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ABSTRACT

This paper introduces CURLoRA, a novel approach to fine-tuning large language models (LLMs)
that leverages CUR matrix decomposition in the context of Low-Rank Adaptation (LoRA). Our
method addresses two critical challenges in LLM fine-tuning: mitigating catastrophic forgetting
during continual learning and reducing the number of trainable parameters. We propose a unique
modification to the CUR decomposition process, utilizing inverted probabilities for column and row
selection which acts as an implicit regularization, and initializing the U matrix as a zero matrix,
and only fine-tuning it. Through experiments on multiple datasets, we demonstrate that CURLoRA
outperforms standard LoRA in mitigating catastrophic forgetting maintaining model stability and
performance across tasks while significantly reducing the number of trainable parameters. Our
results show that CURLoRA achieves superior accuracy and perplexity scores compared to LoRA,
particularly in scenarios with limited fine-tuning data.

1 Introduction

Large Language Models (LLMs) have revolutionized natural language processing, demonstrating remarkable capabilities
across a wide range of tasks [1]]. However, fine-tuning these models for specific tasks often leads to catastrophic
forgetting, where the model loses its ability to perform well on previously learned tasks [2]. Additionally, the
computational resources required for fine-tuning LLMs are substantial, making it challenging to adapt these models
efficiently, especially when working with limited datasets [3]].

Low-Rank Adaptation (LoRA) [4] has emerged as an efficient fine-tuning method, decomposing pre-trained weight
matrices into low-rank matrices and fine-tune those ones instead of the original matrix. Although LoRA has proven
to be very promising in enabling large language model fine-tuning consuming much less computational resources, it
still faces challenges in preventing catastrophic forgetting. Catastrophic forgetting occurs due to the overwriting of
previously learned (pre-trained) weights during the fine-tuning process. In LoRA, this often happens as the adapted
output can significantly deviate from the original:

Yy = W + xWadapted = l‘(W + AB) (1)

where W is the original weight matrix, and AB is the low-rank update.

This work introduces CURLoRA, a novel approach that applies low-rank approximation (LoRA) to pre-trained weight
matrices using CUR matrix decomposition [5] instead of SVD or random initiation of the low-rank A & B matrices.
We propose a unique modification to the CUR decomposition process and demonstrate its effectiveness in mitigating
catastrophic forgetting while also reducing the number of trainable parameters.



2 Related Work

2.1 Catastrophic Forgetting

Catastrophic forgetting is a big challenge in machine learning, particularly in the context of continual learning [2]].
Various approaches have been proposed to address this issue:

* Elastic Weight Consolidation (EWC) [6] uses Fisher information to measure the importance of parameters and
selectively slow down learning on important parameters.

* Progressive Neural Networks [7] propose to freeze the network trained on previous tasks and add lateral
connections to new columns for new tasks.

* Memory-based approaches like Experience Replay [8]] store and replay examples from previous tasks during
training on new tasks.

2.2 Efficient Fine-tuning of Large Language Models

As LLMs have grown in size, efficient fine-tuning methods have become crucial:

* Adapter layers [9] introduce small trainable modules between layers of a pre-trained model.

* Low-Rank Adaptation (LoRA) [4] decomposes weight updates into low-rank matrices, significantly reducing
the number of trainable parameters.

* Prefix-tuning [[10]] prepends trainable continuous prompts to the input, allowing for task-specific adaptations.
2.3 CUR Matrix Decomposition

CUR decomposition has been applied in various domains for its interpretability and efficiency:

* In data analysis, CUR has been used for feature selection and dimensionality reduction [3].
* In scientific computing, CUR has been applied to accelerate large-scale matrix computations [[11]].
* In machine learning, CUR has been explored for model compression and interpretation [12].

However, to the best of our knowledge, CUR decomposition has not been previously applied to the problem of
fine-tuning large language models or addressing catastrophic forgetting in this context.

