The MCAPL Framework Manual 2024:
Covering the Agent Infrastructure Layer (AIL)
and Agent Java Pathfinder (AJPF)

Louise A. Dennis

July 11, 2024

Contents

1 Introduction 9
2 Installation Instructions 11
2.1 Requirements Lo 11

2.2 Installation 11
2.2.1 Installation of MCAPL 2024 11

2.2.2 Installation of Development Branch 12

2.3 IntelliJ Installation 12
2.4 Eclipse Installation 0L 13
2.5 Testing the Installation 13

I Agent JavaPathfinder and the Agent Infrastructure

Layer 15
3 Running and Model Checking an Agent Program 17
3.1 Example: Executing a Multi-Agent-System (UNIX Based Systems) 18
3.1.1 ImImtellild00 oo 18
312 ImEclipse o 19
3.2 Example: Model Checking a Multi-Agent System (UNIX Systems) 19
321 InIntelliJ 20
322 InEclipse 20

3.3 Executing and Model Checking Multi-Agent Systems on Win-
dows Systems 20

4 Creating Multi-Agent Systems with the Agent Infrastructure

Layer 21
4.1 Tutorial 1 — Configuration Files 21

4.1.1 Agent Java PathFinder (AJPF) and the Agent Infrastruc-
ture Layer (AIL) 21
4.1.2 An Example Configuration Files 22
4.1.3 Configuration Files 23
4.1.4 EXercises 24
4.2 Tutorial 2 — Extending the Default Environment 25

3

4 CONTENTS

4.2.1 The Default Environment and the AILEnv Interface . . . 26
4.2.2 A Survey of some of Default Environment’s Methods . . . 26
4.2.3 Classes for Logical Formulae 27
4.24 The Message Class 29
4.2.5 Extending executeAction 30
4.2.6 Initialising and Cleaning Up 31
4.2.7 ExXerciseso 31
4.3 Tutorial 3 — Dynamic and Random Environments 32
4.3.1 Dynamic Environments 33
4.3.2 Adding Randommness 35
433 Recordand Replay 38
434 Exercise e 38
4.4 Tutorial 4 — Logging and Configuring Environment Behaviour . . 39
441 Logging e 39
4.4.2 Customized Configuration 40
5 Verifying Programs Using AJPF 43
5.1 Tutorial 1 — The Property Specification Language 43
5.1.1 Setting up Agent Java Pathfinder 43
5.1.2 A Simple Model Checking Attempt 44
5.1.3 JPF Configuration Files 45
5.1.4 The Property Specification Language 46
5.1.50 Exercises o 47
5.2 Tutorial 2 — JPF Configuration Files: Troubleshooting Model
Checking L 48
5.2.1 JPF Configuration Files 49
5.2.2 What to do when Model Checking Fails 54
5.2.3 Replaying a Counter-example 56
5.2.4 Forcing Transitions in the Agent’s Reasoning Cycle 58
5.3 Tutorial 3 — Using AJPF to create Models for other Model-Checkers 58
5.3.1 Separating out Model and Property 59
5.3.2 Using AJPF with SPIN 59
5.3.3 Using AJPF with Prism. 62
5.3.4 Model Checking Agent Systems with Probabilistic Be-
haviour 65
5.4 Tutorial 4 — Verification Environments 68
5.4.1 Where does the Automaton representing a BDI Agent
Program Branch? 0. 68
5.4.2 The Problem with Environments 69
5.4.3 Example: Cars on a Motorway 70
II Agent Programming Languages 77
6 The GWENDOLEN Programming Language 79

6.1 Tutorial 1 — Introduction to Running Gwendolen Programs . . . 79

CONTENTS 5

6.2

6.3

6.4

6.5

6.6

6.7

6.8

6.9

6.10

6.1.1 HelloWorld L. 79
6.1.2 The Configuration File 80
6.1.3 Some Simple Exercise to Try 81
Tutorial 2 — Simple Beliefs, Goals and Actions 81
6.2.1 Pick UpRubble 82
6.2.2 Perform and Achieve Goals 84
6.2.3 Some Simple Exercise to Try 85
Tutorial 3 — Plan Guards and Reasoning Rules 86
6.3.1 Pick Up Rubble (Again) 86
6.3.2 Using Prolog Lists 87
6.3.3 More Complex Prolog Reasoning — Grouping predicates
under a negation oL L Lo 88
6.3.4 Using Goals in Plan Guards 89
6.3.5 Reasoning about Beliefs and Goals 90
6.3.6 Some Simple Programs to Write 91
Tutorial 4 — Troubleshooting 92
6.41 PathErrors 92
6.4.2 Parsing Errors 0oL 93
6.4.3 Why isn’t my plan applicable? 94
6.4.4 Tracing the execution of reasoning rules 97
6.4.5 Conclusion 0oL 99
Tutorial 5 — Events and Intentions 99
6.5.1 AIL — The Agent Infrastructure Layer 99
6.5.2 Intentions 99
6.5.3 Events 100
6.5.4 Intentions in GWENDOLEN 101
Tutorial 6 — Manipulating Intentions and Dropping Goals . . . 103
6.6.1 Wait For: Suspending Intentions 103
6.6.2 Lock and Unlock: Preventing interleaving of Intentions . 105
6.6.3 Dropping Goals 108
Tutorial 7 — The Gwendolen Reasoning Cycle 108
6.7.1 The GWENDOLEN Reasoning Cycle 108
6.7.2 Using Java Debuggers to Debug GWENDOLEN programs . 110
6.7.3 Programming Exercise 110
Tutorial 8 — Multi-Agent Systems and Communication 113
6.8.1 Pick Up Rubble (Again) 113
6.8.2 Recording and Replaying AIL Programs 115
6.8.3 Two Ways to Create a Multi-Agent System 115
6.8.4 Duplicating an Agent 116
Tutorial 9 — Default built-in actions: Strings and Arithmetic . . 116
6.9.1 String Handling 116
6.9.2 Arithmetic 117
6.9.3 Using Equations in Plan Guards 119
6.9.4 Print Actions oL Lo 120

The Property Specification Language and its Relation to GWEN-
DOLEN Programs 120

6 CONTENTS
6.10.1 Implementation of BDI Modalities in GWENDOLEN 120

7 Gwendolen Semantics 123
7.1 Intentions 123
7.2 Plans, Applicable Plans and Intentions 124
7.2.1 Applicable Plans L. 125

7.3 The Environment, 126
7.4 Multi-Agent System Semantics, Scheduling, Reasoning Cycle . . 126
7.5 Stage Rules: The Agent Reasoning Cycle 128
751 Stage A 129

752 StageBo 131
753 Stage C 132
754 StageD 132
755 StageE oo 137
75.6 StageF 138

8 The EASS Variant of the GWENDOLEN Programming Language 139
8.1 Tutorial 1 — The EASS variant of Gwendolen 139
8.1.1 Abstraction and Reasoning Engines 139
8.1.2 Key Differences oL 141
813 Example. 142
8.1.4 Exerciseo 142

8.2 Tutorial 2 — Environments for the EASS variant of Gwendolen . 145
8.2.1 The Default EASS Environment and the EASSEnv Interface146

8.2.2 A Survey of some of Default EASS Environment’s Methods146
8.2.3 Default Actions 147
8.2.4 Adding Additional Actions 148
8.2.5 Adding Dynamic Behaviour 148
826 Example. 148
8.2.7 Sending Messages. 152
8.2.8 Exercises 153

8.3 Tutorial 3 — Verifying Reasoning Engines 153
8.3.1 Overview 153
832 Example. 154
8.3.3 Messageso 158
8.3.4 Exerciseso 158

9 Executing and Verifying GOAL agents in the AIL and AJPF 159
9.1 AIL Configuration Files 159
9.1.1 Running the Program 160
9.1.2 Configuration Files 160

9.2 Noteson Chapter 1. 161
9.3 Model Checking GOAL Programs 162
9.3.1 Setting up Agent Java Pathfinder 162
932 Example. o 162

9.3.3 Property Specification 164

CONTENTS 7

9.4
9.5
9.6

9.7

9.3.4 Running AJPF oo 164
Noteson Chapters 3 & 4. 165
Noteson Chapter 5. 165
Noteson Chapter 6 165
9.6.1 Section 6.1 165
9.6.2 Section 6.2 168
9.6.3 Section 6.3 onwards 168

Chapter 7 169

CONTENTS

Chapter 1

Introduction

The MCAPL framework is a suite of tools for building interpreters for
agent programming languages and model checking programs executing in
those interpreters. It consists of the AIL toolkit for building interpreters
for rational agent programming languages (BDI languages) as introduced
by [Rao and Georgeff, 1992] and the AJPF model checker [Dennis et al., 2012].
AJPF extends the JavaPathfinder (JPF) model checker [Visser et al., 2003] to
prove LTL properties of BDI agents. This distribution also contains a number of
programming languages implemented in the AIL. Chief among these are GWEN-
DOLEN [Dennis, 2017], the EASS variant of GWENDOLEN that can be used to
program hybrid autonomous systems and GOAL [Hindriks et al., 2001]. These
languages are described in this manual. It also contains the systems outlined
in [Dennis et al., 2015a] (ethical_gwen), [Dennis et al., 2015¢] (actiononly
and ethical_governor), [Ferrando et al., 2018] (monitor), [Bremner et al.,]
(pbdi) and a reimplemention of the HERA system [Lindner et al., 2017] (hera)
together with a BDI-style wrapper for it (juno). These systems are not docu-
mented in this manual.

The high-level concepts behind the MCAPL framework, including discussion
of many examples and extensions can be found in [Dennis and Fisher, 2023].

This manual consists primarily of basic installation instructions and then a
set of tutorials covering various aspects of using the system and some of the
languages shipped with it. These tutorials can also be found in the tutori-
als sub-directory. Chapter 2 provides installation instructions and Chapter 3
provides simple instructions for running and model-checking a program in the
framework. Chapter 4 describes the use of the AIL with particular reference
on its use in creating environments for multi-agent systems — where users of
particular languages will need to engage with the AIL. Chapter 5 provides a tu-
torial based description of the use of AJPF for model checking. Chapter 6 is a
tutorial introduction to the GWENDOLEN programming language and chapter 8
is a tutorial introduction to its EASS variant that can be used for programming
hybrid autonomous systems . Chapter 7 provides an operational semantics for
GWENDOLEN which may, among other things, be useful for people considering

10 CHAPTER 1. INTRODUCTION

implementating their own language in the AIL toolkit. Chapter 9 consists of a
discussion of the differences between using the AIL implementation of the GOAL
programming language and the version described in [Hindriks, 2014] and a dis-
cussion on the use of AJPF to model check GOAL programs. [Hindriks, 2014]
is included in the distribution so that full instructions on programming agents
in GOAL are available.

How to read this manual If you are installing the MCAPL framework then
we recommend you start by reading chapters 2 and 3 and follow the instructions
to install the system and run some basic programs to check it is functioning
correctly. The other chapters are mostly stand alone and will refer you to the
relevant parts of this manual where they are not. The exception is chapter 8
which assumes familiarity with programming in GWENDOLEN (chapter 6). If
your interest is in learning BDI programming in GWENDOLEN or its EASS
variant then we recommend you start with chapter 6 and proceed to chapter 8
if desired. Chapter 4 is also useful for learning to use this system since it
covers the creation of environments for multi-agent systems. If your interest is
primarily in using the AJPF model checker then we recommend you start by
reading chapter 5. If you want to model check GOAL programs then you should
read chapter 9.

Note This release comes packaged with Jar files for NASA’s Java Pathfinder
(JPF) tool and a number of other libraries. The relevant jars, zip files of source
code and the NASA license can be found in 1ib/3rdparty. The release is
configured to run using the version of JPF packaged with it, but this means
that some adaptation, particularly of configuration files, may be required to run
it on systems where JPF is already installed.

The development of the MCAPL Framework would have been impossible
without the financial support of the EPSRC via several grants: Model-Checking
Agent Programming Languages (EP/D052548), Engineering Autonomous Space
Software (EP/F037201/1), Reconfigurable Autonomy (EP/J011770), Verifiable
Autonomy (EP/L024845/1), Robotics and AT for Nuclear (EP/R026084/1), Fu-
ture AT and Robotics for Space (EP/R026092/1), and Trustworthy Autonomous
Systems Verifiability Node (EP/V026801/1). Thanks are also owed to Jomi
Hiibner, Koen Hindriks, Matt Webster, Angelo Ferrando, Vincent Koeman,
Fatma Faruq, and Mengwei Xu.

Chapter 2

Installation Instructions

2.1 Requirements

The MCAPL software requires Java 8.
IMPORTANT: It does have to be Java 8. The version of Java PathFinder
currently packaged with the system does not work with later versions of Java.

2.2 Installation

2.2.1 Installation of MCAPL 2024

e Download the 2024 release from Github
https://github.com/mcapl/mcapl/releases/.

o Create afile . jpf/site.properties in your home directory with the path

to mcapl2024 assigned to the value mcapl (e.g. mcapl = ${user.home}/mcapl).

If you have put the mcapl download in your home directory, you should
be able to do this at the UNIX command line by running the following
commands in your home directory.

mkdir -p “/.jpf && touch “/.jpf/site.properties
followed by:
echo "mcapl = ${user.home}/mcapl" >> ~/.jpf/site.properties
e Within the mcapl directory you should find build.xml to which you can
apply ant to build ajpf. (e.g., at the command line, ant compile to just

compile the files and ant build to build and run regression tests (takes
just under fifteen minutes on a 3GHz Macbook with 16 GB memory))

e Make sure you have the bin sub-directory of mcapl on your java class path.

11

12 CHAPTER 2. INSTALLATION INSTRUCTIONS

e We recommend you set the AJPF_HOME environment variable to give the
path to your MCAPL directory.

