
Multiple Stage Vector Quantization Using Competitive
Learning

Bruce E. Watkins and Murali Tummala
Department of Electrical tY Computer Engineering
Naval Postgraduate School, Monterey, CA 93943

Abstract
Neural networks have recently been a.pplied to the
task of vector quantization (VQ) for the coding of
speech and image data. The frequency sensitive com-
petitive learning (FSCL) algorithm is one of the most
successful techniques applied to vector quantization.
The FSCL algorithm displays a substantial compu-
tational advantage over the existing techniques such
as the Linde, Buzo and Gray (LBG) algorithm for
vector quantizers with small codebooks, but unfortu-
nately FSCL requires an excessive amount of train-
ing for vector quantizers with large codebooks. We
present a possible solution to this problem through
the application of the multiple stage vector quantiza-
tion (MSVQ) technique to the FSCL vector quantizer
for use in the coding of image data. By combining a
number of smaller code books which can be trained
quickly using the FSCL VQ, the MSVQ allows us to
form a large effective codebook size which enables us
to substantially reduce the computational cost and
improve performance. The MSVQ technique also al-
lows us to implement a large codebook with a much
smaller storage requirement than if the same size
codebook were implemented using the basic FSCL
a1 gor ithm.

1 Introduction
The ability of competitive learning neural network
algorithms to self organize a large data set into cat-
egories makes vector quantization a natural applica-
tion for these algorithms. A competitive learning al-
gorithm called self organizing map (SOM) was first
introduced by Kohonen [l]; SOM assumes that the
input data vectors are uniformly distributed and thus
results in under utilization of output nodes when the
input statistical distribution is of a different kind.
Another technique termed a d d i n g a c o n s c i e n c e lo
c o m p e i i t i v e learning is presented in [2], which in-

troduces a bias term into the network weight up-
date equation. The bias term effectively modifies the
weight update equations to penalize the output nodes
that have won the competition frequently. This pro-
duces a very uniform output node utilization while
converging quickly. A variation of the consc ience
technique is frequency sensitive competitive learning
(FSCL) algorithm [3]. In FSCL, the distance be-
tween, d i , between the input vector and the output
node weight vector is modified by: df = dig(u), where
uj is the number of times the output node i has won
the competition and g is termed the fairness function
with g(u) = U in most cases. Over many training iter-
ations, the effect of this modification is a remarkably
even node utilization. Compared to the consc ience
method, FSCL updates only one set of weights for
each input vector, requires only one set of distance
calculations, and thus converges faster than the con-
s c i e n c e method.

The FSCL has proven to be a particularly success-
ful algorithm for vector quantization [3]. This algo-
rithm uses a neural network to produce results almost
identical to that of LBG algorithm [4] which has beeii
shown to be optimal. Figure 1 shows a comparison
of the number of training iterations required by the
FSCL and LBG algorithms. For a small codebook
size, the FSCL has a sizable computational advan-
tage whereas for larger codebook sizes, the LBZ is
more efficient than FSCL. The major shortcomings or
FSCL are twofold: for a simulation implementation,
the neural network requires an excessive amount of
training to meet convergence for a codebook of prac-
tical size (see figure 1); for a hardware implementa-
tion, a network of sufficient size for good performance
would require a prohibitively large number of pro-
cessing elements. In this work, we have attempted
to address both these problems by proposing an al-
gorithm which can reduce the computational cost of
training the neural network and also reduce the num-
ber of processing elements required for implementa-

2880

U.S. Government work not protected by U.S. copyright.

lion. Results of performance comparison between the
FSCL and the proposed algorithm are also included.

nrimher or codewords

Figure 1:
passes required for LBG and FSCL algorithms.

Comparison of the number of training

2 Multiple Stage Vector Quan-
t kat ion

The FSCL based vector quantizers are considered op-
timal here in two senses: Firstly the codebook formed
produces the minimum mean squared error (MSE)
possible for the training data utilized, and secondly
the encoder always selects the codeword correspond-
ing to the vector which produces the least distortion
for any given input vector. An algorithm of this type
is called full search vector quantization (FSVQ), and
it must calculate a nqmber of distortions equal to
tlie size of the codebook for each vector processed.
Consequently, this property makes full search codes
impractical except for the case of small codebooks.

We now consider an algorithm that produces codes
which are suboptimal in both senses mentioned
above; however, these algorithms produce codebooks
which have a structure that drama.tically reduces the
computational effort required for a given codebook
size. Here, we examine the application of a technique
termed multiple stage vector quantization (MSVQ)
to the basic FSCL vector quantizer [5]. This tech-
nique forms a large effective codebook by combining
several smaller codebooks in a linear structure. Fig-
ure 2 shows a schematic diagram of the MSVQ al-
gorithm. In this case, each vector quantizer of the
structure is a FSCL vector quantizer with a code-
book of size n, and the structure consists of m levels.
An m level MSVQ can be described by the m-tuple

10

2881

R = (R I , R2, . . . , &), where R, is the number of bits
used to encode the error a t level i of the MSVQ, and
the effective codebook size is l'IElfi. The first level
of the MSVQ is just a small FSCL vector quantizer.
The input vector, x, is applied to the vector quantizer
at level one, and the first estimate, y1, is produced
along with the first RI bits of the channel codeword,
u1. Next, the first error vector is formed by taking
the vector difference, el = x-yl. This error vector is
then applied to the size 2R2 vector quantizer at level
two, which produces an estimate of tlie error vector,
61, and the next R2 bits of the channel codeword.
So, at the second level, our estimate of the input vec-
tor is the vector sum y2 = y1 + 61. In the following
stages, we continue to form an error vector from the
previous stage and use a FSCL vector quantizer to
encode this error. Each stage produces an estimate
for the error and a portion of the channel codeword.
At the last stage, the error vector dm-l is encoded,
and the final estimate of the input vector is avail-
able by performing ym = y1 + 61 + & + , , . + &,,+I,
and the full channel codeword obtained by catenating
U = (~ 1 , ~ 2 , , ~ m) .

