent reinforcement learning 

(MARL), monitoring for anomaly detection, prediction of unobserved dynamics with 
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uncertainty quantification, and data collection optimization via directed model-based 

exploration.  

 

2.1 Digital Twin and Physical Twin Systems 

The system under study encompasses a multi-agent PT, which describes a 

telecommunications network, and a single DT located in the cloud, for a large PT system, or 

at the edge, for a local PT system. The DT collects data from the PT, either periodically or in 

an adaptive manner, and the data is used to optimize a model of the PT dynamics. The DT 

collects data from the PT over dedicated periods of time (phase 1 in Figure 1).  Based on the 

data obtained in each data collection period, the DT constructs a model of the transition 

dynamics of the PT (phase 2). The model is used by the DT to recommend control policies to 

the PT (phase 3), as well as to carry out monitoring functionalities such as anomaly detection 

(phase 4), prediction (phase 6), and counterfactual analysis (phase 7). 

Physical Twin: The PT system of interest consists of 𝐾  agents that operate over a discrete 

time index 𝑡, The time index runs over the relevant time units for the system of interest, which 

are typically time slots or frames. At each time 𝑡, each agent 𝑘  takes an action 𝑎𝑡
𝑘

  from a 

discrete set of possible actions by following a policy that leverages information collected by 

the agent regarding the current state 𝑠𝑡   of the overall system. The state evolves according to 

some ground-truth transition probability 𝑇(𝑠𝑡+1|𝑠𝑡, 𝑎𝑡). Specifically, the probability 

distribution of the next state 𝑠𝑡+1 ∼ 𝑇(𝑠𝑡+1|𝑠𝑡, 𝑎𝑡) is modelled as a Markov decision process 

(MDP), and only depends on the current state 𝑠𝑡  and joint action 𝑎𝑡 = (𝑎𝑡
1, … , 𝑎𝑡

𝐾) of all 

agents. 

At each time 𝑡, each agent 𝑘 observes a function 𝑜𝑡
𝑘

 of the overall state 𝑠𝑡. This captures the 

fact that an agent 𝑘 typically has access only to local information about the state of the 

system. It is assumed that agents cannot communicate with each other, and thus the overall 

information available at agent 𝑘 at time 𝑡 amounts to its action-observation history ℎ𝑡
𝑘. 

Accordingly, the behavior of agent 𝑘 is defined by a policy 𝜋𝑘(𝑎𝑡
𝑘|ℎ𝑇

𝐾). 

Digital Twin: The DT maintains a model of the PT ground-truth dynamics 𝑇(𝑠𝑡+1|𝑠𝑡, 𝑎𝑡). To 

this end, the DT assumes a family of parametric models 𝑇𝜃(𝑠𝑡+1|𝑠𝑡, 𝑎𝑡) that are determined 

by a parameter vector 𝜃. In the model learning phase, the parameter vector 𝜃 is optimized 

based on data collected from the PT. To account for information available at the DT about the 

structure of the PT, we partition the state 𝑠𝑡  into M distinct subsets of state variables, such 

that each subset 𝑠𝑡
𝑖

  
of state variables is a geographically and/or semantically distinct unit. 

Given the state subset and actions {𝑎𝑡
𝑘} of all agents, we introduce a graph with M current 

state-nodes, one for each subset 𝑠𝑡
𝑖

 
; K action-nodes, one for each action 𝑎𝑡

𝑘
 ; and M future 

state-nodes, one for each subset.  
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2.2 Model Learning at the DT 

Data collection: At the beginning of each data collection phase, the DT may provide the PT 

with a data-collection policy for each agent. These policies may be designed by the DT based 

on information about the PT prior to the data collection phase. Alternatively, the agents may 

follow fixed exploration policies. All agents in the PT execute their own policies during T time 

steps and the DT recovers the dataset 𝐷𝑇
𝜋𝑑  of experienced transitions. 

Bayesian Learning: Based on the dataset 𝐷𝑇
𝜋𝑑, the DT seeks to optimize a parametric model 

to approximate the ground-truth unknown transition distribution 𝑇(𝑠𝑡+1|𝑠𝑡, 𝑎𝑡). To this end, 

we propose that the DT adopts Bayesian learning to obtain a well-calibrated model. Bayesian 

learning aims at evaluating the posterior distribution 𝑃(𝜃|𝐷𝑇
𝜋𝑑) of the unknown model 

parameters 𝜃. Depending on the size of the state and action spaces, computing the exact 

posterior may not be feasible, and one should resort to function approximation. 

2.3 Policy Optimization 

During policy optimization (phase 3 in Figure 1), the DT aims at optimizing the decentralized 

policy 𝜋 = {𝜋𝑘(𝑎𝑡
𝑘|ℎ𝑡

𝑘)}
𝑘∈𝐾

of the K agents so as to maximize some user-specified 

performance criterion. This criterion is defined by a reward function, which determines the 

total discounted return when the PT applies the policy 𝜋. The optimal control problem consists 

of the maximization of the average long-term reward [10]. This amounts to a Decentralized 

MDP (Dec-MDP) [11]. The DT cannot directly interact with the PT during the policy 

optimization phase and must solely rely on the observed data 𝐷𝑇
𝜋𝑑. Given that all policies are 

issued by the central DT platform, policy optimization can naturally rely on CTDE methods 

characterized by centralized training at the DT and decentralized execution at the PT. This 

class of approaches bypasses non-stationarity issues that affect decentralized learning 

schemes [12]. 

