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Abstract 
Neural networks have recently been a.pplied to the 
task of vector quantization (VQ) for the coding of 
speech and image data. The frequency sensitive com- 
petitive learning (FSCL) algorithm is one of the most 
successful techniques applied to  vector quantization. 
The FSCL algorithm displays a substantial compu- 
tational advantage over the existing techniques such 
as the Linde, Buzo and Gray (LBG) algorithm for 
vector quantizers with small codebooks, but unfortu- 
nately FSCL requires an excessive amount of train- 
ing for vector quantizers with large codebooks. We 
present a possible solution to this problem through 
the application of the multiple stage vector quantiza- 
tion (MSVQ) technique to  the FSCL vector quantizer 
for use in the coding of image data. By combining a 
number of smaller code books which can be trained 
quickly using the FSCL VQ, the MSVQ allows us to 
form a large effective codebook size which enables us 
to substantially reduce the computational cost and 
improve performance. The MSVQ technique also al- 
lows us to implement a large codebook with a much 
smaller storage requirement than if the same size 
codebook were implemented using the basic FSCL 
a1 gor ithm. 

1 Introduction 
The ability of competitive learning neural network 
algorithms to  self organize a large data set into cat- 
egories makes vector quantization a natural applica- 
tion for these algorithms. A competitive learning al- 
gorithm called self organizing map (SOM) was first 
introduced by Kohonen [l]; SOM assumes that the 
input data vectors are uniformly distributed and thus 
results in under utilization of output nodes when the 
input statistical distribution is of a different kind. 
Another technique termed a d d i n g  a c o n s c i e n c e  lo 
c o m p e i i t i v e  learning  is presented in [2], which in- 

troduces a bias term into the network weight up- 
date equation. The bias term effectively modifies the 
weight update equations to penalize the output nodes 
that have won the competition frequently. This pro- 
duces a very uniform output node utilization while 
converging quickly. A variation of the consc ience  
technique is frequency sensitive competitive learning 
(FSCL) algorithm [3]. In FSCL, the distance be- 
tween, d i ,  between the input vector and the output 
node weight vector is modified by: df = dig(u), where 
uj is the number of times the output node i has won 
the competition and g is termed the fairness function 
with g(u) = U in most cases. Over many training iter- 
ations, the effect of this modification is a remarkably 
even node utilization. Compared to the consc ience  
method, FSCL updates only one set of weights for 
each input vector, requires only one set of distance 
calculations, and thus converges faster than the con-  
s c i e n c e  method. 

The FSCL has proven to be a particularly success- 
ful algorithm for vector quantization [3]. This algo- 
rithm uses a neural network to produce results almost 
identical to that of LBG algorithm [4] which has beeii 
shown to be optimal. Figure 1 shows a comparison 
of the number of training iterations required by the 
FSCL and LBG algorithms. For a small codebook 
size, the FSCL has a sizable computational advan- 
tage whereas for larger codebook sizes, the LBZ is 
more efficient than FSCL. The major shortcomings or 
FSCL are twofold: for a simulation implementation, 
the neural network requires an excessive amount of 
training to meet convergence for a codebook of prac- 
tical size (see figure 1); for a hardware implementa- 
tion, a network of sufficient size for good performance 
would require a prohibitively large number of pro- 
cessing elements. In this work, we have attempted 
to address both these problems by proposing an al- 
gorithm which can reduce the computational cost of 
training the neural network and also reduce the num- 
ber of processing elements required for implementa- 
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lion. Results of performance comparison between the 
FSCL and the proposed algorithm are also included. 

nrimher or codewords 

Figure 1: 
passes required for LBG and FSCL algorithms. 

Comparison of the number of training 

2 Multiple Stage Vector Quan- 
t kat ion 

The FSCL based vector quantizers are considered op- 
timal here in two senses: Firstly the codebook formed 
produces the minimum mean squared error (MSE) 
possible for the training data utilized, and secondly 
the encoder always selects the codeword correspond- 
ing to the vector which produces the least distortion 
for any given input vector. An algorithm of this type 
is called full search vector quantization (FSVQ), and 
it must calculate a nqmber of distortions equal to 
tlie size of the codebook for each vector processed. 
Consequently, this property makes full search codes 
impractical except for the case of small codebooks. 

We now consider an algorithm that produces codes 
which are suboptimal in both senses mentioned 
above; however, these algorithms produce codebooks 
which have a structure that drama.tically reduces the 
computational effort required for a given codebook 
size. Here, we examine the application of a technique 
termed multiple stage vector quantization (MSVQ) 
to the basic FSCL vector quantizer [5]. This tech- 
nique forms a large effective codebook by combining 
several smaller codebooks in a linear structure. Fig- 
ure 2 shows a schematic diagram of the MSVQ al- 
gorithm. In this case, each vector quantizer of the 
structure is a FSCL vector quantizer with a code- 
book of size n, and the structure consists of m levels. 
An m level MSVQ can be described by the m-tuple 
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R = ( R I ,  R2, . . . , &), where R, is the number of bits 
used to encode the error a t  level i of the MSVQ, and 
the effective codebook size is l'IElfi. The first level 
of the MSVQ is just a small FSCL vector quantizer. 
The input vector, x, is applied to the vector quantizer 
at level one, and the first estimate, y1, is produced 
along with the first RI bits of the channel codeword, 
u1. Next, the first error vector is formed by taking 
the vector difference, el = x-yl. This error vector is 
then applied to the size 2R2 vector quantizer at level 
two, which produces an estimate of tlie error vector, 
61, and the next R2 bits of the channel codeword. 
So, at the second level, our estimate of the input vec- 
tor is the vector sum y2 = y1 + 61. In the following 
stages, we continue to form an error vector from the 
previous stage and use a FSCL vector quantizer to 
encode this error. Each stage produces an estimate 
for the error and a portion of the channel codeword. 
At the last stage, the error vector dm-l is encoded, 
and the final estimate of the input vector is avail- 
able by performing ym = y1 + 61 + & + , , . + &,,+I, 
and the full channel codeword obtained by catenating 
U = ( ~ 1 ,  ~ 2 ,  , ~ m ) .  