2.2.2 Installation of Development Branch

You will need an installation of the Git version control system. It is worth taking
some time before you start to understand the basics of Git, particularly checking
out versions, switching between branches, commiting changes and managing
local and remote repositories. There are several introductions to Git and Github
on the web.

e Clone the git repository from github.
git clone https://github.com/mcapl/mcapl.git

e Create afile . jpf/site.properties in your home directory with the path
to mcapl assigned to the value mcapl (e.g. mcapl = ${user.home}/mcapl).

If you have put the mcapl download in your home directory, you should
be able to do this at the Unix command line by running the following
commands in your home directory:

mkdir -p “/.jpf && touch "/.jpf/site.properties
followed by:
echo "mcapl = ${user.home}/mcapl" >> ~/.jpf/site.properties

e Within the mcapl directory you should find build.xml to which you can
apply ant to build ajpf. (e.g., at the command line, ant compile to just
compile the files and ant build to build and run regression tests (takes just
under fifteen minutes on a 3GHz Macbook with 16 GB memory))

e Make sure you have the bin sub-directory of mcapl on your java class path.

e We recommend you set the AJPF_HOME environment variable to give the
path to your mcapl directory.

2.3 IntelliJ Installation

We also supply an IntelliJ Module file so you should be able to import mcapl2024
(or mcapl if using the development version) into IntelliJ. You will need a Java
8 SDK and JRE installed and will probably also want to install the ant plugin
in order to run the tests easily. You may need to configure the Project Settings
manually to use your Java 8 SDK.

2.4. ECLIPSE INSTALLATION 13

e If you have the ant plugin installed, you should then be able to build ajpf
by clicking on build in the ant window (ant symbol — often on the right
of the IDE). This will build the project and run the “quick” test suite.
You can see the progress of this in the Messages window (usually at the
bottom on the left of the IDE).

e Create a file .jpf/site.properties with the path to mcapl2024 (or
mcapl if using the development version) assigned to the value mcapl (e.g.
mcapl = ${user.home}/IdeaProjects/mcapl2024).

e We recommend you set the AJPF_HOME environment variable to give the
path to your ajpf directory.

2.4 Eclipse Installation

We also supply an eclipse .project file so you should be able to import mcapl2024
(or mcapl if using the development version) into eclipse. You need to be using
a version of Eclipse for Java Development. We have tested on the Eclipse IDE
for Java Developers. You will need to configure Eclipse to use Java 1.8 as both
its compiler and runtime environment.

e In theory, you should then be able to build ajpf by clicking on the build.xml
file, however recent versions of Eclipse force the build process to use Java
11 and don’t send clear error messages when they do this. If the build
process isn’t working, you may still nevetheless be able to use the MCAPL
framework by using Eclipse’s built-in build process bypassing the ant file.
It is possible to force Eclipse to use a version of ant that is compatible
with Java 8, but this is non-trivial.

e Create a file .jpf/site.properties with the path to mcapl2024 (or
mcapl if using the development version) assigned to the value mcapl (e.g.
mcapl = ${user.home}/Eclipse/mcapl2024).

e We recommend you set the AJPF_HOME environment variable to give the
path to your ajpf directory. If necessary you can do this within the Envi-
ronment tab for individual Run Configurations.

2.5 Testing the Installation

Chapter 3 describes how to manually run and model-check a simple example
program.

There are also number of JUnit tests in the subdirectory /src/tests and
examples in /src/examples.. Using ant, the build target in build.xml runs a
set of tests.

14

CHAPTER 2. INSTALLATION INSTRUCTIONS

Part 1

Agent JavaPathfinder and
the Agent Infrastructure
Layer

15

Chapter 3

Running and Model
Checking an Agent
Program

All of the languages implemented using the Agent Infrastructure Layer (AIL)
come provided with a parser which allows files written in that language to be
read in and executed. Examples of programs can be found in the src/examples
directory and the tutorials for some of the languages can be found in Part 2 of
this manual.

However these languages only describe the agents and these agents must exe-
cute within an multi-agent system consisting of an environment and one or more
agents. Therefore, any specific example needs to first construct such a multi-
agent system. The languages implemented in the AIL all come with classes for
parsing input files to sets of agents and many use the DefaultEnvironment class
that come with the AIL — there is more information on creating multi-agent sys-
tems and environments in Chapter 4. Configuration files can be used to describe
the classes necessary for a given multi-agent system and the class ail.mas.AIL
will build and run a multi-agent system from a configuration file. This can also
be invoked using the run-AIL IntelliJ or Eclipse Run Configurations.

Model Checking an agent system uses standard JPF configuration files which
can be supplied to the gov.nasa.tool.RunJPF command at the command line,
or to the run-JPF (MCAPL) Run Configuration in IntelliJ or Eclipse. These
configuration files should incorporate the line @using = mcapl at the top which
should ensure that the correct listeners, etc., for AJPF are configured. This
assumes that the MCAPL project has been added to the JPF site.properties
as described in the Installation Instructions (Chapter 2). A general support class
for model checking agent systems configured using an AIL configuration file has
been provided. This is ail.util.AJPF_w_ATIL.

17

18CHAPTER 3. RUNNING AND MODEL CHECKING AN AGENT PROGRAM

3.1 Example: Executing a Multi-Agent-System
(UNIX Based Systems)

Important: Make sure that mcapl12024/bin is in your CLASSPATH. You also
need to make sure that the following jar files appear in your CLASSPATH

1lib/3rdparty/antlr-4.7-complete. jar
1lib/3rdparty/commons-io-2.4. jar
lib/3rdparty/eis-0.5.0. jar
lib/3rdparty/ev3classes. jar
lib/3rdparty/ev3tools. jar
lib/3rdparty/guava-31.1-jre.jar
1ib/3rdparty/java-prolog-parser. jar
lib/3rdparty/jpf. jar
lib/3rdparty/jpf-annotations. jar
lib/3rdparty/jpf-classes. jar
lib/3rdparty/jpl. jar
1ib/3rdparty/json-simple-1.1.1. jar
1lib/3rdparty/junit-4.10. jar
lib/3rdparty/system-rules-1.16.0. jar

We also recommend setting the environment variable AJPF_HOME to be
the path to mcapl2024 (NB. throughout this chapter, if you are using the de-
velopment version mcapl12024 should be mcapl).

You can run the simple agent pickupagent.gwen whose code you will find
in /src/examples/gwendolen/simple/PickUpAgent by calling

> java ail.mas.AIL {$path_to}/src/examples/gwendolen/simple/PickUpAgent/PickUpAgent. ail

where $path-to is the path to ajpf in your system.
You should see output similar to:

MCAPL Framework 2024
done

PickUpAgent.ail is a Configuration File which describes how AIL should
build the relevant multi-agent system.

NB If you do not have AJPF_HOME set then you will need to run the
example from the mcapl12024 directory.

3.1.1 In IntelliJ

If you have successfully imported the project into IntelliJ then you should have
two run configurations run-AIL and run-JPF (MCAPL).

Select the configuration file you want to run, and then select run-AIL from
the Run Configuration drop-down.

3.2. EXAMPLE: MODEL CHECKING A MULTI-AGENT SYSTEM (UNIX SYSTEMS)19

3.1.2 In Eclipse

If you have successfully imported the project into Eclipse then you should have
two run configurations run-AIL and run-JPF (MCAPL). If you do not these can
be found in the eclipse sub-directory.

Select the configuration file you want to run, and then select run-AIL from
Eclipse’s Run Configuration menu.

3.2 Example: Model Checking a Multi-Agent
System (UNIX Systems)

To verify a multi-agent system, you will need to run JPF which uses a class
contained in lib/3rdparty/jpf.jar. Make sure this is on your class path.
Call in the mcapl2024 directory:

> java gov.nasa.jpf.tool.RunJPF ${path—to}/src/examples/gwendolen/simple/PickUpAgent/PickUpAgent.jpf

where $path-to is the path to mcapl2024 in your system.
You should see output similar to:

search started
[skipping static init instructions]
JavaPathfinder core system v8.0 — (C) 2005—2014 United States Government. All rights

system under test
ail.util.AJPF_w_AIL. main("/src/examples/gwendolen/simple/PickUpAgent/PickUpAgent. ail

search started: 30/03/23 11:F
choice: gov.nasa.jpf.vm.choice.ThreadChoiceFromSet {id:"ROOT" ,1,

MCAPL Framework Version 2023

ANTLR Tool version 4.4 used for code generation does not match the current runtime

garbage collection

[INFO] Adding 0 to []

[1] forward: 0 new
choice: gov.nasa.jpf.vm.choice.IntChoiceFromSet[id="NewAgentProg
garbage collection

[INFO] Adding 1 to [0]

[2] forward: 1 new
choice: gov.nasa.jpf.vm.choice.IntChoiceFromSet[id="NewAgentProg
garbage collection

[INFO] Adding 2 to [0, 1]

[3] forward: 2 new
choice: gov.nasa.jpf.vm.choice.IntChoiceFromSet[id="NewAgentProg
garbage collection

[INFO] Adding 3 to [0, 1, 2, 3]

[INFO] Always True from Now On

20CHAPTER 3. RUNNING AND MODEL CHECKING AN AGENT PROGRAM

forward: 3 visited

backtrack: 2
done: 2

[4]

(3]

(3]

[2] backtrack: 1
[2] done: 1

[1] backtrack: 0
[1] done: O

[0] backtrack: —1
[0] done: -1

search finished

no errors detected

results

statistics

elapsed time:
states:

search:

choice generators:
heap:
instructions:

max memory :

loaded code:

00:00:01
new=3,visited=1,backtracked=4,end=0
maxDepth=3,constraints=0

thread=1 (signal=0,lock=1,sharedRef=0,threadApi=0,resct

new=6113,released =3792, maxLive=2265,gcCycles=4
365022

491MB

classes =301, methods=4831

3.2.1 In IntelliJ

In IntelliJ you should be able to select run-JPF (MCAPL) from the Run Configu-
rations menu while you have src/examples/gwendolen/simple/PickUpAgent/PickUpAgent. jpf
selected. This should generate similar output to the above.

3.2.2 In Eclipse

In eclipse you should be able to select run-JPF (MCAPL) from the Run menu
while you have src/examples/gwendolen/simple/PickUpAgent/PickUpAgent. jpf
selected. This should generate similar output to the above.

3.3 Executing and Model Checking Multi-Agent
Systems on Windows Systems

AJPF and the AIL have not been extensively tested on Windows systems. In
particular all the examples assume UNIX conventions for path names. In theory
however, it should be possible to adapt these to Windows systems simply by
converting paths to use Windows style paths.

search finished:

30,

Chapter 4

Creating Multi-Agent
Systems with the Agent
Infrastructure Layer

This chapter contains tutorials on the use of the Agent Infrastructure Layer
(AIL). This primarily concerns the construction of multi-agent systems out of a
set of agents programmed in specific languages and the environments in which
those systems run.

4.1 Tutorial 1 — Configuration Files

This is the first in a series of tutorials on the use of the Agent Infrastructure
Layer (AIL). This tutorial covers the basics of configuring a multi-agent system
in the AIL which can then be used to run the system and/or for model checking.
This duplicates material that appears in section 6.1 and in section 6.8 but
involves a more thorough discussion of configuration options.

Files for this tutorial can be found in the mcapl distribution in the directory

src/examples/gwendolen/ail _tutorials/tutoriall.

This tutorial assumes some familiarity with the basics of running Java pro-
grams either at the command line or in Eclipse.

4.1.1 Agent Java PathFinder (AJPF) and the Agent In-
frastructure Layer (AIL)

Agent Java PathFinder (AJPF) is primarily designed to work with agent pro-
gramming languages which are implemented using the Agent Infrastructure
Layer (AIL). The first language implemented in the AIL was GWENDOLEN Sso
the examples in these tutorials will use GWENDOLEN agents. It isn’t necessary

21

22CHAPTER 4. CREATING MULTI-AGENT SYSTEMS WITH THE AGENT INFRASTRUCTURE I

to understand GWENDOLEN to use these tutorials but it is important to under-
stand a little bit about the AIL. In particular it is important to understand AIL
configuration files and how they are used to construct a multi-agent system for
model checking.

4.1.2 An Example Configuration Files

You will find an AIL configuration file tutorial directory called hello_world.ail.
Its contents is shown in figure 4.1.

mas.file = /src/examples/gwendolen/ail_tutorials/tutoriall/hello_world.gwen
mas.builder = gwendolen.GwendolenMASBuilder

env = ail.mas.DefaultEnvironment

log.warning = ail.mas.DefaultEnvironment

Figure 4.1: An AIL Configuration File

This is a very simple configuration consisting of four items only.
mas.file gives the path to the GWENDOLEN program to be run.

mas.builder gives a java class for building the file. In this case
gwendolen.GwendolenMASBuilder parses a file containing one or more
GWENDOLEN agents and compiles them into a multi-agent system.

env provides an environment for the agent to run in. In this case we use the
default environment provided by the AIL.

log.warning sets the level of output for the class
ail.mas.DefaultEnvironment. This is a pretty minimal level of
output (warnings only). We will see in later tutorials that it is often
useful to get more output than this.

You will notice that the GWENDOLEN MAS file, hello_world.gwen is also in
the tutorial directory.

Running the Program

To run the program you need to run the JAVA program ail .mas.AIL and supply
it with a the configuration file as an argument. You can do this either from
the command line or using the IntelliJ or Eclipse run-AIL configuration (with
hello_world.ail selected in the Project Files/Package Explorer window) as
detailed in chapter 3

Run the program now.