2.3.1 Control Policy Optimization 

We adopt the COunterfactual Multi-Agent (COMA) algorithm in [13]. The key distinction 

between the approach adopted here and the conventional COMA implementation is the fact 

that the model 𝑇𝜃(𝑠𝑡+1|𝑠𝑡, 𝑎𝑡) assumed here is stochastic in the sense that the model 

parameter vector θ is distributed according to the (approximate) posterior distribution 

𝑃(𝜃|𝐷𝑇
𝜋𝑑). 

The proposed approach addresses the problem via model-generated virtual rollouts at the 

DT. In a manner similar to [14], we account for the epistemic uncertainty encoded by the 

posterior 𝑃(𝜃|𝐷𝑇
𝜋𝑑) by periodically sampling a parameter vector 𝜃 ∼ 𝑃(𝜃|𝐷𝑇

𝜋𝑑) during policy 

optimization so as to produce the next state 𝑠𝑡+1 ∼ 𝑇𝜃(𝑠𝑡+1|𝑠𝑡, 𝑎𝑡) in the virtual rollouts. 

In a manner similar to standard actor-critic algorithms [10], the DT maintains a centralized 

critic 𝑄𝑤(𝑠𝑡|𝑎𝑡), with parameter vector 𝑤, as well as the decentralized policies  𝜋𝑣 =
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{𝜋𝑣
𝑘(𝑎𝑡

𝑘|ℎ𝑡
𝑘)}

𝑘∈𝐾
, with common parameter vector v. During policy evaluation, the critic 

𝑄𝑤(𝑠𝑡|𝑎𝑡) aims at approximating the Q-value 𝑄𝜋𝑣(𝑠|𝑎) = 𝔼𝜋𝑣[𝐺𝑡|𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎], i.e., the 

average future return under policy 𝜋𝑣  starting from a given global state s and joint action a. 

Then, during policy improvement, the policies of all agents k ∈ K are updated to maximize the 

expected return. This is done by using the centralized critic 𝑄𝑤(𝑠𝑡|𝑎𝑡) to reward actions that 

enhance the performance at the system level. As we will detail next, during the policy 

optimization phase, we alternate between policy evaluation and policy improvement steps 

until convergence of the decentralized policy 𝜋𝑣. Upon convergence, only the learned policies 

need to be transmitted by the DT to their respective agents. 

2.3.2 Data Collection Optimization 

The data-collection policy 𝜋𝑑(𝑎𝑡|𝑠𝑡) can be optimized by the DT based on the available data 

and on the DT’s assessment about operating regimes characterized by more significant model 

uncertainty. For this purpose, the DT uses the available posterior parameter distribution 

𝑃(𝜃|𝐷𝑇
𝜋𝑑) to identify transitions (𝑠𝑡, 𝑎𝑡, 𝑎𝑡+1) that yield high epistemic uncertainty, i.e., 

where models 𝑇𝜃  drawn from distribution 𝑃(𝜃|𝐷𝑇
𝜋𝑑) disagree more significantly [2]. The 

resulting disagreement metric is used to engineer a data collection reward 𝑟𝑑. With such 

reward function, the data collection policy 𝜋𝑑  is optimized at the DT. 

The reward function 𝑟𝑑  should capture the extent to which the ensemble of models 

𝑇𝜃(𝑠𝑡+1|𝑠𝑡, 𝑎𝑡) disagree on the prediction of the next state st+1 given the previous-step state-

action pair (𝑠𝑡, 𝑎𝑡) [15]. One way to gauge this disagreement is to use the mutual information 

𝐼(𝑠𝑡+1; 𝜃|𝑠𝑡, 𝑎𝑡) evaluated under the posterior 𝑃(𝜃|𝐷𝑇
𝜋𝑑). 

 

2.4 Monitoring Functionalities 

Anomaly Detection: the goal is to detect significant changes in the dynamics of the PT. To 

formulate this problem, assume that, during the operation of the system following policy 

optimization, the DT has access to the information about the state-action sequence 

experienced by the PT within some monitoring time window 𝑇𝑀  under the optimized policy 

𝜋. The DT tests if the collected data is consistent with the data reported by the PT during the 

most recent model learning phase (phase 1 and 2 in Figure 1), or rather if it provides evidence 

of changed conditions or anomalous behavior. 

While frequentist learning is known to perform poorly for detection of out-of-distribution, or 

abnormal, samples, Bayesian learning has the key advantage of being capable of quantifying 

epistemic uncertainty via disagreement-based test metrics.  

Prediction: One of the key motivations behind the model-based approach adopted by the DT 

paradigm is the possibility of predicting future states of the PT system by simulating the 

operation of the system via the model. While frequentist models would generally provide 



Horizon Europe project no. 101096379 
                                                               Deliverable D 2.2              

Page | 17 of 33 

unreliable measures of prediction uncertainty, Bayesian models can not only provide useful 

point predictions but also well-calibrated error bars. 