3 Background on CUR Decomposition

CUR decomposition is a matrix factorization technique that approximates a matrix A as the product of three matrices:
C, U, and R. Unlike Singular Value Decomposition (SVD), CUR decomposition uses actual columns and rows of the
original matrix, providing better interpretability [S]].

Given a matrix A € R™*", CUR decomposition approximates A as:

A~CUR 2)
where:

e C' € R™*¢ consists of ¢ columns of A
e R € R™™ consists of r rows of A

e U € R°*" is a small matrix that ensures CUR is close to A

The columns and rows are typically chosen based on their statistical leverage scores, which measure their importance in
the matrix [[11]]



4 This Work

In this section, we present CURLoRA, our novel approach to fine-tuning large language models that leverages a modified
CUR matrix decomposition to mitigate catastrophic forgetting. We provide a detailed mathematical formulation of the
approach, analyze it theoretically, and explain how it addresses the challenge of catastrophic forgetting upon continual
learning.

4.1 CURLoRA

The core idea is to decompose the pre-trained weight matrices using a modified CUR approach and then fine-tune only
the U matrix. This approach constrains the parameter space of possible adaptations keeping the fine-tuned parameters as
small as possible to keep || Wadapteda — W|| 7 close to the original weight matrix frobenius norm (||W{| ) i.e. W+ Widapted
is so close to W to avoid the deviation of the adapted output.

4.2 Mathematical Formulation

Given a weight matrix W, we first compute the column probabilities:
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where W.; is the j-th column of W and || - || r denotes the Frobenius norm. We then invert these probabilities:
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Then, we sample columns and rows according to these inverted probabilities to construct C' and R, which will always
be fixed, with columns and rows with lower original probabilities. This trick plays a major role in the approach as it
serves two purposes:

e It acts as a form of regularization, preventing the model from overfitting or moving too much towards the task
and limiting the adaptation of the U matrix stopping it from growing so big in magnitude.

* It preserves the model’s original behavior by focusing adaptations on less influential parts of the weight matrix.

In contrast to random initialization or SVD-based initialization, which can introduce higher initial values and greater
variability, the U matrix is initialized as a zero matrix to ensure we start fine-tuning process at the lowest possible
numerical magnitudes, ensuring stability:

Uinit = 0 &)
During fine-tuning, we update only the U matrix, keeping C and R fixed:
Wadapted =CUR (6)

4.3 Theoretical Analysis of Catastrophic Forgetting Mitigation
To understand how CURLoRA helps mitigate catastrophic forgetting, we analyze its properties mathematically:
4.3.1 Parameter Space Constraint

In CURLoORA, we decompose the original weight matrix W as:

W~ CUR N

During fine-tuning, we’re optimizing:

Wadapea = C(U + AU)R ®)



where AU represents the changes made to U during fine-tuning. This constrains and limits the adaptation to the
subspace spanned by C and R, meaning the modifications are limited, preventing drastic changes that might lead to
forgetting previous knowledge.

4.3.2 Implicit Regularization

By initializing U as a zero matrix, and C' and R with columns and rows of low weight values, the ones with lower
probabilities, we provide an implicit regularization where C' and R will always limit the unnecessary increase of U.
This can be seen as adding a regularization term to the loss function:

Leurtora(0) = Lk (0) + U] F €))

where ||U || ¢ is the Frobenius norm of the U matrix that is being fine-tuned. This implicit regularization term encourages
the model to keep the changes small. For instance, if U is initially zero, this term will push the fine-tuning process to
make only necessary adjustments, preventing overfitting and excessive reliance on the fine-tuned parameters.