4.1. TUTORIAL 1 - CONFIGURATION FILES 23

4.1.3 Configuration Files

Configuration files all contain a list of items of the form key=value. Particularly
agent programming languages, and even specific applications may have their
own specialised keys that can be placed in this file. However the keys that are
supported by all agent programs are as follows:

env This is the Java class that represents the environment of the multi-
agent system. The value should be a java class name — e.g.,
ail.mas.DefaultEnvironment.

mas.file This is the name of a file (including the path from the MCAPL home
directory) which describes all the agents needed for a multi-agent system
in some agent programming language.

mas.builder This is the Java class that builds a multi-agent system in some
language. For GWENDOLEN this is gwendolen.GwendolenMASBuilder.
To find the builders for other languages consult the language documenta-
tion.

mas.agent.N.file This is the name of a file (including the path from the
MCAPL home directory) which describes the Nth agent to be used by
some multi-agent system. This allows individual agent code to be kept in
separate files and allows agents to be re-used for different applications. It
also allows a multi-agent system to be built using agents programmed in
several different agent programming languages.

mas.agent.N.builder This is the Java class that is to be used to build the
Nth agent in the system. In the case of GWENDOLEN individual agents
are built using gwendolen.GwendolenAgentBuilder. To find the builders
for other languages consult the language documentation.

mas.agent. N.name All agent files contain a default name for the agent but
this can be changed by the configuration (e.g., if you want several agents
which are identical except for the name — this way they can all refer to
the same code file but the system will consider them to be different agents
because they have different names).

log.severe, log.warning, log.info, log.fine, log.finer, log.finest These all
set the logging level for Java classes in the system. log.finest prints out
the most information and log.severe prints out the least. By default
most classes are set to log.warning but sometimes, especially when de-
bugging, you may want to specify a particular logging level for a particular
class.

log.format This lets you change the format of the log output from Java’s
default. At the moment the only value for this is brief.

24CHAPTER 4. CREATING MULTI-AGENT SYSTEMS WITH THE AGENT INFRASTRUCTURE I

ajpf.transition_every_reasoning_cycle This can be true or false (by de-
fault it is true). It is used during model checking with AJPF to determine
whether a new model state should be generated for every state in the
agent’s reasoning cycle. This means that model checking is more thor-
ough, but at the expense of generating a lot more states.

ajpf.record This can be true or false (by default it is false). If it is
set to true then the program will record its sequence of choices (all
choices made by the scheduler and any choices made by the special
ajpf.util.choice.Choice class). By default (unless ajpf.replay.file
is set) these choices are stored in a file called record.txt in the records
directory of the MCAPL distribution.

ajpf.replay This can be set to true or false (by default it is false). If it is
set to true then the system will execute the program using a set of sched-
uler and other choices from a file. By default (unless ajpf.replay.file
is set) this file is record.txt in the records directory of the MCAPL
distribution.

ajpf.replay.file This allows you to set the file used by either ajpf.record or
ajpf.replay.

ail.store_sent_messages This can be true or false (by default it is true). If
it is false then AIL’s built-in rules for message sending will not store a copy
of the message that was sent. This can be useful to reduce the number of
states when model checking, but obviously only if it isn’t important for
the agent to know about sent messages.

4.1.4 Exercises

In the tutorial directory you will find three further GWENDOLEN files
(simple mas.gwen, lifter.gwen and medic.gwen) and an environment
(SearchAndRescueMASEnv. java).

simple_mas.gwen Is a simple multi-agent system consisting of a lifter agent
and a medic agent. The lifter explores a location (5, 5). If it finds a human
it will summon the medic to assist the human. If it finds some rubble it
will pick up the rubble.

lifter.gwen Is a single lifting agent much like the one in simple mas.gwen. It
explores first location (5, 5) and then (3, 4) and will ask one of two medics,
medic or nurse for help assisting any humans it finds.

medic.gwen Is a medic agent that assists humans if it gets sent a message
requesting help.

SearchAndRescueMASEnv.java is an environment containing two injured
humans, one at (5, 5) and one at (3, 4).

4.2. TUTORIAL 2 - EXTENDING THE DEFAULT ENVIRONMENT 25

Exercise 1

Write a configuration file to run simplemas.gwen with

gwendolen.ail tutorials.tutoriall.SearchAndRescueMASEnv as the

environment. Set the log level for ail.mas.DefaultEnvironment to info.
You should see output like

Jan 29, 2015 5:17:42 PM ajpf.util.AJPFLogger info
INFO: lifter done move_to(5,5)

Jan 29, 2015 5:17:42 PM ajpf.util.AJPFLogger info
INFO: lifter done send(l:human(5,5), medic)

Jan 29, 2015 5:17:42 PM ajpf.util.AJPFLogger info
INFO: medic done move_to(5,5)

Jan 29, 2015 5:17:42 PM ajpf.util.AJPFLogger info
INFO: lifter done lift_rubble

Jan 29, 2015 5:17:42 PM ajpf.util.AJPFLogger info
INFO: medic done assist

Jan 29, 2015 5:17:42 PM ajpf.util.AJPFLogger info
INFO: Sleeping agent lifter

Although the order of the actions may vary depending on which order the agents
act in.

You can find sample answers for all the exercises in this tutorial in the
answers directory.

Exercise 2

Write a configuration file to run lifter.gwen and two copies of medic.gwen
with gwendolen.ail tutorials.tutoriall.SearchAndRescueMASEnv as the
environment. One of the medic agents should be called medic and one should
be called nurse.

4.2 Tutorial 2 — Extending the Default Environ-
ment

This is the second in a series of tutorials on the use of the Agent Infrastructure
Layer (AIL). This tutorial covers creating environments for agent programs by
extending the ail.mas.DefaultEnvironment class. Sometimes this will not be
possible because of the complexity of the environments involved, or the require-
ments of the programming language interpreters but this is the simplest way to
create an environment for an agent program to run in.

Files for this tutorial can be found in the mcapl distribution in the directory

src/examples/gwendolen/ail_tutorials/tutorial2.

The tutorial assumes a good working knowledge of Java programming and
an understanding of how unification works in Prolog programs.

26CHAPTER 4. CREATING MULTI-AGENT SYSTEMS WITH THE AGENT INFRASTRUCTURE I

4.2.1 The Default Environment and the AILEnv Interface

All environments for use with language interpreters created using the AIL must
implement a java interface ail.mas.AILEnv. This specifies some minimal func-
tionality agents will expect the environment to provide such as the ability to
deliver a set of perceptions, deliver messages and calculate the outcomes of agent
actions. It also requires certain methods be implemented for use with the AJPF
property specification language.

ail.mas.DefaultEnvironment provides a basic level implementation of
all these methods, so any environment that extends it only has to worry
about those aspects particular to that environment. Typically this is
just the way that actions performed by the agents are to be handled.
ail.mas.DefaultEnvironment also provides a set of useful methods for han-
dling changing the perceptions available to the agent that can then be used to
program these action results.

4.2.2 A Survey of some of Default Environment’s Meth-
ods

We note here some of the more useful methods made available by the Default
Environment before we talk about implementing the outcomes of agent actions.

public void addPercept(Predicate per) This adds a percept which is per-
ceivable by all agents in the environment. The percept has to be an object
of class ail.syntax.Predicate (see section 4.2.3).

public void addPercept(String agName, Predicate per) As above but
the percept is perceivable only by the agent called agName.

public boolean removePercept(Predicate per) This removes a percept
which is perceivable by all agents in the environment. It returns true
if the percept existed.

public void removePercept(String agName, Predicate per) As above
but the percept is perceivable only by the agent called agName.

public boolean removeUnifiesPercept(Predicate per) Sometimes we
don’t know the exact logical formulae that we want removed only that
it unifies with some term. This method allows us to remove any percept
that unifies with the argument.

public void removeUnifiesPercept(String agName, Predicate per) As
above but the percept is perceivable only by the agent called agName.

public synchronized void clearPercepts() Removes all percepts.

public void clearPercepts(String agNName) Removes all percepts perceiv-
able only by agName.

4.2. TUTORIAL 2 - EXTENDING THE DEFAULT ENVIRONMENT 27

public void clearMessages(String agName) Removes all messages avail-
able for agName.

public void addMessage(String agName, Message m) This adds a mes-
sage to an agent’s inbox. In general this should only be used by agent’s
invoking SendAction’s but their may be circumstances when a system
requires messages to be added at other times.

4.2.3 Classes for Logical Formulae

Logical Formulae in AIL are handled by a complex hierar-
chy of classes. Here we will concern ourselves only with the
ail.syntax.Predicate, ail.syntax.VarTerm, ail.syntax.NumberTerm,
ail.syntax.NumberTermImpl and ail.syntax.Action classes.

The Predicate Class

ail.syntax.Predicate is a basic work horse class for handling logical formulae.

e You create a Predicate object by calling the constructor Predicate with
a string argument that is the name of the predicate.

So, for instance, Predicate red = new Predicate("red") creates a con-
stant, red.

e You can add arguments to predicates using addTerm.

So for instance, red.addTerm(new Predicate("box")) changes the con-
stant, red in to the predicate red(box).

addTerm always adds new terms to the end of the the predicate. So, for
instance red.addTerm(new Predicate("train")) changes red(box) into
red(box, train).

e If you want to change an argument then you need to use setTerm(int i,
Term t). So for instance, red.setTerm(0, new Predicate("book"))
changes red(box, train) to red(book, train).

NB. Predicate arguments count up from zero.

e You can access the arguments of a predicate using getTerm(int i). So
red.getTerm(0) applied to red(book, train) returns book.

book will be returned as an object of the ail.syntax.Term inter-
face. Most of the classes for logical terms subclass objects (usually
ail.syntax.DefaultTerm) that implement this interface. Depending on
the situation, a programmer may therefore need to cast the Term object
into something more specific.

o getTerms () returns a list of the arguments to a term. getTermsSize()
returns an integer giving the number of arguments.

28CHAPTER 4. CREATING MULTI-AGENT SYSTEMS WITH THE AGENT INFRASTRUCTURE I

e getFunctor() returns a predicate’s functor as a string. So, for instance,
red.getFunctor () applied to red(book, train) returns “red”.

The VarTerm Class

ail.syntax.VarTerm is used to create variables in terms. Following Prolog
conventions, all variables start with capital letters.

e You create a VarTerm object by calling the constructor VarTerm with a
string argument that is the name of the variable.

So, for instance, VarTerm vl = new VarTerm("A") creates a variable, A.

e Since variables may be instantiated by unification to any logical term they
subclass ail.syntax.Predicate and implement interfaces for other sorts
of term, e.g., numerical terms via the ail.syntax.NumberTerm interface
mentioned below. Once instantiated to some other sort of term a variable
should behave like the relevant term object.

The NumberTerm interface and the NumberTermImpl Class

ail.syntax.NumberTerm and ail.syntax.NumberTermImpl are used to work
with numerical terms. NumberTermImpl implements the NumberTerm interface.

e You create a NumberTermImpl object by calling the constructor
NumberTermImpl with either a string argument that is the name of the
number or a double.

So, for instance, NumberTermImpl value = new NumberTermImpl(2.5)
creates a numerical term, 2.5.

e You convert a NumberTerm into a value (e.g. to be used in a simula-
tor) using the method solve() which returns a double. So, for instance,
value.solve() applied to the numerical term 2.5 returns 2.5 as a double.

When working with predicates that have numerical arguments — e.g.,
distance(5.4) you may want to extract the argument (e.g, using
getTerm(0)), cast it into a NumberTerm and then call solve() to get
the actual number you want to work with.

Example 1

if (act.getFunctor().equals("move”)) {
NumberTerm distance = (NumberTerm) act.getTerm (0);
double d = distance.solve ();
this .move(d);

O W N =

4.2. TUTORIAL 2 - EXTENDING THE DEFAULT ENVIRONMENT 29

Example 1 shows some sample code that takes an action such as move(2.5)
requested by the agent extracts the distance to be moved and then calls some
internal method to perform the action in the environment passing in the double
as an argument.

The Action class

Agents use ail.syntax.Action objects to request actions in the environment.
ail.syntax.Action subclasses ail.syntax.Predicate and can generally be
used just like a predicate.

Unifiers

Lastly we will briefly look at the use of unifiers with logical terms. Unifiers
are represented by objects of the class ail.syntax.Unifier. We will use the
syntax Var — value to indicate that a unifier unifies the variable Var with the
value value. We represent a unifier as a list of such variable-value pairs.

e Unifiers can be applied to any logical term (indeed to any object that
implements the ail.syntax.Unifiable interface) by using the method
apply(Unifier u).

So, for instance, suppose the Unifier, u is [A — box], and VarTerm a is A.
Then a.apply(u) will instantiate a as the term box.

e We can unify two terms using the unifies(Unifiable t, Unifier u)
method.

So, for instance, if predicate p1 is red(A) and predicate p2 is red(box) then
pl.unifies(p2, new Unifier u) will turn u into the unifier [A — bozx].

e You can extend an existing unifier in the same way.

So, for instance, suppose u is [A — bozx], pl is red(A) and predicate p2
is red(B). Then pl.unifies(p2, u) will turn u into the unifier [A —
box, B — box].

e You can combine two unifiers using the compose() method (e.g.,
ul.compose(u2). However you should be very careful about doing this
unless you are certain that there is no variable unified with one term in
the first unifier and a different term in the second.

4.2.4 The Message Class

This should only be relevant if you want to change the default handling of
messages. This should only rarely be needed.

The message class is ail.syntax.Message. It has a number of fields which
allow a message to specify the sender (a String), receiver (a String), propo-
sitional content (a Term), an illocutionary force or performative (an int), a
message identifier (a StringTerm) and a thread identifier (a StringTerm).

30CHAPTER 4. CREATING MULTI-AGENT SYSTEMS WITH THE AGENT INFRASTRUCTURE I

It isn’t necessary to use all these fields when creating a message and the sim-
pliest constructor takes four arguments, the illocutionary force, sender, reciever
and content, in that order. So for instance,

Message m = new Message(l, "agl", "ag2", new Predicate("red"))
sends the message “red” from agl to ag2 with illocutionary force 1.

Each language implemented in the AIL specifies its own meanings for illocu-
tionary force. For instance the GWENDOLEN language (and its EASS variant)
define 1 as tell, 2 as perform and 3 as achieve. So a GWENDOLEN agent would
interpret the above example message as a tell message..

Messages come with a set of getter methods, getI1Force(), getPropCont (),
getReceiver (), getSender() etc., for accessing the messages field.

Message objects also have a method toTerm() which will convert the mes-
sage to a Predicate object of the form: message (msgId, threadID, sender,
receiever, ilFroce, propCont). Note that sender, receiver and ilforce are
all converted to predicates (not to StringTerms and a NumberTerm) in this
representation.