To describe the problem, we define a prediction time lag 𝑇𝐻, corresponding to the number of 

time steps in the future we wish to predict, and a target metric 𝑦𝑝, which is a function of 

future trajectories within the prediction time window duration 𝑇𝐻, starting from a known 

state 𝑠1. We also assume that the agents follow a known policy 𝜋. As an example, the metric 

of interest 𝑦𝑝  may be the average number of packet losses for a subset of devices connected 

to the same base station over the next 𝑇𝐻  time steps. Under these conditions, the DT can roll 

out the model defined by transitions 𝑇𝜃  and policy 𝜋 to estimate statistics of the target metric 

𝑦𝑝. With a Bayesian model, such statistics are further averaged over the posterior distribution, 

providing a reliable measure of prediction uncertainty. Accordingly, prediction using a 

Bayesian model requires a number of samples that is larger as compared to its frequentist 

counterpart by a factor given by the number of models sampled from the posterior. 

Counterfactual Analysis: The predictive methodology described in the previous subsection is 

also a useful tool for counterfactual analysis of the PT behavior [16]. In such analysis, one 

wishes to assess the impact that changes in the system, as described by the ground-truth 

dynamics 𝑇 , would have on some target metrics of interest. To this end, one could roll out 

different models 𝑇𝜃  or policies 𝜋 implementing the given changes of interest, and then 

evaluate measures such as the average treatment effect [17]. 

2.5 Application to a Multi-Access System 

As illustrated in Figure 1, the PT system under study comprises 𝐾 sensing devices that obtain 

data with correlated data arrivals both in time and across devices and communicate with a 

common base station (BS) over a channel with an unknown distribution. Time is slotted, and 

each device may transmit in a slot if its buffer is not empty. We consider 𝐾 = 4 sensing 

devices equipped with a buffer of capacity 𝑄𝑚𝑎𝑥
𝑘  = 1 packet, with all buffers being initially 

empty. This scenario is of interest for devices that transmit updates, discarding previous 

packets from the queue as outdated. To account for spatial correlation, we partition the 

devices into clusters, where each cluster 𝐶𝑖 contains devices with correlated packet arrivals. 

 

The data generation distribution within each cluster does not depend on previously generated 

data and is such that both devices cannot simultaneously generate a packet, with a new 

packet being generated at either device with probability 0.4. This captures a situation in which 

devices monitor distinct parts of a process, e.g., the location of a target in distinct spatial 

regions. The channel allows for the successful transmission of a single packet with probability 

1; while, for two simultaneous transmissions, one packet is received with probability 0.8 and 

both packets are received with probability 0.2. More than two simultaneous transmissions 

cause the loss of all packets. 
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We evaluate the performance of policy optimization in the ground-truth environment by 

using the following metrics: (i) the throughput, i.e., the average number of packets 

successfully sent at each time step; and (ii) the average probability of buffer overflow across 

all devices. 

 

 

 

Figure 2: Throughput and buffer overflow probability as a function of the size of the dataset available in the 
model learning phase for the proposed Bayesian model-based approach, as well as the oracle-aided model-free 
and frequentist model-based benchmarks. 

From Figure 2, we observe that, in regimes with high data availability during the model 

learning phase, i.e., with large 𝑇, both Bayesian and frequentist model-based methods yield 

policies with similar performance to the oracle-aided benchmark. In the low-data regime, 

however, Bayesian learning achieves superior performance as compared to its frequentist 

counterpart with, for instance, a 20% increase in throughput at 𝑇 = 10. 

 

  

Figure 3: Mean ROC curves (a) and area under ROC curves (AUC) (b) for the Bayesian and frequentist anomaly 
detection tests. Solid lines in (a) represent model learning dataset sizes of T=20 steps, while dashed lines 
correspond to dataset sizes of T=50 steps. Mean AUCs in (b) are represented by a horizontal bar, while boxes 
denote the 25% and 75% quantiles and whiskers denote the 10% and 90% quantiles. Results are obtained from 
50 independent data collection and model learning cycles. 
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We now consider the performance of anomaly detection by assuming that an anomalous 

event occurs when device 2 is disconnected, resulting in an anomalous packet-generation 

distribution for which a packet is generated at device 1 only with probability 0.4, and no 

packet is generated either at device 1 or 2 with probability 0.6. We then report the false 

positive rates (FPR) and the true positive rates (TPR) of the anomaly detection tests in Figure 

3 by varying the detection threshold. The experiment is repeated 50 times over independent 

data collection and model learning phases, while the optimized policy used to report 

experiences remains the same. 