4.3.3 Reduced Interference

During fine-tuning, W is fixed, so the variable gradient flows through Wgapied, Which is itself updated through U as C
and R are fixed. Considering the gradients of the loss L with respect to the parameters, we can express the gradient of
the loss with respect to0 Wgapied as follows:

oL oL
— - 1
8VVadalpted ¢ (aU) R ( O)

This means that the gradient of the loss with respect t0 Wgaptea is dependent on the gradients with respect to U scaled
by the fixed matrices C' and R. By projecting the gradients onto the subspace defined by C' and R, the updates to
Woadaptea are constrained. This means that changes during fine-tuning are less likely to interfere with the model’s ability
to perform the original task, potentially reducing interference with directions important for the original task.

4.3.4 Reduced Degree of Freedom
If W € R™*™ and we use a rank-k approximation, then:

* Full fine-tuning has mn degrees of freedom
* LoRA has k(m + n) degrees of freedom
» CURLORA has only k2 degrees of freedom

This significant reduction in degrees of freedom inherently limits how far the model can stray from its original
configuration.

4.3.5 Stability Analysis

We can analyze the stability of the adapted and fine-tuned weights and how its change is bounded using the fact that the
change that happens to original W is Wagapteq:

AW = Whene-tuned — W =W + Wadapted -W= Wadapled (11)

To quantify this change, we can use the Frobenius norm, | Wdapeed|| 7. By utilizing the submultiplicativity property of
the Frobenius norm, we can say that the growth of Wgapiea is controlled through the norms of C, U, and R:

[Wagaptea | = [|CUR| r < [|Cll P |Ul|#[| Rl 7 (12)

This equation ensures that the Frobenius norm of the adapted weight matrix Wgapiea has an upper bound. Since C' and
R are fixed and U starts at zero, the fine-tuning process focuses on minimizing Wgaptea- As a result, the adaptation
remains stable and the model preserves its original knowledge while allowing for necessary adjustments.



4.4 Theoretical Analysis of Output Shift

To understand why CURLoORA is expected to perform better than standard LoRA in terms of catastrophic forgetting, we
can analyze the shift in the output during fine-tuning.

For a given input z, the original output is y = xW. After fine-tuning:

For LoRA: Yadapted = (W + AB)

For CURLORA: ¥ugapied = (W + CUR)

We can quantify the shift using the Frobenius norm of the difference:

||y - yadaptedHF = ||:CW - l(W + Wadapted)HF = ||:EW —aW — mWadapted”F = ||xWadapted||F (13)

For LoRA: ||z(AB)||r
For CURLORA: ||z(CUR)||r

This equation measures the shift in the model’s output after fine-tuning. y is the original output, and ¥/adapteq is the output
after fine-tuning. After fine-tuning for a different task, the adapted output ¥/,dapied might shift. We use the Frobenius
norm to quantify this shift. If the shift is small, it means that the model’s predictions haven’t changed much, indicating
that the model has retained its original knowledge. As shown, the shift depends on Wgapteq i.€. to make sure the shift
isn’t so big, we need to keep Wagaprea as small (in magnitude or size) as possible.

CURLORA’s main aim is to minimize Wiqapiea While ensuring that the difference || — Wgapied | 7 remains close to
[|W]| 7. By focusing on minimizing Widapied» CURLORA effectively controls the shift in the output, thereby preserving
the model’s original behavior and mitigating catastrophic forgetting.

Theoretically, CURLoRA should result in a smaller shift because:

1. The C and R matrices are directly sampled from W, maintaining some structure of the original matrix.
2. The C and R matrices are sampled from columns and rows with lower values.

3. Only U is trained, which is constrained by C and R.

4. The initialization of U as a zero matrix.

This constrained adaptation in CURLORA is expected to lead to better preservation of the model’s original knowledge,
thereby reducing catastrophic forgetting.

4.5 Memory Efficiency

CURLORA offers significant memory savings compared to full fine-tuning and even LoRA. For a weight matrix
W € R™*™ the number of trainable parameters for each method is:

* Full fine-tuning: mn

¢ LoRA (rank r): mr + nr

* CURLORA (rank r): 72
The memory savings can be substantial, especially for large matrices. In our experiment, with rank 16, the trainable
parameters were:

* Full fine-tuning: 7,248,023,552 parameters

* LoRA: 9,437,184 parameters

* CURLoORA: 24,576 parameters
This reduction in trainable parameters not only saves memory but also potentially leads to faster training and inference
times.