X

Figure 2: Structure of the multiple stage vector quan-
tization scheme.

The training of the MSVQ proceeds one level at a
time. We apply the original data set to FSCL vector
quantizer a t the first level until convergence is ob-
tained. Then, we pass the data through the trained
vector quantizer and compute the error vector be-
tween each input vector and the closest code vector.
This forms a new data set, which is a collection of
the first stage errors. This first stage error data set
is then applied to the vector quantizer on tlie second
level until convergence is obtained; then, it is applied

a final time to compute the second stage error vectors.
This continues until the last stage has been trained.
MSVQ provides an initial estimate at the first level
and produces a better estimate a t each level by con-
tinuing to add smaller and smaller correction terms
in a way similar to the method of successive approxi-
mations. Each of these corrections is a result of per-
forming vector quantization on the error subspace of

vector quantizer per level, the algorithm vastly re-
duces the amount of storage required for simulation
and decreases the load on the transmission channel
due to codebook transmission.

160-

140
the preceding level. P

For encoding, MSVQ requires xzl 2R* distance $
calculations which is far fewer than the 2R required 100-

for FSVQ. Table 1 shows the total number of distance $ 80-

calculations which must be calculated for several ex-
amples. This dramatically reduces both storage re- 1 @ -

quirements and the load on the channel from trans- 40-

load on the channel for each algorithm assuming that
the codebook is updated with each frame. The ad-
vantage of MSVQ in this regard for large codebooks
is apparent.

mitting codebook updates. Table 2 shows the extra ..
04 4 s j ss 6 Qs i 7 5 8 i.5 9

Block Si u1 Phch

Figure 3: Computational cost.

16
64

512

Table 1: Distance Calculations Required

16 8
64 16

512 24

I Dista.nce Calculations
I Codebook Size I FSVQ I MSVQ

Codebook Size
16

FSVQ I hsviu; '
0.008 I 0.004

Table 2: Channel Load of Codebook Transmission
(bits/pixel)

64
512

0.047 0.012
0.563 0.026

Figure 3 shows that MSVQ provides a huge com-
putational advantage, especially for large codebooks.
The MSE performance for each algorithm is com-
pared in figure 4. While it is clear that MSVQ
produces a suboptimal codebook, the large ga.in in
computational costs allows us to use larger effective
codebooks and actually to obtain an improvement in
performance as will be shown in an example later.
MSVQ provides an extremely simple structure which
would require only a small number of processing el-
ements and would make hardwa.re implementation
much simpler. Finally, because MSVQ uses only one

Block Si in Piab

Figure 4:
MSVQ algorithms.

Performance comparison of FSCL and

3 Simulation Results
The simulations were conducted on a single test im-
age of 256 x 256 pixels. This image was divided into
blocks of various sizes chosen to yield a data ra.te
of 1 bit/pixel for each reconstruction using a variety
of codebook sizes. Figure 5 shows the results using
MSVQ on a 256 x 256 image using a block size of 3 x 2
with n = 8 and m = 2 for an effective codebook size
of 64. This corresponds to a data rate of 1 bit/pixel
and the mean square error (MSE) is 63.68. Figure 6
shows the same image coded with a block size of 2 x 2

2882

using the original FSCL algorithm and has a MSE of
71.01. The MSVQ required only 9 passes through the
image to form the codebook versus 16 passes for the
original FSCL which shows a substantial computa-
tional advantage. Also, the MSVQ technique allowed
us to implement a codebook of size 64 with a storage
requirement of only 16 code vectors. This increased
codebook size provides the increase in performance
t1ia.t we see in the example presented (in figures 5
and 6).

performance of the MSVQ falls short of the standard
FSVQ algorithm. The reason for this suboptimality
can be seen in the structure of the MSVQ in which
we form the codebook for the next level using the er-
ror vector instead of the original input vector. The
relatively poor performance of the MSVQ algorithm
can thus be attributed to using the probability den-
sity function of the error vectors in the subsequent
stages which is different from that of the original in-
put vectors.

Figure 6: Reconstructed image using MSVQ algo-
rithm (1 bit/pixel).

Figure 6: Reconstructed image using FSCL algorithm
(1 bit/pixel).

For large codebooks, the MSVQ algorithm pro-
vides a huge computational advantage over the FSVQ
method. I t also provides an extremely simple struc-
ture which would require only a small number of
processing elements and would make hardware im-
plementation much simpler. Finally, because MSVQ
uses only one vector quantizer per level, the algo-
rithm vastly reduces the amount of storage required
Tor simulation and decreases the 1oa.d on the trans-
mission channel due to codebook transmission. The

References
[l] T . Kohonen, “Self Organization and Associative

Memory,” Springer Verlag, 1984.

[2] D. DeSieno, “Adding a Conscience to Competitive
Learning,” Proc. IEEE Int. Conference on Neural
Networks, pp. 1117-1124, July 1988.

[3] S. C. Ahalt, A. I<. Krishnamurthy, P. Chen, and
D. E. Melton, “Competitive Learning Algorithms
for Vector Quantization,” Neural Networks, Vol.
3, pp. 277-290, 1990.

[4] R. M. Gray, “Vector Quantization,” IEEE A S S P
Magazine, Vol. 1, pp. 4-29, January 1984.

[5] B.-H. Juang, ‘‘ Multiple Stage Vector Quantiza-
tion for Speech Coding,” In Proc. 1988 I d . Conf.
Acoustics, Speech, Signal Processing, pp. 597-600,
Paris, April 1982.

2883