For both model-learning dataset sizes of 𝑇 = 20 and 𝑇 = 50 steps in Figure 3b, Bayesian 

anomaly detection achieves, on average, a higher area under the receiver operating 

characteristic (ROC) curve; with a 5% average area increase and a 22% larger area at the 25% 

quantile for 𝑇 = 20 compared to its frequentist counterpart. From Figure 5a, the proposed 

Bayesian framework is also observed to uniformly outperform the frequentist ROC curve for 

T = 20 steps, while providing higher performance at lower FPR for 𝑇 = 50 steps. For instance, 

at a TPR of 0.75 in Figure 5a, the Bayesian anomaly detector has a FPR of 0.30 for a model 

learning dataset size of 𝑇 = 20 and a FPR of 0.15 for a dataset size of T = 50; whereas the 

frequentist benchmark has a FPR of 0.34 for 𝑇 = 20  and 0.21 for 𝑇 = 50. These results 

suggest that measuring epistemic uncertainty, instead of likelihood, can yield more effective 

and robust monitoring solutions. 
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3 Calibrating Wireless Ray Tracing for Digital Twins 

A key question regarding the digital twinning of radio access networks (RANs) is whether the 

built DT can simulate the propagation conditions of the deployment of interest. At high-

fidelity levels, such simulation could be used to generate accurate site-specific channel 

responses at any deployment location without the need to collect real-world data via channel 

estimation. In this regard, RT is widely seen as an enabling technology for DTs of the RAN [3]. 

Given a three-dimensional model specifying the shapes, positions, and electromagnetic 

properties of the objects in the propagation environment, the RT simulates multiple 

propagation paths between any given transmitter (Tx) and receiver (Rx) through specular and 

diffuse reflection, refraction, and diffraction [18], [7].  

3.1 Wireless Ray Tracing Calibration amidst Geometric Discrepancies 

3.1.1 Wireless Ray Tracing Calibration 

Compared to purely data-driven design, RT holds the promise of more accurate and 

explainable predictions of channel conditions, which hinge on prior physics-based knowledge 

of electromagnetic dynamics. Nonetheless, the fidelity of the virtual simulation depends on 

the precision of the geometric and electromagnetic properties, including permittivity, 

conductivity, and permeability, fed to the DT as inputs. While specialized reports [30] can 

provide approximate values for the electromagnetic properties of generic materials, a more 

precise and bespoke selection is generally necessary to ensure sufficiently reliable 

simulations. As illustrated in Figure 4, this optimization requires the estimation of the material 

parameters of each object in the scene based on measurements obtained from the ground-

truth deployment scenario, in a process known as calibration [19].  

 

Figure 4: Taking as input the geometric properties of the scene, the electromagnetic material parameters 𝜃, and 
the coordinates c of transmitter (Tx) and receiver (Rx), the ray tracer (RT) produces the features 𝑅(𝑐|𝜃) of a 
number P of propagation paths. Based on this information, the DT can obtain a model 𝐻(𝑐|𝜃) of the channel 
conditions between transmitter and receiver. To keep a faithful representation of its PT, during a calibration 

phase, the DT compares its model predictions 𝐻(𝑐|𝜃) to measured channel realizations 𝒟 = {(𝐻𝑛 , 𝑐𝑛)}𝑖=1
𝑁  in 

order to optimize the requirements on pilot transmissions and channel measurements. 
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In practice, calibration of the RT is achieved by adapting the materials parameters 𝜃 in a way 

that yields a good agreement between the RT-simulated channel 𝐻(𝑐𝑛|𝜃) and its 

corresponding measurement 𝐻𝑛. Accordingly, we assume the availability of a dataset 𝒟 =

{(𝐻𝑛, 𝑐𝑛)}𝑛=1
𝑁  of 𝑁 channel responses 𝐻𝑛 at locations 𝑐𝑛 = (𝑐𝑛

Rx, 𝑐𝑛
Tx), where 𝑐𝑛

Rx ∈ ℝ3 and 

𝑐𝑛
Tx ∈ ℝ3 denote the 𝑛-th receive and transmit positions, respectively. 

3.1.2 Effect of Geometric Errors 

A shortcoming of wireless RT simulations is that the interference pattern predicted at the 

receiver is very sensitive to errors in the geometry used to represent the objects at the 

deployment location [7]. As illustrated in Figure 55, geometric discrepancies of even a fraction 

of the carrier’s wavelength affect the phase of the predicted path, which can turn a 

constructive interference at the PT into a destructive interference simulated at the DT. 

 

Figure 5: Toy example illustrating two propagation paths between a pair of transmit (Tx) and a receive (Rx) 
devices. Though the paths interfere constructively at the receiver under ground-truth conditions, they are 
predicted to interfere destructively in the simulated scenario due to an inaccuracy 𝛥𝑑 of the order of the carrier’s 
wavelength 𝜆 in the geometric model. This difference is illustrated as the blue dashed lines in (c) and (d), which 
represent the signed amplitudes of each path. Under high-bandwidth conditions (i.e., high temporal resolution), 
the simulated power profile (d) retrieves the correct power of each path in (c). However, when the system 
bandwidth is too low to separate the contribution of each path, the inaccurately predicted interference pattern 
yields an erroneous simulated power profile. 

Under such circumstances, directly comparing the predicted channel 𝐻(𝑐𝑛|𝜃) (dashed lines 

in Figure 55d) to the measured channel 𝐻𝑛 (dashed lines in Figure 55c) during calibration 

results in inaccurate material parameters 𝜃 that try to compensate for errors in the predicted 

interference pattern. Comparing the ground-truth and simulated power profiles is a sound 

alternative at higher bandwidths but suffers from the same limitation in the more practical 

setting where bandwidth is limited. Our contribution is a calibration procedure that learns 

accurate material parameters 𝜃 on both high and low bandwidth settings by comparing the 
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measured channel 𝐻𝑛 to a phase error-corrected channel response, accounting for potential 

errors in the geometry. 