4.2.5 Extending executeAction

ail.mas.DefaultEnvironment implements a method called executeAction
public Unifier executeAction(String agName, Action act) throws AILexception {

As can be seen, executeAction takes the agent name and an action as
parameters. The method returns a unifier. Sometimes part of the result of
executing an action can be the instantiation of one of the arguments to the
action predicate. This instantiation is provided by the unifier that is returned.
It is this method that is called by agents when they want to perform an action.

In DefaultEnvironment, executeAction implements the default actions
(discussed in section 6.9), message sending actions, updates fields relevant
to model checking, and generates appropriate logging output. All these are
important functions and so we strongly recommend that when overwriting
executeAction you include a call to it (super.executeAction(agName, act))
at the end, outside of any conditional expressions. The method returns an empty
unifier so this can be safely ignored or composed in subclassing environments.

Normally executeAction will need to handle several different actions. An
easy way to do this is to use conditional statements that check the functor of
the Action predicate (see Example 2)

Example 2
if (act.getFunctor().equals(”"red_button”)) { 1
addPercept (agName, new Predicate(”red_button_pressed”); 2

removePercept(agName, new Predicate(” green_button_pressed”); 3

4.2. TUTORIAL 2 - EXTENDING THE DEFAULT ENVIRONMENT 31

} else if (act.getFunctor().equals(”"green_button”)) {
addPercept (agName, new Predicate(” green_button_pressed”);
removePercept (agName, new Predicate(”red_button_pressed”);

~N O Ul

}

4.2.6 Initialising and Cleaning Up

Environments get created before any agents are created or added to them. This
can sometimes cause problems if you want the environment to be configured in
some way relating to the agents (e.g., setting up a location for each agent in the
environment) before everything starts running.

After environments are created they can be configured using the AIL config-
uration file for the multi-agent system. The key/value pairs used will be specific
to the environment.

The method public void init_before_adding agents() is called on en-
vironments after configuration but before any agents are added to them. This
is rarely used but occasionally there is some aspect of initialisation that has to
happen after the use of any user supplied configuration files but before agents
are added.

The method public void init_after_adding agents() is called after the
agents have been created and added to the environment but before the environ-
ment starts running. Therefore overriding this method can be a good way in
which to perform any configuration that involves agents.

Similarly public void cleanup() is called at the end of a run of the multi-
agent system and so can be used for any final clean up of the environment or
to print out reports or statistics.

4.2.7 Exercises
Exercise 1

In the tutorial directory you will find an AIL configuration file,
PickUpAgent.ail. This is a configuration for a simple multi-agent system con-
sisting of one GWENDOLEN agent, pickupagent.gwen, and the Default Envi-
ronment.

The agent is programmed to continue making pickup actions until it believes
holding_block. If you run the multi-agent system you will observe it making re-
peated actions. Because the default environment does nothing with the pickup
action the agent sees no outcomes to its efforts and so keeps trying.

Create a new environment for the agent that subclasses
ail.mas.DefaultEnvironment and makes the pickup action result in
the perception that the agent is holding_block.

A sample answer can be found in the answers directory.

32CHAPTER 4. CREATING MULTI-AGENT SYSTEMS WITH THE AGENT INFRASTRUCTURE I

Exercise 2

In the tutorial directory you will find a second GWENDOLEN agent,
lucky dip_agent.gwen. This agent is searching for a toy in three bins which
are red, green and yellow. If it doesn’t find a toy in any of the bins it will throw
a tantrum. The agent can perform three actions.

search(Colour, A) It searches in the bin of colour, Colour and expects A to
be unified to whatever it finds.

drop(A) It drops A (which it will have unified with something) and then waits
until it sees A (e.g., if it does drop(book) it then waits until it perceives
see(book) before it continues).

throw_tantrum

Create an environment for the agent that subclasses
ail.mas.DefaultEnvironment and implements the five actions in a sen-
sible way — i.e., unifying A appropriately for the search actions (e.g., to book
or toy depending which bin the agent searches in), and adding an appropriate
see(A) predicate. It isn’t really necessary for anything to happen as a result of
the tantrum action but it can if you want.

A sample answer can be found in the answers directory.

4.3 Tutorial 3 — Dynamic and Random Environ-
ments

This is the third in a series of tutorials on the use of the Agent Infrastructure
Layer (AIL). This tutorial covers creating environments for agent programs
which contain dynamic or random behaviour. Dynamic behaviour is behaviour
that may occur without the agents doing anything to cause it. Random be-
haviour is when the outcome of an action, the input to a sensor, or the dynamic
behaviour of the environment has some element of chance to it.

It should be noted that the EASS variant of the GWENDOLEN language
is intended for use with dynamic and random environments and has its own
customised support for them. If you are working with the EASS variant you
may wish to skip this tutorial and use the EASS tutorial on environments
instead.

Files for this tutorial can be found in the mcapl distribution in the directory

src/examples/gwendolen/ail_tutorials/tutorial3.

The tutorial assumes a good working knowledge of Java programming and
an understanding of the basics of constructing AIL environments as discussed
in section 4.2

4.3. TUTORIAL 3 - DYNAMIC AND RANDOM ENVIRONMENTS 33

4.3.1 Dynamic Environments

A dynamic environment is one that gets to change in some way, typically to effect
the percepts available in the system, without any agent taking any particular
action. To do this the environment needs to be included in the scheduler that
is used to decide which agent gets to act next.

The schedulers all expect to pick between objects that implement the
ajpf.MCAPLJobber interface so the first thing a dynamic environment needs to
do is implement this interface. This interface includes implementing a do_job ()
method which should contain the changes to be made when the environment
runs. Once this is done the environment needs to be added to the scheduler and
set up to receive notifications from the scheduler. Example 3 shows a simple
dynamic environment for an agent that searches a grid in order to find a human.
The agent program searches a grid by performing move_to actions. When the
scheduler calls the the environment it inserts the perception that the robot sees
a human to rescue.

Example 3
public class RobotEnv extends DefaultEnvironment 1
implements MCAPLJobber { 2
3
public RobotEnv() { 4
super (); 5
getScheduler (). addJobber(this); 6
} 7
8
Q@Override 9
public int compareTo(MCAPLJobber o) { 10
return o.getName().compareTo(getName()); 11
} 12
13
Q@Override 14
public void do_job () { 15
addPercept(new Predicate(”"human”)); 16
} 17
18
©@Override 19
public String getName() { 20
return "gwendolen. ail_tutorials.tutorial3.RobotEnv"; 21
} 22
23
©@Override 24
public Unifier executeAction(String agName, Action act) 25
throws AlLexception { 26
if (act.getFunctor().equals(”"move_to”)) { 27
Predicate robot_position = new Predicate(”at”); 28
Predicate old_position = new Predicate(”at”); 29
robot_position.addTerm(act.getTerm(0)); 30

robot_position.addTerm(act.getTerm(1)); 31

34CHAPTER 4. CREATING MULTI-AGENT SYSTEMS WITH THE AGENT INFRASTRUCTURE I

old_position.addTerm(new VarTerm("X")); 32
old_position .addTerm(new VarTerm("Y")); 33
removeUnifiesPercept(old_position); 34
addPercept(robot_position); 35

} 36
return super.executeAction (agName, act); 37

} 38

} 39

Line 2 shows that the class implements MCAPLJobber. At line 6 the en-
vironment is added as a jobber to the scheduler. Lines 9-23 show the three
methods that need to be implemented for the MCAPLJobber interface. Sched-
ulers generally compare jobbers by their names so compareTo implements this
while getName () returns a name for the jobber. do_job() implements adding
the perception of a human.

Lastly executeAction implements the result of the robot moving by chang-
ing the perceptions of its coordinates. This uses removeUnifiesPercept to
remove the old robot position before it then asserts the new one.

The AIL configuration file, searcher.ail, executes a search and rescue
agent in this environment.

A Note on Schedulers

The default scheduler used by DefaultEnvironment is
ail.mas.ActionScheduler. This makes a random scheduling choice from
among all its jobbers each time perceptions change in the environment. In
general this works well but can become a problem if one of the jobbers (either
an agent or the environment) gets stuck in a run in which it never changes any
perceptions — e.g., an agent never takes an action or only does print actions (or
similar) which don’t alter perceptions — in these situations that jobber can run
indefinitely without the scheduler ever being prompted to make another choice.

One situation where this may commonly arise is if the environment modifies
some underlying fields or data structures but this information only becomes
available as perceptions when an agent does something (e.g., moves close enough
to see the change). In this case the line.

getScheduler () .perceptChanged () ;

Can be asserted at the end of the do_job () method. This will prompt the sched-
uler to make a new choice even though no explicit perceptions have changed.
There are other three other schedulers in the current distribution:

NActionScheduler This functions as ActionScheduler except every n times
it is invoked it forces a choice irrespective of whether perceptions have
changed. This can be particularly useful if the environment is connecting
to an external system and its use is discussed in the EASS tutorials since

4.3. TUTORIAL 3 - DYNAMIC AND RANDOM ENVIRONMENTS 35

the language is intended to work in this way. It isn’t advisable to use
the NActionScheduler in verification since it contains counters that will
increase the number of model-checking states.

RoundRobinScheduler This scheduler acts like ActionScheduler except that
instead of making a random choice between jobbers, it selects each in turn.

SingleAgentScheduler This is for situations when there is only one jobber
and it effectively just returns that one jobber each time it is called.

If you wish to use a different scheduler in an environment then
create the relevant scheduler object, add it to the environment (using
setScheduler (MCAPLScheduler s) and add it as a percept listener to the en-
vironment (using addPerceptListener (MCAPLPerceptListener s)). If your
environment subclasses ail.mas.DefaultEnvironment then you can call the
method setup_scheduler (AILEnv env, MCAPLScheduler s) when the envi-
ronment is constructed to do this for you.

4.3.2 Adding Randomness

Often we want an environment with some random behaviour to model, for
instance, unreliable sensors or actuators.

It is tempting to add random behaviour to an environment simply through
use of JAVA’s Random class. However this will break the system’s ability to
record and replay runs through the program which can be very useful in de-
bugging. The simplest way to add some random behaviour to an environ-
ment is to subclass ail.mas.DefaultEnvironmentwRandomness rather than
ail.mas.DefaultEnvironment. This provides two Choice objects which are
the mechanism the AIL uses to manage random behaviour for recording and
replaying.

The random_booleans object has one method, nextBoolean () which will re-
turn either true or false. The random_ints object has one method, nextInt (int
i), which will return a random integer between 0 and i. Example 4 shows a
sample environment for a search and rescue robot. This has a human at (1, 1)
in the grid and the robot has a 50% chance of spotting the human if it is in
the same grid square. If you run this program several times you will see that
sometimes the robot finds the human quickly and sometimes it has to search
the grid several times.

Example 4

public class RandomRobotEnv extends DefaultEnvironmentwRandomness I
int human_x = 1; 2
int human.y = 1; 3

4

36CHAPTER 4. CREATING MULTI-AGENT SYSTEMS WITH THE AGENT INFRASTRUCTURE I

public Unifier executeAction(String agName, Action act) 5
throws AlLexception 6

if (act.getFunctor().equals(”move_to”)) { 7
Predicate robot_position = new Predicate(”at”); 8
Predicate old_position = new Predicate(”at”); 9
robot_position.addTerm(act.getTerm(0)); 10
robot_position.addTerm(act.getTerm(1)); 11
old_position .addTerm(new VarTerm("X")); 12
old_position .addTerm(new VarTerm("Y")); 13
removeUnifiesPercept(old_position); 14
addPercept(robot_position); 15

if (((NumberTerm) act.getTerm(0)).solve() = human_x 16

&& ((NumberTerm) act.getTerm(1l)).solve() = human.y) 1

if (random_booleans.nextBoolean()) { 18
addPercept(new Predicate(”"human”)); 19

) 20

} 21

} 22
return super.executeAction (agName, act); 23
} 24
25

} 26

In example 4 lines 17-19 add the percept, human, if
random_booleans.nextBoolean() returns true.

Random Doubles

The AIL doesn’t have support for random doubles (in part because model check-
ing requires a finite state space) but it does let you specify a probability dis-
tribution over a set of choices. To do this you need to create your own Choice
object. Say, for instance, in the above example the human is moving between
the squares and could be at (0, 1), (1, 1) or (2, 1) with a 50% chance of being
t (1, 1), a 30% chance of being at (2, 1) and a 20% chance of being at (0, 1).
Example 5 shows an environment with this behaviour. An integer Choice
object, human_location is declared as a field in line 4. This is then instantiated
by the setMAS method in lines 25-31. This method overrides the implemen-
tation in DefaultEnvironmentwRandomness so first we call the super-method,
then we create the Choice object and lastly we add the choices to it — the
humans x-coordinate is 1 with a probability of 0.5, 2 with a probability of 0.3
and 0 with a probability of 0.2. It is important to note that the Choice object
can’t be created when the class is created since it needs to be instantiated by
a MCAPLController object '. Any instantiation of an Environment class that

IThis is the object that governs the overrall behaviour of the system but which isn’t
available when the class it created. As part of setting up a multi-agent system in the AIL
the setMAS (MCAPLController m) from the environment will be invoked at a suitable moment
after the controller has been created.

4.3. TUTORIAL 3 - DYNAMIC AND RANDOM ENVIRONMENTS 37

involves choice methods (e.g., placing objects at random places within the envi-
ronment) should be done in the setMAS method after the Choice objects have
been instantiated and not in the class’s constructor or initialisation methods.

In line 17 you can see the call to the Choice object’s get_choice() method
being invoked to return the correct integer.