In conclusion, CURLoRA provides multiple mathematical mechanisms that can help mitigate catastrophic forgetting:

* It constrains the parameter space of possible adaptations.



* It provides implicit regularization towards the original weights.
* It preserves important directions from the original weight matrix.
* It reduces the degrees of freedom in adaptation, limiting potential deviation.
* It allows for direct control and analysis of weight stability through the U matrix.
These properties suggest that CURLoRA can indeed help in reducing catastrophic forgetting while still allowing for

meaningful and good adaptation to new tasks. The effectiveness of these theoretical mechanisms are validated through
our experiments on various tasks and datasets, as detailed in the following sections.

5 Methodology

5.1 CURLoORA Implementation

Our CURLORA implementation consists of the following steps:

1. Decomposition: For each weight matrix W in the attention layers (Query, Key, Value)[13]], we perform the
following:

12
» Compute column probabilities: p; = I;“;V[}JHQZ
F

* Invert probabilities: p; = Zl/ o rn
k

+ Sample columns and rows according to p; to construct C and R
* Initialize U as a zero matrix

2. Fine-tuning: For each task, we replace the model’s "Im_head" with a task-specific output layer. We only
update, "continually"”, the U matrix during training, keeping C' and R fixed all the time.

N.B. Once we decompose a weight matrix, we get fixed C' and R permanently while we keep on updating
continually the U matrix on each new task to achieve continual learning.

3. Inference: Use the adapted weight matrix Wgapea = C'U R for forward passes along with the original W
matrix i.e. (W + CUR).

6 Experiment Setup

6.1 Datasets

We used the following datasets for our experiments:

* GLUE-MRPC: Microsoft Research Paraphrase Corpus for paraphrase detection [[14]

* GLUE-SST-2: Stanford Sentiment Treebank for binary sentiment classification [[15]]

These datasets are part of the General Language Understanding Evaluation (GLUE) benchmark [[16], which
includes a diverse set of tasks for evaluating natural language understanding systems.

» Sentiment140: A large-scale sentiment analysis dataset [[17]]

* WikiText-2: A dataset that we use to measure language model perplexity [[18]]

For each fine-tuning task, we limited the training data to 1000 records to simulate scenarios with limited data availability.

6.2 Model and Hyperparameters

We used the Mistral 7B model (v0.3) [19] as our base model. For both LoRA and CURLoRA, we used the following
hyperparameters:

e Ranks: [8, 16, 24]
* Alpha: 1
* Optimizer: AdamW

* Learning rate: 2.5e-4



 Scheduler: Cosine with 500 warmup steps
e Training epochs: 3
» Seed: 1311

We did not use dropout to disable explicit regularization, allowing us to observe the implicit regularization effects of
CURLOoRA.

6.3 Evaluation Metrics

We used the following metrics for evaluation:
* Accuracy: For classification tasks (MRPC, SST-2, Sentiment140)
* Perplexity: For language modeling capability (WikiText-2)

6.4 Experimental Procedure

Our experimental procedure was as follows:

1. Measure initial perplexity of the base model on WikiText-2 concatenating the whole dataset into a single
string.

Fine-tune on MRPC and evaluate.
Fine-tune on SST-2 and evaluate, then re-evaluate on MRPC.
Fine-tune on Sentiment140 and evaluate, then re-evaluate on MRPC and SST-2.

A

Re-calculate perplexity on WikiText-2.

This procedure was carried out for both LoORA and CURLoRA independently.

7 Results and Discussion

Table [T] presents the results of our experiments comparing LoRA and CURLoRA across multiple tasks and evaluation
metrics.