3.2 Phase Error Channel Model 

In the following, a multi-carrier communication setting with 𝑆 subcarriers is assumed to take 

place between two receive and transmit devices at location 𝑐 equipped with arrays of 𝑁Rx 

and 𝑁Tx antennas, respectively. 

3.2.1 Ray Traced Propagation Paths 

The RT acts as a deterministic map from the input coordinates 𝑐 and material parameters 𝜃 

to the features of 𝑃 propagation paths given by 

𝑅(𝑐|𝜃) = {𝛼𝑝(𝜃), 𝜏𝑝, Φ𝑝
AoD, Φ𝑝

AoA}
𝑝=1

𝑃
, 

where 𝛼𝑝(𝜃) ∈ ℂ denotes the complex amplitude of the 𝑝-th path, 𝜏𝑝 denotes its delay [s], 

and where Φ𝑝
AoD ∈ [0, 𝜋) × [0, 2𝜋)  and Φ𝑝

AoA ∈ [0, 𝜋) × [0, 2𝜋) are its angles of departure 

and arrival, respectively. 

3.2.2 Path Response 

Given paths parameters 𝑅(𝑐|𝜃), the frequency response of the 𝑝-th path is given by 

𝛼𝑝(𝜃) 𝑎( 𝜏𝑝, Φ𝑝
AoD, Φ𝑝

AoA) ∈ ℂ𝑆 𝑁Rx 𝑁Tx
, where  

𝑎( 𝜏𝑝, Φ𝑝
AoD, Φ𝑝

AoA) = 𝑤(𝜏𝑝) ⊗  𝑎Rx(Φ𝑝
AoD) ⊗ 𝑎Tx(Φ𝑝

AoA) 

encompasses the phase contributions of all combinations of subcarriers and antenna pairs as 

the tensor product of the Fourier basis 𝑤(𝜏) ∈ ℂ𝑆 with the receive 𝑎Rx(ΦAoD) ∈ ℂ𝑁Rx
 and 

transmit 𝑎Tx(ΦAoA) ∈ ℂ𝑁Tx
  steering vectors. 

3.2.3 Simulated Channel Response 

In the unlikely scenario where the phase of each path is perfectly predicted by the RT, the 

simulated channel is simply computed as the sum of path responses 𝐻(𝑐|𝜃) =

 ∑ 𝛼𝑝(𝜃) 𝑎( 𝜏𝑝, Φ𝑝
AoD, Φ𝑝

AoA)𝑃
𝑝=1 . To take into account the effect of errors in the predicted 

phase, we introduce a phase error channel model 

𝐻(𝑐|𝜃, 𝜅0) =  ∑ 𝑒𝑗𝑧𝑝𝛼𝑝(𝜃) 𝑎( 𝜏𝑝, Φ𝑝
AoD, Φ𝑝

AoA)

𝑃

𝑝=1

, 

where the stochastic phase errors 𝑍 = (𝑧1, … , 𝑧𝑃) ∼ 𝒱ℳ(0, 𝜅0) are assumed to be 

independent and identically distributed (i.i.d.) with respect to a von Mises distribution 

𝒱ℳ(0, 𝜅0) with concentration 𝜅0 ≥ 0. 
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3.3 Phase Error-Aware Calibration 

3.3.1 Expectation Maximization 

In line with the proposed phase error channel model, our contribution is a phase error-aware 

calibration scheme that builds on the expectation-maximization framework [2] to estimate 

the material parameters from the data 𝒟 in presence of predicted phase errors. Accordingly, 

for each measurement (𝐻𝑛, 𝑐𝑛) ∈ 𝒟, we estimate the phase errors 𝑍𝑛 = (𝑧𝑛,1, … , 𝑧𝑛,𝑃) 

during the expectation step (E-step). The maximization step (M-step) then uses the local 

phase error estimates {𝑍𝑛}𝑛=1
𝑁  to update the material parameters 𝜃 by comparing the 

measurements 𝐻𝑛 with phase-corrected channel prediction. 

3.3.2 Expectation Step 

The estimate of each phase error vector 𝑍𝑛 is represented by a variational distribution 

𝑄(𝑍𝑛|𝜇𝑛, 𝜅𝑛) = ∏ 𝒱ℳ(𝑧𝑛,𝑝|𝜇𝑛,𝑝, 𝜅𝑛,𝑝)𝑃
𝑝=1  comprising 𝑃 mean parameters 𝜇𝑛 =

(𝜇𝑛,1, … , 𝜇𝑛,𝑃) and 𝑃 concentration parameters 𝜅𝑛 = (𝜅𝑛,1, … , 𝜅𝑛,𝑃) to be optimized. This 

choice of variational distribution allows for closed-evaluation of the parameters {𝜇𝑛, 𝜅𝑛}𝑛=1
𝑁  

that minimize the free-energy criterion for a fixed set of material parameters 𝜃, yielding an 

efficient E-step computation. 