Example 5
public class RandomRobotEnv2 extends DefaultEnvironmentwRandomnessl
int human_x = 1; 2
int human.y = 1; 3
Choice<lInteger> human_location; 4
5
public Unifier executeAction(String agName, Action act) 6
throws AlLexception { 7
if (act.getFunctor().equals(”move_to”)) { 8
Predicate robot_position = new Predicate(”at”); 9
Predicate old_position = new Predicate(”at”); 10
robot_position.addTerm(act.getTerm(0)); 11
robot_position.addTerm(act.getTerm(1)); 12
old_position .addTerm(new VarTerm("X")); 13
old_position .addTerm(new VarTerm("Y")); 14
removeUnifiesPercept(old_position); 15
addPercept(robot_position); 16
human_x = human_location.get_choice (); 17
if (((NumberTerm) act.getTerm(0)).solve() = human_x 18
&& ((NumberTerm) act.getTerm(1)).solve() = human.y) 10
addPercept(new Predicate(”human”)); 20
} 21
} 22
return super.executeAction (agName, act); 23
} 24
25
public void setMAS(MAS m) { 26
super .setMAS (m); 27
human_location = new Choice<Integer >(m.getController ()); 28
human_location.addChoice (0.5, 1); 29
human_location.addChoice (0.3, 2); 30
human_location.addChoice (0.2, 0); 31
} 32
33
} 34

Choice objects can be created to return any object — integers, Predicates,
AILAgents, etc.,2 by being given the correct type and instantiated correctly. It
is important to remember that the probabilities of the choices added by the
addChoice method should add up to 1.

2The sample answer to the exercise at the end of this tutorial has an example of a Choice
object for a JAVA enum type created just for the example.

38CHAPTER 4. CREATING MULTI-AGENT SYSTEMS WITH THE AGENT INFRASTRUCTURE I

If you genuinely need random doubles in an AIL environment then you can
use JAVA’s Random class but be aware that there may be issues with model
checking search space and that the record and replay functionality will no longer
work.

4.3.3 Record and Replay

When debugging a multi-agent program you sometimes want to replay the exact
sequence of events that occurred in the problem run. To do this you first need
to record the sequence. You can get an AIL program to record its sequence
of choices (in this case choices about whether or not the agent perceives the
human) by adding the line

ajpf.record = true

to the program’s AIL configuration file. There is an example of this in the config-
uration file searcher _random _record.ail in the tutorial directory. By default
this records the current path through the program in a file called record.txt
in the directory, records, of the MCAPL distribution. You can change the file
using ajpf.replay.file =.

To play back a record you include

ajpf.replay = true

in the program’s AIL configuration file. The configuration file
searcher_random replay.ail is set up to replay runs generated by
searcher _random record.ail. Again, by default, this will replay the se-
quence from record.txt, but will use a different file if ajpf.replay.file =
is set.

4.3.4 Exercise

Obviously for complex systems you often want to combine dynamic environ-
ments with randomness.

Adapt the various search and rescue environments so that the human moves
one square in a random direction each time the environment’s do_job method is
called, to simulate a human moving independently around the search grid (NB.
the search grid is 3x3 with coordinates ranging from (0, 0) to (2, 2) — you may
assume it wraps if you wish).

You may use either random_booleans or random_ints to generate movement,
however the sample answer (in the answers directory) creates a probability
distribution over a custom JAVA enum type with the human most likely to remain
stationary and least likely to move diagonally.

Since you are altering the position of the human in this environment, not the
perceptions available, you will find that the scheduler will loop infinitely when
selecting the enviroment unless you include the line

getScheduler () .perceptChanged() ;

4.4. TUTORIAL 4-LOGGING AND CONFIGURING ENVIRONMENT BEHAVIOUR39

at the end of do_job or you use a different scheduler.
Check that your solution works with record and replay.

4.4 Tutorial 4 — Logging and Configuring Envi-
ronment Behaviour

This is the fourth in a series of tutorials on the use of the Agent Infrastruc-
ture Layer (AIL). This tutorial covers using configuration and logging when
programming with the AIL. These are particularly relevant for constructing
environments but can be useful elsewhere.

Files for this tutorial can be found in the mcapl distribution in the directory

src/examples/gwendolen/ail _tutorials/tutorial4.

You can find sample answers for all the exercises in this tutorial in the
answers directory.

The tutorial assumes a working knowledge of Java programming and the
implementation of logging in Java.

4.4.1 Logging

JAvA has a flexible API for implementing logging within programs. Unfortu-
nately this does not work seamlessly within JPF and hence within AJPF . In
order to enable logging to be used in AIL programs we have therefore provided
a class ajpf.util.AJPFLogger which uses the native JAVA logging capabilities
when not executed within AJPF but uses JPF’s logging support when it is.

AJPFLogger supports the six logging levels of the JAvA logging frame-
work, namely, SEVERE, WARNING, INFO, FINE, FINER and FINEST. If you want
to print a log message at a particular log level, say info, you call the
method AJPFLogger.info(String logname, String message) and similarly
for severe, warning etc.

When logging, JAva/JPF will print out all messages for a log at the set
logging level and higher. So if you have set a log at level FINE in your AIL or
JPF configuration file you will get all messages for FINE, INFO, WARNING and
SEVERE.

The logname can be any string you like, though in general people use the
class name for the logname. However there is no reason not to use log names
associated with particular tasks your program performs or other groupings if
that seems more sensible.

It is worth noting that Java’s string manipulation is not particularly efficient.
If you are constructing a complex string for a log message it can be worth
putting the message within an if statement in order to prevent the string being
constructed if it won’t be printed. This can improve the speed of model checking,
in particular. To help with this AJPFLogger provides four helper methods:

e public boolean AJPFLogger.ltFinest(String logname),

40CHAPTER 4. CREATING MULTI-AGENT SYSTEMS WITH THE AGENT INFRASTRUCTURE I

e public boolean AJPFLogger.ltFiner(String logname),
e public boolean AJPFLogger.ltFine(String logname),
e public boolean AJPFLogger.ltInfo(String logname)

These return true if logname is set at or below a particular logging level. There-
fore you can use the construction:

if (AJPFLogger.lfFine(logname)) {
String s =
. code for constructing your log message ...
AJPFLogger.fine(logname, s);

3

in order to ensure the string construction only takes place if the message will
actually get logged.

Exercise

In the tutorial directory you will find a simple environment for a search and
rescue robot (RobotEnv.java) together with code and a configuration file for
the robot (searcher.ail, searcher.gwen). The robot moves around a 3x3
square searching for a human which may randomly appear in any square. If
the human appears the robot sends a message to some lifting agent and then
stops. If you run this program with the supplied AIL configuration you will
see it printing out the standard messages from ail.mas.DefaultEnvironment
noting when the robot moves and when it sends a message.

Adapt the environment with the following log messages

e If logging is set to INFO it prints out a message when the system first
decides a human is visible,

e Iflogging is set to FINE it prints a message every time the agent is informed
the human is visible (not just when the human first appears) and,

e If logging is set to FINER it prints a message every time the agent checks
its percepts.

Experiment with setting log levels in the AIL configuration file. Note that
by default anything at INFO or higher gets printed. If you don’t want to see
INFO level log messages then you need to configure the logger to a higher level
e.g. log.warning = gwendolen.ail_tutorials.tutorial4.RobotEnv.

4.4.2 Customized Configuration

You can use the key = value mechanism inside AIL configuration files to create
customisation for your own AIL programs. When the configuration file is parsed
all the properties are stored in an ail.util.AILConfig object which is itself
an extension of the JAVA java.util.Properties class.

The Properties class has two methods of particular note:

4.4. TUTORIAL 4—- LOGGING AND CONFIGURING ENVIRONMENT BEHAVIOURA41

e public boolean containsKey(String key) tells you if a particular key
is contained in the configuration.

e public Object get(String key) returns the value stored for the key. If
parsed from an AIL configuration file this will return a String.

You can then use JAVA methods such as Boolean.valueOf (String s) and
Integer.valueOf (String s) to convert that value into a boolean, integer or
other type if desired.

Obviously in order to add your own key/value pairs to the configuration you
need to be able to access the AILConfig object. The easiest way to do this
is via your environment. During system initialisation a method public void
configure(AILConfig config) is called on any AIL environment. The default
implementation of this method does nothing, but it is easy enough to override
this in a customised environment and check any keys you are interested in.

This can be particularly useful in environments used for verifica-
tion where you may wish to have a range of slightly different be-
haviours in the environment for efficiency reasons. Listing 6 shows
(a slightly shortened version of) the configure method used by
eass.verification.leo.LEOVerificationEnvironment which was used for
the Low Earth Orbit satellite verifications described in [Dennis et al., 2014].
Most of the values used here are true/false values parsed into booleans but
in line 34 you can see a value that is being treated as a string (where the target
formation can be either line or square). In that paper you can see that dif-
ferent properties were proved against different sets of percepts. The configure
method was used in conjunction with AIL configuration files for each example
in order to tweak the environment to use the correct settings. You can find all
the configuration files in the examples/eass/verification/leo directory.

Example 6
public void configure(AlLConfig configuration) { 1
if (configuration.containsKey(” testing_thrusters”)) { 2
testing_thrusters = Boolean.valueOf((String) configuration.g8t(" testing_thrusters”));
} 4
5
if (configuration.containsKey(” allthrusters”)) { 6
allthrusters = Boolean.valueOf((String) configuration.get(” alMlthrusters”));
} 8
9
if (configuration.containsKey(” allpositions”)) { 10
allpositions = Boolean.valueOf((String) configuration.get(” alllpositions”);
} 12
13
if (configuration.containsKey(” formation_line”)) { 14
formation_line = Boolean.valueOf((String) configuration.get("lBormation_line”));

} 16

42CHAPTER 4. CREATING MULTI-AGENT SYSTEMS WITH THE AGENT INFRASTRUCTURE I

17
if (configuration.containsKey(” formation_square”)) { 18
formation_square = Boolean.valueOf((String) configuration.getl0’ formation_square”);
} 20
21
if (configuration.containsKey(”all_can_break”)) { 22
all_can_break = Boolean.valueOf((String) configuration.get(” @Bl_can_break”));
} 24
25
if (configuration.containsKey(”"changing_formation”)) { 26
changing_formations = Boolean.valueOf((String) configuration 2fet(” changing_formatio
if (changing_formations) { 28
formation_line = true; 29
formation_square = true; 30
} else { 31
if (configuration.containsKey(”initial_formation”)) { 32
if (configuration.get(”initial_-formation”).equals("line"” BB {
formation_line = true; 34
formation_square = false; 35
} else { 36
formation_line = false; 37
formation_square = true; 38
} 39
} else { 40
formation_line = true; 41
formation_square = false; 42
} 43
} 44
} 45
} 46

Exercise

Adapt RobotEnv so it has a configuration option in which the robot always sees
a human when it moves rather than there being a random chance of seeing a
human.

Chapter 5

Verifying Programs Using
AJPF

This chapter consists of tutorials on the use of AJPF to verify multi-agent
sytems.

5.1 Tutorial 1 — The Property Specification Lan-
guage

This is the first in a series of tutorials on the use of the AJPF model checking
program. This tutorial covers the basics of configuring a model-checking run
and writing properties in AJPF’s property specification language.

Files for this tutorial can be found in the mcapl distribution in the directory

src/examples/gwendolen/ajpf_tutorials/tutoriall.

The tutorials assume some familiarity with the basics of running Java pro-
grams either at the command line or in Eclipse and some familiarity with the
syntax and semantics of Linear Temporal Logic.

5.1.1 Setting up Agent Java Pathfinder

Before you can run AJPF it is necessary to set up your computer to use Java
Pathfinder (JPF). There are instructions for doing this in chapter 2.

The key point is that you need to create a file called . jpf/site.properties
in your home directory on the computer you are using. In this file you need to
put one line which assigns the path to the MCAPL distribution to the key mcapl.
For instance if you have your MCAPL distribution in your home directory as
folder called mcapl then site.properties should contain the line.

mcapl = ${user.homel}/mcapl

43

44 CHAPTER 5. VERIFYING PROGRAMS USING AJPF

We strongly recommend that you also set up an environment variable,
$AJPF_HOME, set it to the path to the MCAPL directory and add this to your
.bashrc or equivalent start-up files.

5.1.2 A Simple Model Checking Attempt

To run AJPF you need to run the program gov. jpf .tool.RunJPF which is con-
tained in 1ib/3rdparty/RunJPF. jar in the MCAPL distribution. Alternatively
you can use the run-JPF (MCAPL) Run Configuration in IntelliJ or Eclipse.
You need to supply a JPF Configuration file as an argument. You will find a
sample file in src/examples/gwendolen/ajpf_tutorials/tutoriall/lifterandmedic. jpf.
If you run this you should see output like the following;:

loading property file: /Users/louisedennis/.jpf/site.properties
loading property file: /Users/louisedennis/eclipse-workspace/mcapl/jpf.properties
loading property file: /Users/louisedennis/eclipse-workspace/mcapl/src/examples/gwendo!
collected native_classpath=/Users/louisedennis/eclipse-workspace/mcapl/bin,/Users/loui
collected native_libraries=null
JPF build information:

os.arch = x86_64

date.tip = 2012-01-13 13:30 -0800

java.version = 1.6.0_26

user.country = US

author = Peter Mehlitz <Peter.C.Mehlitz@nasa.gov>

os.version = 10.5.8

os.name = Mac 0S X

upstream = http://babelfish.arc.nasa.gov/hg/jpf/jpf-core

repository = file://flyer/Users/pmehlitz/projects/eclipse/jpf-core

revision = 647:b8b86ac8f503

JavaPathfinder core system v8.0 - (C) 2005-2014 United States Government. All rights r

system under test
ail.util.AJPF_w_AIL.main("/Users/louisedennis/eclipse-workspace/mcapl/src/examples/gwe:

search started: 30/03/23 12:09
MCAPL Framework Version 2023
ANTLR Tool version 4.4 used for code generation does not match the current runtime ver

results
no errors detected

statistics
elapsed time: 00:00:14
states: new=2055,visited=210,backtracked=2265,end=3
search: maxDepth=111,constraints=0

choice generators: thread=1 (signal=0,lock=1,sharedRef=0,threadApi=0,reschedule=0), d

5.1. TUTORIAL 1 - THE PROPERTY SPECIFICATION LANGUAGE 45

heap: new=1179555,released=1172517 ,maxLive=3965,gcCycles=2265
instructions: 116768553

max memory: 2442VMB

loaded code: classes=308,methods=5043

search finished: 30/03/23 12:09

Note this will take several seconds to generate. We will discuss in future
tutorials how to get more detailed output from the model checker.