X 

Figure 2: Structure of the multiple stage vector quan- 
tization scheme. 

The training of the MSVQ proceeds one level at a 
time. We apply the original data set to FSCL vector 
quantizer a t  the first level until convergence is ob- 
tained. Then, we pass the data through the trained 
vector quantizer and compute the error vector be- 
tween each input vector and the closest code vector. 
This forms a new data set, which is a collection of 
the first stage errors. This first stage error data set 
is then applied to the vector quantizer on tlie second 
level until convergence is obtained; then, it is applied 



a final time to compute the second stage error vectors. 
This continues until the last stage has been trained. 
MSVQ provides an initial estimate at the first level 
and produces a better estimate a t  each level by con- 
tinuing to add smaller and smaller correction terms 
in a way similar to the method of successive approxi- 
mations. Each of these corrections is a result of per- 
forming vector quantization on the error subspace of 

vector quantizer per level, the algorithm vastly re- 
duces the amount of storage required for simulation 
and decreases the load on the transmission channel 
due to codebook transmission. 

160- 

140 
the preceding level. P 

For encoding, MSVQ requires xzl 2R* distance $ 
calculations which is far fewer than the 2R required 100- 

for FSVQ. Table 1 shows the total number of distance $ 80- 

calculations which must be calculated for several ex- 
amples. This dramatically reduces both storage re- 1 @ -  

quirements and the load on the channel from trans- 40- 

load on the channel for each algorithm assuming that 
the codebook is updated with each frame. The ad- 
vantage of MSVQ in this regard for large codebooks 
is apparent. 

mitting codebook updates. Table 2 shows the extra ............................................................ 
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Figure 3: Computational cost. 

16 
64 

512 

Table 1: Distance Calculations Required 

16 8 
64 16 

512 24 

I Dista.nce Calculations 
I Codebook Size I FSVQ I MSVQ 

Codebook Size 
16 

FSVQ I hsviu; ' 
0.008 I 0.004 

Table 2: Channel Load of Codebook Transmission 
(bits/pixel) 

64 
512 

0.047 0.012 
0.563 0.026 

Figure 3 shows that MSVQ provides a huge com- 
putational advantage, especially for large codebooks. 
The MSE performance for each algorithm is com- 
pared in figure 4. While it is clear that MSVQ 
produces a suboptimal codebook, the large ga.in in  
computational costs allows us to use larger effective 
codebooks and actually to obtain an improvement in 
performance as will be shown in an example later. 
MSVQ provides an extremely simple structure which 
would require only a small number of processing el- 
ements and would make hardwa.re implementation 
much simpler. Finally, because MSVQ uses only one 
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Figure 4: 
MSVQ algorithms. 

Performance comparison of FSCL and 

3 Simulation Results 
The simulations were conducted on a single test im- 
age of 256 x 256 pixels. This image was divided into 
blocks of various sizes chosen to  yield a data ra.te 
of 1 bit/pixel for each reconstruction using a variety 
of codebook sizes. Figure 5 shows the results using 
MSVQ on a 256 x 256 image using a block size of 3 x 2 
with n = 8 and m = 2 for an effective codebook size 
of 64. This corresponds to  a data rate of 1 bit/pixel 
and the mean square error (MSE) is 63.68. Figure 6 
shows the same image coded with a block size of 2 x 2 
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using the original FSCL algorithm and has a MSE of 
71.01. The MSVQ required only 9 passes through the 
image to form the codebook versus 16 passes for the 
original FSCL which shows a substantial computa- 
tional advantage. Also, the MSVQ technique allowed 
us to implement a codebook of size 64 with a storage 
requirement of only 16 code vectors. This increased 
codebook size provides the increase in performance 
t1ia.t we see in the example presented (in figures 5 
and 6). 

performance of the MSVQ falls short of the standard 
FSVQ algorithm. The reason for this suboptimality 
can be seen in the structure of the MSVQ in which 
we form the codebook for the next level using the er- 
ror vector instead of the original input vector. The 
relatively poor performance of the MSVQ algorithm 
can thus be attributed to using the probability den- 
sity function of the error vectors in the subsequent 
stages which is different from that of the original in- 
put vectors. 

Figure 6: Reconstructed image using MSVQ algo- 
rithm (1 bit/pixel). 

Figure 6: Reconstructed image using FSCL algorithm 
(1 bit/pixel). 

For large codebooks, the MSVQ algorithm pro- 
vides a huge computational advantage over the FSVQ 
method. I t  also provides an extremely simple struc- 
ture which would require only a small number of 
processing elements and would make hardware im- 
plementation much simpler. Finally, because MSVQ 
uses only one vector quantizer per level, the algo- 
rithm vastly reduces the amount of storage required 
Tor simulation and decreases the 1oa.d on the trans- 
mission channel due to codebook transmission. The 
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