3.3.3 Maximization Step 

The M-step optimizes the material parameters 𝜃 by minimizing the free-energy criterion for 

a fixed set of phase correction parameters {𝜇𝑛, 𝜅𝑛}𝑛=1
𝑁 . This minimization problem is tackled 

through gradient descent by exploiting the differentiability of the predicted channel 

responses 𝐻(𝑐𝑛|𝜃) with respect to the electromagnetic parameters 𝜃, which is ensured by 

Sionna RT [19], [20]. 

3.4 Experimental Validation 

In the following experiments, the proposed phase error-aware calibration scheme is 

compared to two baselines: a phase error-oblivious calibration approach which directly 

compares the predicted deterministic channel 𝐻(𝑐𝑛|𝜃) to its corresponding measurement 𝐻𝑛 

disregarding potential phase errors [19]; and a uniform phase error calibration scheme which 

compares the angle-delay power profiles of the predicted and measured channels under the 

assumption that the predicted phase is uniformly distributed [21, 22, 23, 24, 25]. 

3.4.1 Urban Scene with Synthetic Data 

We evaluate the proposed calibration scheme and baselines in a synthetic environment 

depicted in Figure 7, where all objects are assumed to share a single unknown material 

parameter vector 𝜃true. The dataset 𝒟 is synthetically generated by simulating 𝑁 = 50 

independent channel realizations at a single location via RT under the unknown material 

parameters  𝜃true. Phase errors are generated by either random displacements of the receiver 

position (Figure 66a), or by drawing the channel realizations from the phase error channel 



Horizon Europe project no. 101096379 
                                                               Deliverable D 2.2              

Page | 24 of 33 

model 𝐻(𝑐|𝜃true, 𝜅0
true) with a phase error standard deviation level given by 𝜅0

true (Figure 6b). 

Accuracy of the calibrated parameters 𝜃 is evaluated by the normalized received power error 

|𝑃sig(𝑐|𝜃) −  𝑃sig(𝑐|𝜃true)| / 𝑃sig(𝑐|𝜃true) at the calibration location 𝑐, where 𝑃sig(𝑐|𝜃) =

∑ |𝛼𝑝(𝜃)|
2𝑃

𝑝=1  represents the total signal power on the receiver side.  

 

Figure 6: Calibration power estimation errors at the receiver as a function of the magnitude of the random 
receiver displacements (a), and as a function of the standard deviation of the independently sampled phase errors 
(b). Lines represent the median error across ten independent channel observation and calibration runs, an SNR 
of 20 dB. Shaded areas represent the first and third quartiles. 

Generalization to new receiver locations is studied for calibration on synthetic channel data 

sampled from the phase error channel model 𝐻(𝑐|𝜃true, 𝜅0
true) with no phase errors (𝜅0

true →

+∞) and uniform phase errors (𝜅0
true = 0), as illustrated in Figure 77. The proposed phase 

error-aware calibration method outperforms both baselines on all settings, with the 

exception of the unrealistic setting of perfectly predicted phases. 

 

Figure 7: Relative estimation errors (in dB) for the average predicted power of the signal sent by a single 
transmitter (red dot) under phase error-aware calibration ((a) and (d)), phase error-oblivious calibration ((b) and 
(e)), and uniform phase error calibration ((c) and (f)) in the absence of phase errors 𝜅0

𝑡𝑟𝑢𝑒 → +∞ ((a), (b) and (c)), 
and for uniform phase errors 𝜅0

𝑡𝑟𝑢𝑒 = 0 ((d), (e) and (f)). The estimation errors at each position are averaged 
across ten independent channel observation and calibration procedures, with an SNR of 20 dB during calibration. 
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3.4.2 Wave Simulation Data 

The presented calibration schemes are also evaluated on channel observations 𝒟 generated 

by solving Maxwell’s equations via finite-difference time-domain (FDTD) simulations. Given 

the computational complexity of FDTD simulations, the analysis is restricted to a small-sized 

two-dimensional setting similar to Figure 55 with a single material with unknown parameters 

𝜃true. Phase errors are simulated by adding a small displacement Δ𝑑 = 0.25𝜆 m to the lower 

wall in the geometry available at the DT. The scenario comprises one transmitter and three 

receivers, where data from the first two receivers is used to calibrate the material parameters 

𝜃. Data from the third receiver is used to evaluate the accuracy of calibration under different 

bandwidth settings by comparing the calibrated impulse responses to the ground-truth 

response in Figure 88. The proposed calibration yields channel impulse responses that closely 

match the FDTD-simulated responses, outperforming both baselines. 

 

 

Figure 8: Power-delay profiles for the ground-truth FDTD-simulated channel (dashed line) and the RT-simulated 
channels (solid lines) using material parameters calibrated with bandwidths (a) B = 100 MHz, (b) B = 200 MHz, 
and (c) B = 500 MHz. Lines represent the median power value across ten independent channel observation and 
calibration runs, with an SNR equal to 20 dB. 
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4 Reliable Semi-Supervised Learning via Digital Twins 

4.1 Problem Formulation and Background 

Consider a scenario in which acquiring high-quality labeled data is costly, while unlabeled 

samples are abundant. Specifically, a labeled dataset  𝐷 = {𝑋𝑖, 𝑌𝑖}𝑖=1
𝑛   of independent and 

identically distributed (i.i.d.) samples from an unknown distribution 𝑃𝑋𝑌 = 𝑃𝑋 . 𝑃𝑌|𝑋 is 

available, along with an unlabeled dataset  𝐷̃ = {𝑋̃𝑖}𝑖=1
𝑁  of  i.i.d. samples drawn from the 

marginal distribution 𝑃𝑋. The unlabeled dataset is typically much larger than the labeled 

dataset, i.e., 𝑁 ≫ 𝑛. 