At the moment the key point is the fact that it states no errors detected.
This means that the property supplied to the model checker was true for this
program.

5.1.3 JPF Configuration Files

lifterandmedic. jpf is a JPF Configuration file. There are a large number of
configuration options for JPF. JPF documentation is currently being updated
but you can find some information in its github repository https://github.com/
Jjavapathfinder/jpf-core. We will only discuss a handful of these options. If you
open lifterandmedic. jpf you should see the following:

Qusing = mcapl

target = ail.util.AJPF_w_AIL
target.args = ${mcapl}/src/examples/gwendolen/ail_tutorials/tutoriall/answers/ex2.ail,${mcapl}/src/examples,

We explain each line of this below.

@using = mcapl Means that the proof is using the home directory for mcapl
that you set up in . jpf/site.properties.

target = ail.util. AJPF_w_AIL This is the Java file containing the main
method for the program to be model checked. By default when
model checking a program implemented using the AIL, you should use
ail.util.AJPF_w_AIL as the target. If you are familiar with running pro-
grams in the AIL, this class is very similar to ail.mas.AIL but with a few
tweaks to set up and optimise model checking.

target.args =... This sets up the arguments to be passed to
ail.util.AJPF_w_AIL. ail.util.AJPF_w_AIL takes three arguments. In
the configuration file these all have to appear on one line, separated by
commas (but no spaces). This means you can not see them all in the file
print out above. In order the arguments are:

1. The first is an AIL configuration file. In this example the file is
${mcapl}/src/examples/gwendolen/ail tutorials/tutoriall/answers/ex2.ail

46 CHAPTER 5. VERIFYING PROGRAMS USING AJPF

which is a configuration file for a multi-agent system written in the
GWENDOLEN language.

2. The second argument is a file containing a list of properties in AJPF’s
property specification language that can be checked. In this example
this file is 1ifterandmedic.psl in the directory for this tutorial.

3. The last argument is the name of the property to be checked, 1 in
this case.

5.1.4 The Property Specification Language

Syntax The syntax for property formulee ¢ is as follows, where ag is an “agent
constant” referring to a specific agent in the system, and f is a ground first-
order atomic formula (although it may use _, as in Prolog, to indicate variables
which may match any value):

(rb::: Bagf|gagf|~'4agf‘l'agf‘IIDagf‘,P(f)‘
OV ONG| 9| o U |dRe |0 | Lo

Here, By f is true if ag believes f to be true, Gu4 f is true if ag has a goal to
make f true, and so on (with A representing actions, Z representing intentions,
ID representing the intention to take an action, and P representing percepts,
i.e., properties that are true in the environment).

The following representation of this syntax is used in AJPF’s property spec-
ification files:

¢ = B(ag, f)|GCag, f)|DCag, f)|ICag, f)|ItDCag, f)|P(f) |~¢
= oYY |d &g [PUY | RY [<>¢" | ¢

Note, in particular, that in property specification files “not” (~) must always
appear in an innermost position next to one of the BDI agent properties such
as BCag, f).

It is also possible to use ¢->1 as shorthand for —¢ V ¢ in property specifi-
cation files.

Semantics We summarise semantics of property formulsze. Consider a pro-
gram, P, describing a multi-agent system and let MAS be the state of the
multi-agent system at one point in the run of P. MAS is a tuple consisting of
the local states of the individual agents and of the environment. Let ag € MAS
be the state of an agent in the MAS tuple at this point in the program execution.
Then

MAS =y Bog [iff ag = Bog f

where |= is logical consequence as implemented by the agent programming lan-
guage. The semantics of Gogf, Zogf and ID,, f similarly refer to internal im-

5.1. TUTORIAL 1 - THE PROPERTY SPECIFICATION LANGUAGE 47

plementations of the language interpreter '. The interpretation of A f is:
MAS Epc Aagf

if, and only if, the last action changing the environment was action f taken by
agent ag. Finally, the interpretation of P(f) is given as:

MAS Eumc P(f)

if, and only if, f is a percept that holds true in the environment.

The other operators in the AJPF property specification language have standard
PLTL semantics [Emerson, 1990] and are implemented as Biichi Automata as
described in [Gerth et al., 1996, Courcoubetis et al., 1992]. Thus, the classical
logic operators are defined by:

MAS Epc oV it MAS Epe @ or MAS =pc
MAS e —¢ iff MAS e 6.

The temporal formulae apply to runs of the programs in the JPF model checker.
A run consists of a (possibly infinite) sequence of program states MAS;, i > 0
where MAS) is the initial state of the program (note, however, that for model
checking the number of different states in any run is assumed to be finite). Let
P be a multi-agent program, then:

MAS Epe ¢ UY iff in all runs of P there exists a state MAS;
such that MAS; Fye e forall0<i<j
and MAS]):MC w

MAS Epe Ry iff either MAS; Enc ¢ for all i or there
exists MAS; such that MAS, Emc ¢
for all 0 <4 < j and MAS; =mc ¢ A Y.

Conjunction A and the common temporal operators ¢ (eventually) and O (al-
ways) are, in turn, derivable from V, U and R in the usual way [Emerson, 1990].

5.1.5 Exercises

If you look in lifterandmedic.psl you should see the following:
1: [("B(medic, bad))

So this file contains one formula, labelled, 1 and the formula is equivalent to
O-Byegic bad — which means it is always the case the medic agent doesn’t believe
the formula bad (or alternatively that the medic agent never believes bad.

As noted previously the multi-agent system in ex2.ail is a GWENDOLEN
program and is, in fact, the one described in section 6.8. It isn’t necessary, for
this tutorial, to understand the implementation of the BDI modalities (belief,

I'We briefly cover the GWENDOLEN implementation in section 6.10.1.

48 CHAPTER 5. VERIFYING PROGRAMS USING AJPF

goal, intention etc.) in the GWENDOLEN interpreter but a brief discussion is
included in section 6.10.1.

Adapt the JPF configuration file and extend the property specification file
in the tutorial directory in order to verify the following properties of the multi-
agent system. You can find sample answers in the answers directory.

1. Eventually the lifter believes human(5,5).

oBpeaic human(5,5)

2. Eventually the medic has the goal assist_human(5,5).

©Gnedichuman(b, 5)

3. Eventually the lift believes human(3,4) and eventually the lifter believes
holding(rubble).

oBiister human(3,4) A oByisier holding(rubble)

4. If the lifter has the intention to gotob5then34 then eventually the medic
will have the goal assist_human(5,5).

ThirrergotobSthendd = Guegicassist_human(5,5)

5. It is always the case that if the lifter does move_to(5,5) then human(5,5)
becomes perceptible.

O(Ayistermove_to(5,5) = P(human(5,5))

6. Eventually the lifter intends to move to (5, 5).

I D1isrermove_to(5,5)

7. Eventually the lifter intends to send the medic a perform request to assist
the human in some square.

©ID1issersend(medic, 2, assist_human(_, _))

For this you should consult the section on intending to send messages in
section 6.10.1.

5.2 Tutorial 2 — JPF Configuration Files: Trou-
bleshooting Model Checking

This is the second in a series of tutorials on the use of the AJPF model checking
program. This tutorial covers JPF configuration files in more detail as well as
techniques for troubleshooting model checking.

Files for this tutorial can be found in the mcapl distribution in the directory

5.2. TUTORIAL 2 - JPF CONFIGURATION FILES: TROUBLESHOOTING MODEL CHECKING49

src/examples/gwendolen/ajpf_tutorials/tutorial2.

The tutorials assume some familiarity with the basics of running Java pro-
grams either at the command line or in IntelliJ or Eclipse and some familiarity
with the syntax and semantics of Linear Temporal Logic, and the use of Biichi
Automata in model checking.

5.2.1 JPF Configuration Files

As mentioned in section 5.1, JPF has an extensive set of configuration options.
We only examined the most basic in section 5.1 but in this tutorial we will
cover a few more that are useful, particularly when debugging a program you
are attempting to model check.

In the tutorial directory you will find a simple GWENDOLEN program,
twopickupagents.gwen. This contains two agents, one holding a block and
one holding a flag. Fach agent puts down what they are holding. If the agent
with the block puts it down before the agent with the flag puts the flag down,
then the agent with the flag will pick up the box. The agent with the flag also
performs an action with random consequences after it puts down the flag.

TwoPickUpAgents_basic.jpf

TwoPickUpAgents_basic.jpf is a minimal configuration file containing only
options discussed in section 5.1. This generates the following output (ignoring
some initial system information):

JavaPathfinder core system v8.0 - (C) 2005-2014 United States Government. All rights reserved.

system under test
ail.util.AJPF_w_AIL.main("/Users/louisedennis/eclipse-workspace/mcapl/src/examples/gwendolen/ajp1

search started: 15/03/19 11:45
MCAPL Framework 2020
ANTLR Tool version 4.4 used for code generation does not match the current runtime version 4.7AN]

= results

no errors detected
statistics

elapsed time: 00:00:05
states: new=31,visited=32,backtracked=63,end=0
search: maxDepth=7,constraints=0
choice generators: thread=1 (signal=0,lock=1,sharedRef=0,threadApi=0,reschedule=0), data=31
heap: new=412761,released=409463 ,maxLive=3827,gcCycles=63
instructions: 28180407
max memory: 437MB

loaded code: classes=326,methods=5084

50 CHAPTER 5. VERIFYING PROGRAMS USING AJPF

search finished: 15/03/19

This is obviously fine as output in situations where the model checking com-
pletes quickly and with no errors detected but gives the user very little to
go on if there is a problem or the model checking is taking a long time and they
are not sure whether to kill the attempt or not.

TwoPickUpAgents_ExecTracker.jpf

TwoPickUpAgents_ExecTracker. jpf adds the configuration option:

listener+=,.listener.ExecTracker

et.print_insn=false
et.show_shared=false

Adding listener.ExecTracker to JPF’s listeners means that it collects
more information about progress as it goes and then prints this information
out. The next two lines suppress some of this information which is generally
less useful in AJPF. With these settings the following output is generated (only

the start is shown):

choice: gov.nasa.jpf.

garbage collection

vm.

choice

choice: gov.nasa.jpf.

garbage collection

choice: gov.nasa.jpf.

garbage collection

choice: gov.nasa.jpf.

garbage collection

choice: gov.nasa.jpf.

garbage collection

choice: gov.nasa.jpf.

garbage collection

choice: gov.nasa.jpf.

garbage collection

choice: gov.nasa.jpf
garbage collection

.vm.

.ThreadChoiceFromSet {id:"ROOT" ,1/1,isCascaded:false}

[1] forward: O new
.IntChoiceFromSet [id="probabilisticChoice",isCascaded:

[2] forward: 1 new
.IntChoiceFromSet [id="probabilisticChoice",isCascaded:

[3] forward: 2 new
.IntChoiceFromSet [id="probabilisticChoice",isCascaded:

[4] forward: 3 new
.IntChoiceFromSet [id="probabilisticChoice",isCascaded:

[5] forward: 4 new
.IntChoiceFromSet [id="probabilisticChoice",isCascaded:

[6] forward: 5 new
.IntChoiceFromSet [id="probabilisticChoice",isCascaded:

[7] forward: 6 visited
[6] backtrack: 5
.IntChoiceFromSet [id="probabilisticChoice",isCascaded:

[7] forward: 7 visited
[6] backtrack: 5
[6] done: 5

11:45

false,>

false,>

false,>

false,>

false,>

false,>

false,O

5.2. TUTORIAL 2 - JPF CONFIGURATION FILES: TROUBLESHOOTING MODEL CHECKING51

- -—= -—- -- [5] backtrack: 4
choice: gov.nasa.jpf.vm.choice.IntChoiceFromSet[id="probabilisticChoice",isCascaded:false,0,>1]
garbage collection

- -—= -—= -- [6] forward: 8 new
choice: gov.nasa.jpf.vm.choice.IntChoiceFromSet[id="probabilisticChoice",isCascaded:false,>0,1]
garbage collection

- -—- -—= -- [7] forward: 6 visited

——————————————————————————————————— [6] backtrack: 8

Every time JPF generates a new state for model checking it assigns that
state a number. In the output here you can see it generating new states 0
through to 7 and advancing forward to each state. You then see it backtracking
back to state 5 (which is fully explored done) and then state 4 at which point
it finds a branching point in the search space and advances to state 8 and then
again to state 6 which it has visited already and so backtracks to 8.

Typically search space branching is caused either whenever a random value
is generated. This happens most often when the multi-agent system scheduler
must choose between several agents.

Random value generation activates an IntChoiceFromSet choice generator
(which picks a random integer from a set — usually picking one number from a
range). The scheduler keeps track of the agents which are awake and assigns
an integer to them. Since there are only two agents, there is no choice if one is
asleep, but you can see when the choice between 0 and 1.

The numbers in square brackets — [7], [6] etc. indicate the depth that
model checking has reached in the search tree. If these numbers become very
large without apparent reason then it may well be the case that the search has
encountered an infinite branch of the tree and needs to be killed.

Logging

JPF suppresses the logging configuration you have in your AIL configuration files
so you need to add any logging configurations you want to the JPF configuration
file. Useful classes when debugging a model checking run are

ail.mas.DefaultEnvironment At the info level this prints out any actions
the agent performs. Since the scheduler normally only switches between
agents when one sleeps or performs an action this can be useful for tracking
progress on this model checking branch.

ajpf. MCAPLAgent At the info level this prints information when an agent
sleeps or wakes. Again this can be useful for seeing what has triggered
a scheduler switch. It can also be useful for tracking which agents are
awake and so deducing which one is being picked from the set by the
IntChoiceFromSet choice generator.

ajpf.product.Product At the info level this prints out the current path
through the search tree being explored by the agent. This can be use-
ful just to get a feel for the agents’ progress through the search space.