Table 1: Experimental Results: LoRA vs CURLoRA

Metric LoRA-8 CURLoRA-8 LoRA-16 CURLoRA-16 LoRA-24 CURLoRA-24
Initial WikiText-2 Perplexity 5.44 5.44 5.44 5.44 5.44 5.44
MRPC Accuracy (After MRPC) 0.68 0.66 0.65 0.66 0.67 0.66
SST-2 Accuracy (After SST-2) 0.51 0.86 0.51 0.86 0.49 0.86
MRPC Accuracy (After SST-2) 0.68 0.66 0.32 0.66 0.68 0.66
Sentiment140 Accuracy 1.00 0.94 1.00 0.94 1.00 0.94
MRPC Accuracy (After Sentiment140) 0.32 0.66 0.32 0.66 0.32 0.66
SST-2 Accuracy (After Sentiment140) 0.49 0.86 0.49 0.86 0.49 0.86
Final WikiText-2 Perplexity 53896.68 5.44 65055.02 5.44 17049.72 5.44

7.1 Performance Analysis
7.1.1 Task-Specific Performance

CURLORA consistently outperformed LoRA on the MRPC and SST-2 tasks, showing higher accuracy even after
fine-tuning on subsequent tasks. This suggests that CURLoRA is more effective at preserving task-specific knowledge.

7.1.2 Catastrophic Forgetting and Stability

The stability of CURLoRA’s performance across tasks is particularly noteworthy. While LoRA-16’s accuracy, for
example, on MRPC dropped from 0.6495 to 0.32 after fine-tuning on other tasks, CURLoRA-16 maintained its accuracy
at 0.66. This demonstrates CURLoRA’s superior ability to mitigate catastrophic forgetting.



7.1.3 General Language Modeling Capability

The final perplexity scores on WikiText-2 provide strong evidence for CURLoRA’s effectiveness in preserving general
language modeling capabilities. While all LoRA’s perplexity increased dramatically from 5.44 to 65055.02 in case
of LoRA-16, all CURLoRA models maintained the original perplexity of 5.44, indicating no degradation in general
language understanding.

7.2 Theoretical Insights

The experimental results align with our theoretical analysis:

* Parameter Space Constraint: The stability of CURLoRA’s performance across tasks supports our hypothesis
that constraining adaptations to the subspace spanned by C' and R helps preserve original knowledge.

* Implicit Regularization: The maintained perplexity on WikiText-2 suggests that CURLoRA’s implicit
regularization effectively prevents overfitting to specific tasks.

* Reduced Interference: The consistent performance across tasks indicates that CURLoRA successfully
reduces interference between task-specific adaptations.

7.3 Limitations and Future Work

While CURLoRA shows promising results, there are several areas for future research:

* Scalability: Further studies are needed to assess CURLoRA’s performance on larger models and more diverse
tasks and datasets.

* Optimal Rank and Alpha Selection: Investigating methods for automatically selecting the optimal rank and
alpha for CURLoRA could further improve performance.

* Combination with Other Techniques: Exploring the integration of CURLoRA with other continual learning
techniques could yield even better results.

8 Conclusion

This paper introduced CURLoRA, a novel approach to fine-tuning large language models that leverages CUR matrix
decomposition to mitigate catastrophic forgetting and improve computational efficiency. Through theoretical analysis
and empirical experiments, we demonstrated that CURLoRA outperforms standard LoRA in maintaining model stability
and performance across tasks while significantly reducing the number of trainable parameters.

Key contributions of this work include:

* A novel modification to CUR decomposition using inverted probabilities for column and row selection and
initiating U matrix as zeros.

* Theoretical analysis of how CURLoRA addresses catastrophic forgetting.

* Empirical evidence of CURLoRA’s effectiveness across multiple tasks and evaluation metrics.

Our results suggest that CURLoRA is a promising approach for efficient and stable fine-tuning of large language models,
particularly in scenarios with limited fine-tuning data.
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