Given a convex loss function ℓ𝜃(𝑋, 𝑌), the objective is to reliably estimate the minimizer 𝜃⋆ 

of the population loss 𝐿(𝜃), i.e., 

𝜃⋆  = arg 𝑚𝑖𝑛𝜃  𝐿(𝜃),  where   𝐿(𝜃) = 𝔼[ℓ𝜃(𝑋, 𝑌)]. 

An unbiased estimator of the population loss can be obtained by using only the labeled data, 

yielding the classical empirical risk minimization (ERM) estimator. Assume the availability of 

a model 𝑓(𝑋) that provides an estimate of the label 𝑌. The model 𝑓(𝑋) can be a pretrained 

ML model or any other given predictor. Conventional semi-supervised (SS) learning 

addresses the problem by combining both datasets to estimate the population loss [26]. 

Accordingly, conventional semi-supervised learning optimizes a biased estimate of the 

population loss, and the bias may cause significant performance degradation when the 

model 𝑓(𝑋) is not sufficiently accurate [27]. 

Prediction-powered inference (PPI) [27] and its variants, tuned PPI [28] and cross-PPI [29], 

provide principled alter- natives to the conventional semi-supervised estimator, which have 

been shown to have the desirable theoretical guarantees and empirical performance. We 

briefly review the variants of PPI, providing the necessary background for the introduction of 

the proposed tuned cross-PPI. 

Prediction-powered inference (PPI): PPI uses the labeled data to quantify, and compensate 

for, the prediction bias of the model 𝑓(𝑋) as compared to the ground-truth labels. 

Specifically, PPI estimates the population loss as 

𝐿𝑃𝑃(𝜃) =
1

𝑁
∑ ℓ𝜃(𝑋̃𝑖, 𝑓(𝑋̃𝑖))

𝑁

𝑖=1

−  [
1

𝑛
∑ ℓ𝜃(𝑋𝑖, 𝑓(𝑋𝑖))

𝑛

𝑖=1

−
1

𝑛
∑ ℓ𝜃(𝑋𝑖, 𝑌𝑖)

𝑛

𝑖=1

]. 

 

Tuned PPI: PPI is not guaranteed to improve over ERM when the model 𝑓(𝑋) is not sufficiently 

accurate. To address this issue, reference [28] proposed tuned PPI, a variant of PPI that 

automatically adapts to the quality of the prediction model. Tuned PPI selects the parameter 

vector that minimizes the following loss 
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𝐿𝜆
𝑃𝑃(𝜃) =

1

𝑛
∑ ℓ𝜃(𝑋𝑖, 𝑌𝑖)

𝑛

𝑖=1

− 𝜆 [
1

𝑁
∑ ℓ𝜃 (𝑋̃𝑖, 𝑓(𝑋̃𝑖))

𝑁

𝑖=1

− 
1

𝑛
∑ ℓ𝜃(𝑋𝑖, 𝑓(𝑋𝑖))

𝑛

𝑖=1

], 

where 𝜆 ∈ [0,1] is a tuning parameter. 

Cross PPI (CPPI): PPI and tuned PPI assume the availability of a model 𝑓(𝑋). In practice, 

however, such model may have to be trained using labeled data. Therefore, the available 

labeled dataset must be shared between the task of obtaining the prediction model and 

the task of estimating the parameter vector. CPPI addresses this problem via cross-validation, 

where the labeled dataset is divided into K folds, 𝐷1, … , 𝐷𝐾 . For each 𝑘, a model 𝑓𝑘(𝑋) is 

trained on all labeled data except fold 𝐷𝑘. Then, the following loss estimate is used [29] 

𝐿𝜆
𝑃𝑃(𝜃) =

1

𝑁𝐾
∑  

𝐾

𝑘=1

∑ ℓ𝜃 (𝑋̃𝑖, 𝑓𝑘(𝑋̃𝑖))

𝑛

𝑖=1

− [∑  

𝐾

𝑘=1

∑ ℓ𝜃 (𝑋𝑖, 𝑓𝑘(𝑋𝑖))

 

𝑖∈𝐷𝑘

−  
1

𝑛
∑ ℓ𝜃(𝑋𝑖, 𝑓(𝑋𝑖))

𝑛

𝑖=1

], 

The first term is the empirical loss that uses the predictions of the K models on the unlabeled 

data, while the second, rectifier term, corrects the bias caused by the use of the trained 

models. 

 

4.2 Tuned Cross-Prediction-Powered Inference 

The quality of the CPPI estimate depends on the accuracy of the trained models {𝑓𝑘(𝑋)}𝑘=1
𝐾 . 