52 CHAPTER 5. VERIFYING PROGRAMS USING AJPF

It can also be useful, when an error is thrown and in conjunction with
some combination of logging actions, sleeping and waking behaviour and
(if necessary) internal agent states, to work out why a property has failed
to hold.

It also prints the message Always True from Now On when exploration
of a branch of the search tree is halted because the system deduces that
the property will be true for the rest of that branch. This typically occurs
when the property is something like ¢ (i.e., ¢ will eventually occur) and
the search space is pruned once ¢ becomes true.

ajpf.psl.buchi.BuchiAutomaton At the info level this prints out the Biichi
Automaton that has been generated from the the property that is to be
proved. Again this is useful, when model checking fails, for working out
what property was expected to hold in that state.

ail.semantics. AILAgent At the fine level this prints out the internal agent
state once every reasoning cycle. Be warned that this produces a lot of
output in the course of a model checking run.

In general, when working on a program for model checking it is use-
ful to have the ExecTracker listener enabled and ajpf.MCAPLAgent,
ajpf.product.Product and any environment loggers (so typically
ail.mas.DefaultEnvironment and any sub-classes of that you are us-
ing) set at info. This provides a useful starting point for accessing information
about model checking.

TwoPickUpAgents_Logging. jpf has this set up. It’s output starts

[INFO] Adding 0 to []
——————————————————————————————————— [1] forward: O new
choice: gov.nasa.jpf.vm.choice.IntChoiceFromSet[id="probabilisticChoice",isCascad
[INFO] ag2 done putdown(flag)
garbage collection
[INFO] Adding 1 to [0]
——————————————————————————————————— [2] forward: 1 new
choice: gov.nasa.jpf.vm.choice.IntChoiceFromSet[id="probabilisticChoice",isCascad
garbage collection
[INFO] Adding 2 to [0, 1]
——————————————————————————————————— [3] forward: 2 new
choice: gov.nasa.jpf.vm.choice.IntChoiceFromSet[id="probabilisticChoice",isCascad
[INFO] Block 1 is visible
garbage collection
[INFO] Adding 3 to [0, 1, 2]
——————————————————————————————————— [4] forward: 3 new
choice: gov.nasa.jpf.vm.choice.IntChoiceFromSet[id="probabilisticChoice",isCascad
[INFO] Block 2 is visible
[INFO] ag2 done random
garbage collection

5.2. TUTORIAL 2 - JPF CONFIGURATION FILES: TROUBLESHOOTING MODEL CHECKING53

——————————————————————————————————— [6] forward: 4 new
choice: gov.nasa.jpf.vm.choice.IntChoiceFromSet[id="probabilisticChoice",isCascaded:false,>(
[INFO] Sleeping agent ag?2
[INFO] Waking agent ag2
[INFO] agl done putdown(block)
garbage collection
[INFO] Adding 5 to [0, 1, 2, 3, 4]
——————————————————————————————————— [6] forward: 5 new
choice: gov.nasa.jpf.vm.choice.IntChoiceFromSet[id="probabilisticChoice",isCascaded:false,>(
[INFO] Sleeping agent ag2
garbage collection
[INFO] Adding 6 to [0, 1, 2, 3, 4, 5, 6]
[INFO] Always True from Now On
——————————————————————————————————— [7] forward: 6 visited
——————————————————————————————————— [6] backtrack: 5
choice: gov.nasa.jpf.vm.choice.IntChoiceFromSet[id="probabilisticChoice",isCascaded:false,0,
[INFO] Sleeping agent agl
garbage collection
[INFO] Adding 7 to [0, 1, 2, 3, 4, 5, 7]
[INFO] Always True from Now On
——————————————————————————————————— [7] forward: 7 visited
——————————————————————————————————— [6] backtrack: 5
——————————————————————————————————— [6] done: 5
——————————————————————————————————— [5] backtrack: 4
choice: gov.nasa.jpf.vm.choice.IntChoiceFromSet[id="probabilisticChoice",isCascaded:false,0,
[INFO] agl done putdown(block)
garbage collection
[INFO] Adding 8 to [0, 1, 2, 3, 4]
——————————————————————————————————— [6] forward: 8 new
choice: gov.nasa.jpf.vm.choice.IntChoiceFromSet[id="probabilisticChoice",isCascaded:false,>(
[INFO] Sleeping agent ag2
garbage collection
[INFO] Adding 6 to [0, 1, 2, 3, 4, 8]
——————————————————————————————————— [7] forward: 6 visited
——————————————————————————————————— [6] backtrack: 8
choice: gov.nasa.jpf.vm.choice.IntChoiceFromSet[id="probabilisticChoice",isCascaded:false,0,
[INFO] Sleeping agent agl
garbage collection
[INFO] Adding 7 to [0, 1, 2, 3, 4, 8]
——————————————————————————————————— [7] forward: 7 visited
——————————————————————————————————— [6] backtrack: 8
——————————————————————————————————— [6] done: 8
——————————————————————————————————— [5] backtrack: 4
——————————————————————————————————— [5] done: 4
——————————————————————————————————— [4] backtrack: 3

54 CHAPTER 5. VERIFYING PROGRAMS USING AJPF

choice: gov.nasa.jpf.vm.choice.IntChoiceFromSet[id="probabilisticChoice",isCascad
[INFO] Block 2 is not visible
[INFO] ag2 done random
garbage collection
[INFO] Adding 9 to [0, 1, 2, 3]
----------------------------------- [6] forward: 9 new
choice: gov.nasa.jpf.vm.choice.IntChoiceFromSet[id="probabilisticChoice",isCascad
[INFO] Sleeping agent ag2
[INFO] Waking agent ag?2
[INFO] agl done putdown(block)
garbage collection
[INFO] Adding 10 to [0, 1, 2, 3, 9]
——————————————————————————————————— [6] forward: 10 new

You can see the additional information provided by the loggers here, in terms
of printing out the current path through the search tree, reporting on sleeping
and waking behaviour, etc.,

Important Note: While the additional output information can be very
useful for understanding what is happening during a model checking run, print-
ing output slows down the computation. If speed of model checking is important
then it is best to turn off all logging and the ExecTracker.

Saving the log to a file

It is possible to save log message generated by the AIL to a file by including
log.output = filename (where filename is the name of the file you want to
use) in your JPF configuration file. Unfortunately this does not save the output
of the ExecTracker to the file but may nevertheless be useful.

5.2.2 What to do when Model Checking Fails

TwoPickUpAgents FalseProp.jpf attempts to prove the property
0Bag2 hold(block) which isn’t true. The configuration file uses the normal
loggers but doesn’t have the ExecTracker listener?. The following output is
generated.

system under test
ail.util.AJPF_w_AIL.main("/Users/lad/Eclipse/mcapl/src/examples/gwendolen/ajpf_tutorials/tutorial2/TwoPickl

search started: 28/04/17 15:58

[INFO] Adding O to []

[INFO] ag2 done putdown(flag)
[INFO] Adding 1 to [0]

[INFO] Adding 2 to [0, 1]
[INFO] Block 1 is visible
[INFO] Adding 3 to [0, 1, 2]
[INFO] Block 2 is visible

2Largely to keep the output compact.

5.2. TUTORIAL 2 - JPF CONFIGURATION FILES: TROUBLESHOOTING MODEL CHECKING55

[INFO] ag2 done random

[INFO] Adding 4 to [0, 1, 2, 3]
[INFO] Sleeping agent ag2

[INFO] Waking agent ag2

[INFO] agl done putdown(block)

[INFO] Adding 5 to [0, 1, 2, 3, 4]
[INFO] Sleeping agent ag2

[INFO] Adding 6 to [0, 1, 2, 3, 4, 5]

error 1

ajpf .MCAPLListener

An Accepting Path has been found:

[MS: 0, BS: 2, UN: 0], [MS: 1, BS: 2, UN: 0], [MS: 2, BS: 2, UN: 0], [MS: 3, BS: 2, UN: 0], [MS: 4, BS: 2, UN: 0],
[MS: 5, BS: 2, UN: 0], [MS: 6, BS: 2, UN: 0],

snapshot #1
no live threads

results
error #1: ajpf.MCAPLListener "An Accepting Path has been found: [MS: 0, BS: 2, ..."

As can be seen at the end of the failed run this prints out the accepting
path that it has found that makes the property false. This path is a sequence of
triples consisting of the state in the model, MS, the state in the Biichi automaton
generated from the negation of the property, BS, and lastly a count of the number
of until statements that have been passed in this branch/loop of the search space
(This counter is explained in [Gerth et al., 1996] — it isn’t normally useful for
debugging properties but is included for completeness).

So we can see that the accepting path through the model is 0,1,2,3,4,5,6 and
we can work out what happens on that path from the logging output: ag2 puts
down the flag, both blocks becomes visible, ag2 does random and then sleeps,
agl puts down the block, waking ag2 which then sleeps again. All these states
in the model are paired with state 2 in the Biichi Automaton. To see the Biichi
Automaton you have to add ajpf.psl.buchi.Buchilutomaton to the logging.

If you do this you get the following print out at the start:

[INFO] Number: 2

Incoming States: 0,2,

True in this State: “B(ag2,hold(block())), T R "B(ag2,hold(block())),
True in next State: “T R "B(ag2,hold(block())),

The property has created a very simple Biichi Automaton. It has been
given the number 2 in the automaton generation process. It has two incoming
states 0 (which is the start state) and 2 (i.e., itself). It has two properties
that hold in that state —Bggo hold(block) (ag2 doesn’t believe it is holding the
block) and = TR—B,g42 hold(block) (false (—T) released by ag2 doesn’t believe
it is holding the block — which under standard LTL transformations means
O-Bag2 hold(block) (it is always the case that ag2 doesn’t believe it is holding
the block)). In the next state this should also hold. For debugging failed model
checking runs it is normally safe to ignore the properties that should hold in the

56 CHAPTER 5. VERIFYING PROGRAMS USING AJPF

next state, and any temporal properties that should hold in the current state,
so this automaton can be visualised as in figure 5.1.

2

~B(ag?, hold(block))

Figure 5.1: The Property Automaton for — < B, g hold(block)

Le. a single state automaton in which Bggo hold(block) is never true. The
model checking has failed because this state is true for every state in the model
along the path 0,1,2,3,4,5,6 (you can look in the program to se why).

5.2.3 Replaying a Counter-example

When model-checking fails the branch it has failed on has essentially generated
a counter-example for the property. Sometimes you will want to replay this
counter-example in the AIL without performing model-checking. AJPF has
record and replay functionality to assist with this.

To obtain a record of a model checking run you will need to set logging mode
in the AIL configuration file (using ajpf.record = true) and then set the the
logging level to fine in ajpf.util.choice.ChoiceRecord).

TwoPickupAgents_Recording.txt has this setup. Its output starts:

choice: gov.nasa.jpf.vm.choice.ThreadChoiceFromSet {id:"ROOT" ,1/1,isCascaded:fal:
garbage collection
——————————————————————————————————— [1] forward: O new
choice: gov.nasa.jpf.vm.choice.IntChoiceFromSet[id="probabilisticChoice",isCascad.
[FINE] Record: [0]

5.2. TUTORIAL 2 - JPF CONFIGURATION FILES: TROUBLESHOOTING MODEL CHECKING57

[FINE] Record: [0, 0]

garbage collection
——————————————————————————————————— [2] forward: 1 new

choice: gov.nasa.jpf.vm.choice.IntChoiceFromSet[id="probabilisticChoice",isCascaded:false,>(
[FINE] Record: [0, 0, 0]
[FINE] Record: [0, 0, 0, O]

garbage collection
——————————————————————————————————— [3] forward: 2 new

choice: gov.nasa.jpf.vm.choice.IntChoiceFromSet[id="probabilisticChoice",isCascaded:false,>(
[FINE] Record: [0, 0, 0, 0, O]

garbage collection
——————————————————————————————————— [4] forward: 3 new

choice: gov.nasa.jpf.vm.choice.IntChoiceFromSet[id="probabilisticChoice",isCascaded:false,>(
[FINE] Record: [0, O, O, O, 0, O]

garbage collection
——————————————————————————————————— [5] forward: 4 new

choice: gov.nasa.jpf.vm.choice.IntChoiceFromSet[id="probabilisticChoice",isCascaded:false,>(

[FINE] Record: [0, 0, 0, O, O, 0, 0]

[FINE] Record: [0, O, O, O, O, O, 0, O]
[FINE] Record: [0, O, O, O, O, O, O, O, O]
[FINE] Record: [0, O, O, O, O, O, O, O, O, O]

garbage collection
——————————————————————————————————— [6] forward: 5 new
choice: gov.nasa.jpf.vm.choice.IntChoiceFromSet[id="probabilisticChoice",isCascaded:false,>(

[FINE] Record: [0, O, O, O, O, O, O, O, O, O, O]

[FINE] Record: [0, O, O, O, O, O, O, O, O, O, O, O]
[FINE] Record: [0, O, O, O, O, O, O, O, O, O, O, O, O]
[FINE] Record: [0, O, O, O, O, O, O, O, O, O, O, O, O, O]

garbage collection
——————————————————————————————————— [7] forward: 6 visited
——————————————————————————————————— [6] backtrack: 5
choice: gov.nasa.jpf.vm.choice.IntChoiceFromSet[id="probabilisticChoice",isCascaded:false,0,
[FINE] Record: [0, O, O, O, O, O, O, O, O, O, 1]
[FINE] Record: [0, O, O, O, O, O, O, O, O, O, 1, 1]
[FINE] Record: [0, O, O, O, O, O, O, O, O, O, 1, 1, O]
[FINE] Record: [0, O, O, O, O, O, O, O, O, O, 1, 1, O, O]
garbage collection

> > B

B > > B

The lines starting [FINE] Record: show the record of choices at that point.
To replay a particular branch through the search tree in AIL without model
checking do the following:

1. Paste the relevant record list, e.g. [0, O, 0, O, O, O, O, O, O, O,
1] into the file record.txt in the records directory of the MCAPL dis-
tribution.