Inspired by tuned PPI, we propose tuned CPPI, which provides the flexibility to judiciously 

adapt depending on the quality of the trained models. Specifically, the proposed tuned CPPI 

estimator is given by 

𝐿𝜆
𝐶𝑃(𝜃) =

1

𝑛
∑ ℓ𝜃(𝑋𝑖, 𝑓(𝑋𝑖))

𝑛

𝑖=1

+ 𝜆 [
1

𝑁𝐾
∑  

𝐾

𝑘=1

∑ ℓ𝜃 (𝑋̃𝑖, 𝑓𝑘(𝑋̃𝑖)) −

𝑛

𝑖=1

∑  

𝐾

𝑘=1

∑ ℓ𝜃 (𝑋𝑖, 𝑓𝑘(𝑋𝑖))

 

𝑖∈𝐷𝑘

 ]. 

Tuned CPPI offers the flexibility to tune the parameter 𝜆 ∈ [0,1] as a function of the quality 

of the trained models. This is done with the aim of minimizing the mean squared error 

(MSE) of the parameter estimate. To this end, an asymptotic convergence analysis is 

conducted in the regime where the size of labeled data grows large, which allows to obtain 

an asymptotic equivalent of the MSE. Then, the minimizer of the asymptotic is obtained in 

closed form expression that can be estimated from the available labeled and unlabeled 

datasets, as detailed in our paper [30]. 

4.3 Application: Beam Alignment in mmWave Massive MIMO 

Beamforming design is a crucial task in mmWave massive MIMO systems [31], as 

beamforming is necessary to compensate for the more severe path loss experienced at higher 

carrier frequencies. Codebook-based beam alignment consists of selecting the best beam 

from codebooks of predefined beams based on beam sweeping, which requires transmission 

of pilot signals. Recently, a new approach has emerged that alleviates the training overhead 
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by leveraging the concept of a channel knowledge map (CKM). A CKM is a site-specific 

database of channel information linked to transmitter and receiver locations [32, 33]. 

Applying the proposed tuned CPPI, we develop a method that trains a mapping between a 

user’s location and a pair of beams within their respective codebooks by leveraging both 

labeled and unlabeled data. Labeled data consists of a user’s location and the corresponding 

channel state information (CSI), while unlabeled data only includes a user’s location. 

Furthermore, for the unlabeled inputs X, CSI parameters are estimated using a CKM. The 

unlabeled dataset is generated by sampling users’ locations from the coverage map of the 

transmitter. The latter can be obtained in the DT using RT techniques. We compare the 

performance of the proposed tuned CPPI approach to the benchmark schemes ERM, SS, PPI, 

tuned PPI, and CPPI.  

 

Figure 9: Channel capacity as a function of the number of BS antennas for different values of the labeled dataset 

size n. 

We consider the same physical environment and dataset as in [32]. The dataset contains 

ground-truth multi-path channel information generated by using the ray tracing software 

Remcom Wireless Insite. The BS is equipped with a uniform planar array, and the user 

equipment (UE) is equipped with a single antenna. Furthermore, Kronecker product-based 

beamforming codebooks are employed [49]. The total number of samples available in the 

dataset is 38038, from which n samples are reserved as labeled data, and the remaining 𝑁 =

38038 − 𝑛 samples are considered as unlabeled data. 

In Figure 9, we report the performance in terms of the channel capacity for all schemes. 

We vary the number of transmit antennas at the BS while setting the size of the labeled 

dataset to n = 300 and n = 3000. It is observed that the proposed tuned CPPI outperforms 

all the benchmark schemes while exhibiting the same performance as CPPI when the 

number of labeled data points, n, is large enough. We also remark from the figure that 

conventional semi-supervised learning, which does not take into consideration the bias 

from the trained prediction models, fails to provide any gains by incorporating the 

unlabeled data. 
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Figure 10: Channel capacity as a function of the size of labeled dataset n when the number of BS antennas is fixed 
to 𝑁𝑇𝑋 = 200. 

 

To further elaborate on the impact of the number of labeled data points, n, we report the 

channel capacity as a function of the labeled dataset size n in Figure 10. As seen, the 

proposed tuned PPI provides the best performance among all the benchmark schemes, with 

more significant gains for smaller values of the labeled dataset size n. In fact, in this regime, 

the trained CKM is not sufficiently accurate, and tuned CPPI, which can adapt to the quality 

of the trained models via the tuning parameter λ, yields better performance. 
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5 Conclusion 

This deliverable presented a comprehensive of the algorithms developed within T2.3 of WP2, 

aimed at improving the reliability of DT platforms for training and monitoring AI methods in 

6G networks. Our comprehensive approach includes managing AI model uncertainty, 

calibrating data within the DT, and integrating real data from PTs with synthetic data. Key 

innovations include a Bayesian framework to manage data limitations, enhancing DT 

functionalities like multi-agent reinforcement learning, anomaly detection, and predictive 

analysis. Experimental validation showed this framework outperforms traditional frequentist 

models. Additionally, a novel calibration scheme for wireless RT corrects phase errors using 

the variational expectation maximization algorithm, significantly improving prediction 

accuracy. Finally, the introduced semi-supervised learning method, tuned CPPI, effectively 

leverages synthetic labels while reducing bias. Applied to beam alignment in mmWave MIMO 

systems, this method demonstrated superior performance over conventional approaches. 

These solutions collectively enhance the robustness and precision of DT platforms, 

contributing to more reliable and efficient 6G network operations. 
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