2. Replace the line ajpf.record = true in your AIL configuration file with

58 CHAPTER 5. VERIFYING PROGRAMS USING AJPF

the line ajpf.replay = true.
3. Run the program in AIL as normal.

If you want to use a different file to record. txt to store the record for replay
you can, but you will need to set ajpf.replay.file in the AIL configuration
file appropriate in order to replay that record.

(Use of Random) Please note: that it is important for record and replay
to work correctly that all choice points in the program are used in the record.
Among other things this means that Java’s Random class can not be used in
constructing environments and AJPF’s Choice class should be used instead.

5.2.4 Forcing Transitions in the Agent’s Reasoning Cycle

In the examples considered so far in this tutorial, AJPF has only generated
new states for the model when JPF would generate a state. This has been
when there has been a scheduling choice between the two agents. While this
is often sufficient for many model checking problems it does mean that the
property is only checked when the agent program has done significant processing.
This means that states of interest can sometimes be ommitted for checking —
particularly in the case of the (ZD,,f properties where you are interested in
whether the agent ever has an intention that contains a particular action, the
action may well have been removed from the intention before the property is
checked).

By default, in fact, AJPF generates a new model state every time the
agent advances its reasoning cycle. TwoPickUpAgents EveryTransition.jpf
runs the above examples in this mode. If you run it you will notice that
there are a lot more states in the model and that most of them are gen-
erated by a NewAgentProgramState choice generator that doesn’t actually
cause any branching. This behaviour can be switched off by including
ajpf.transition_every reasoning cycle = false in the AIL configuration
file (Note this has to be the AIL configuration file not the JPF configuration

file).

5.3 Tutorial 3 — Using AJPF to create Models
for other Model-Checkers

This is the third a series of tutorials on the use of the AJPF model checking
program. This tutorial covers the use of AJPF in conjunction with other model-
checkers, specifically SPIN and PrisM. AJPF is used to create a model of the
program which is then verified by another tool. The main purpose of this is
to enable model checking with more expressive logics (as can be done with the
PRISM implementation), but there may also be efficiency gains in outsourcing
property checking to another tool.

Files for this tutorial can be found in the mcapl distribution in the directory

5.3. TUTORIAL 3—- USING AJPF TO CREATE MODELS FOR OTHER MODEL-CHECKERS59

src/examples/gwendolen/ajpf_tutorials/tutorial3.

This tutorial assumes familiarity with the operation of AJPF as described in
section 5.1 and in section 5.2 and familiarity with the theory of model checking.
Unlike most tutorials, this tutorial is not standalone and assumes the user has
access to both SPIN and PRISM.

This tutorial explains how to use the tools described in [Dennis et al., 2015b].

5.3.1 Separating out Model and Property

In normal operation, the AJPF system is performing two tasks at once. Firstly
it is building a model of the program execution. This is a graph (or Kripke
structure) of states. These are numbered and labelled with the facts that
are true in each state (e.g., “agent 1 believes holding block”, “agent 2 has
a goal pickup block” and so on). At the same time it is checking this graph
against a property (e.g., “eventually agent 2 believes holding block”). It does
this by converting the property into an automaton, combining the property
automaton with the Kripke structure on-the-fly (following [Gerth et al., 1996,
Courcoubetis et al., 1992]) and then checking for accepting paths through this
product automaton.

In this tutorial we demonstrate how AJPF can be used to produce just
the Kripke structure without creating the property automaton or the product
automaton.

5.3.2 Using AJPF with SPIN

SPIN [Holzmann, 2004] is a popular model checking tool originally devel-
oped by Bell Laboratories in the 1980s. It has been in continuous develop-
ment for over thirty years and is widely used in both industry and academia
(e.g., [Havelund et al., 2000, Kars, 1996, Kirsch et al., 2011]). SPIN uses an
input language called Promela. Typically a model of a program and the prop-
erty (as a “never claim” — an automaton describing executions that violate the
property) are both provided in Promela, but SPIN also provides tools to con-
vert formulae written in LTL into never claims for use with the model-checker.
SPIN works by automatically generating programs written in C which carry
out the exploration of the model relative to an LTL property. SPIN’s use of
compiled C code makes it very quick in terms of execution time, and this is
further enhanced through other techniques such as partial order reduction. The
examples in this tutorial were checked using SPIN version 6.2.3 (24 October
2012).

To complete this tutorial you will need to download, install and run SPIN.
SPIN can be downloaded from http://spinroot.com where you can also find doc-
umentation in its use.

60 CHAPTER 5. VERIFYING PROGRAMS USING AJPF

Why use SPIN

SPIN and AJPF are both LTL model-checkers so it may seem odd to use
AJPF only to produce the model and then use SPIN to create the property
automaton. There are a couple of advantages to this however. Firstly SPIN
has more powerful tools for producing property automata and so there are some
properties that AJPF can not handle which SPIN can. Secondly SPIN’s LTL
model checking algorithms are more efficient than AJPF’s so in theory the
whole process could be quicker by using SPIN. In practice it has been demon-
strated [Dennis et al., 2015b] that the major cause of slow performance in AJPF
is in generating the Kripke structure of the program model and any gains in
efficiency from using SPIN are often lost in converting AJPF’s program model
into Promela. However there may nevertheless be situations where efficiency
gains can be made.

In terms of this tutorial, looking at the process of exporting models to SPIN
forms a useful preliminary first step before we turn our attention to PRisMm.

Configuring AJPF to output SPIN models

In order to configure AJPF to use another model checker you need to tell it:
1. to produce only a program model,
2. which other model checker to target and,
3. where to output the program model.

This is done in the AJPF configuration file.

We will use the same program that was used in section 5.2. In the directory
for tutorial 3 you will find the configuration file TwoPickUpAgents_Spin. jpf
that is shown in figure 5.2.

This configuration file tells AJPF to produce a model only
(ajpf.model_only = true), to target the SPIN model checker
(ajpf.target modelchecker = spin), and to print the model to stan-
dard out (ajpf.model.location = stdout). If you execute it in AJPF you
get a print out of the model after AJPF has finished executing. This start
of this print out is shown in figure 5.3. In this, the first state (state 0) in
the AJPF model has become state0 in the Promela model. This state can
transition to either state 1 (statel) or state 37 (state77) and so on.

This model also records one proposition baglholdblock which is true in
both states 0 and 1. If we look further into the model (shown in figure 5.4) we
see that baglholdblock is false in states 8 and end_state9 which is an end state
in the model.

The property The property is, in fact, the AJPF property Bqg1 hold(block))
and this has been stated in the property specification language file as property
1.

5.3. TUTORIAL 3— USING AJPF TO CREATE MODELS FOR OTHER MODEL-CHECKERS61

Qusing = mcapl

target = ail.util.AJPF_w_AIL
target.args = ${mcapll}/src/examples/gwendolen/ajpf_tutorials/tutorial2/TwoPickUpAgents.ail,
${mcapl}/src/examples/gwendolen/ajpf_tutorials/tutorial3/PickUpAgent.psl,1

ajpf.model_only = true
ajpf.target_modelchecker = spin
ajpf.model.location = stdout

listener+=,.listener.ExecTracker
et.print_insn=false
et.show_shared=false

Figure 5.2: A Configuration file for use with Spin

When using AJPF to generate only a program model, the property in the
property specification language file should be a conjunction of the atomic prop-
erties that will appear in the property checked by the external system. In the
property specification language, the atomic properties are those about the men-
tal state of the agent, or the perceptions in the environment, i.e., those of the

form Bag I gagfa Aagfv Zagfs IDggf and P(ag)f-

Printing the Output to a file You can obviously cut and paste the Promela
model from the AJPF output into a file for use with SPIN. Alternatively you
can set ajpf.model.location to the path to an output file. The path should
be relative to your HOME directory.

If you want to give the absolute file name you need to set ajpf .model.path
as well as ajpf .model.location in the configuration file. The system will then
join these to create the absolute path to the file you want to use.

The file TwoPickUpAgents_SpinToFile.jpf will print the model to a file
tutorial3_spin.pml in the tutorial directory.

Model-checking the program in SPIN In the tutorial directory you will
find a file spinprop.pml which is a Promela file containing the never claim for
=0 Bag1 hold(block). SPIN searches for a contradiction, so the model checking
succeeds if it can find no path through the model where B, 41 hold(block) does
not eventually hold.

You can take the file containing your program model, plus spinprop.pml
and compile them (using spin -a -N spinprop.pml modelfile) to get a C file,
pan.c. This needs to be compiled then executed in order to check the program.
More details on this process can be found in the SPIN documentation.

62 CHAPTER 5. VERIFYING PROGRAMS USING AJPF

bool baglholdblock

active proctype JPFModel()
{
stateO:

baglholdblock = true;
if

:: goto statel;

11 goto state37;

fi;
statel:

baglholdblock = true;
if

:: goto state2;

11 goto state24;

fi;

Figure 5.3: Model output for SPIN

state8:

baglholdblock = false;
goto end_state3;
end_state9:
baglholdblock = false;
printf("end state\n");

Figure 5.4: Further states in the SPIN model

Exercise

You will find a second file in the tutorial directory, spinprop2.pml, which con-
tains a never claim for the property —(oBg41 hold(block) A 0=B, 42 hold(block)).

In order to verify this property you will need to adapt the property in
PickUpAgent.psl so that it contains a conjunction of B,g1 hold(block) and
Bag2 hold(flag) and then regenerate the model and check in SPIN. As usual a
solution file can be found in the answers directory.

5.3.3 Using AJPF with Prism

Prism [Kwiatkowska et al., 2011] is a probabilistic symbolic model-checker in
continuous development, primarily at the Universities of Birmingham and Ox-
ford, since 1999. PRISM provides broadly similar functionality to SPIN but
also allows for the model-checking of probabilistic models, i.e., models whose

5.3. TUTORIAL 3—- USING AJPF TO CREATE MODELS FOR OTHER MODEL-CHECKERS63

behaviour can vary depending on probabilities represented in the model. De-
velopers can use PRISM to create a probabilistic model (written in the PRism
language) which can then be model-checked using PRISM’s own probabilistic
property specification language, which subsumes several well-known probabilis-
tic logics including PCTL, probabilistic LTL, CTL, and PCTL*. PRISM has
been used to formally verify a variety of systems in which reliability and ran-
domness play a role, including communication protocols, cryptographic proto-
cols and biological systems. The examples in this tutorial were checked using
PRrism version 4. 3.

To complete this tutorial you will need to download, install and run PRISM.
PrisMm can be downloaded from http://www.prismmodelchecker.org where you
can also find documentation on its use.

Configuring AJPF to output Prism models

As mentioned in section 5.3.2, in order to configure AJPF to use another model
checker you need to tell it:

1. to produce only a program model,
2. which other model checker to target and,
3. where to output the program model.

Because PRISM also includes probabilistic information in the model, when us-
ing AJPF with PRisM it is also important to use a listener that records such
information when a choice in the java execution is governed by a probability.

This is done in the AJPF configuration file. Initially we will, once again, use
the same program that was used in section 5.2. In the directory for tutorial 3
you will find the configuration file TwoPickUpAgents Prism.jpf that is shown
in figure 5.5.

This configuration file tells AJPF to produce a model only (ajpf.model _only
= true), to target the PRISM model checker (ajpf.target_modelchecker =
prism), to print the model to standard out (ajpf.model.location = stdout),
and to use a probability listener (1istener=ajpf.MCAPLProbListener). If you
execute it in AJPF you get a print out of the model after AJPF has finished
executing. The start of this print out is shown in figure 5.6

There is no specifically probabilistic behaviour in this example, however
there are two agents and the system, by default, assumes each agent has an equal
chance of running every time the scheduler makes a decision. We can see here,
therefore, that in state 0 there is a 50% change that the system will transition to
state 1 and a 50% chance that it will transition to state 37. As with the SPIN
example we are interested in one property, bagiholdblock (B.g41 hold(block)))
and this is true in all the initial states of the model but is false after state 5.

The property Just as when using AJPF with SPIN, the property in the
AJPF property specification file should be a conjunction of the atomic properties

64 CHAPTER 5. VERIFYING PROGRAMS USING AJPF

Qusing = mcapl

target = ail.util.AJPF_w_AIL
target.args = ${mcapl}/src/examples/gwendolen/ajpf_tutorials/tutorial2/TwoPickUpAgents.ail,
${mcapl}/src/examples/gwendolen/ajpf_tutorials/tutorial3/PickUpAgent.psl,1

ajpf.model_only = true
ajpf.target_modelchecker = prism
ajpf.model.location = stdout

listener=ajpf.MCAPLProbListener
listener+=,.listener.ExecTracker

et.print_insn=false
et.show_shared=false

Figure 5.5: A Configuration file for PrisM

that will be used in the final property to be checked. In the property specification
language, the atomic properties are those about the mental state of the agent,
or the perceptions in the environment, i.e., those of the form By f, Gag f, Aagf+
Zagf, IDqgf and P(ag)f.

Printing the Output to a file You can obviously cut and paste the PRisM
model from the AJPF output into a file for use with PrIsm. Alternatively you
can set ajpf.model.location to the path to an output file. The path should
be relative to your HOME directory.

If you want to give the absolute file name you need to set ajpf .model.path
as well as ajpf .model.location in the configuration file. The system will then
join these to create the absolute path to the file you want to use.

The file TwoPickUpAgents_PrismToFile. jpf will print the model to a file
tutorial3_prism.pm in the tutorial directory.

Model-checking the program in Prism In the tutorial directory you will
find a file prismpropl.pctl which is a PRISM file containing the PCTL property
for P="00 ¢ Byg1 hold(block).

You can take the file containing your program model, plus prismpropl.pctl
and run them in PRISM (using prism model file prismpropl.pctl). This prop-
erty is actually false and you should get a result of 0 probability:

Result: 0.0 (value in the initial state).

More details on this process can be found in the PRISM documentation.

5.3. TUTORIAL 3—- USING AJPF TO CREATE MODELS FOR OTHER MODEL-CHECKERS65

dtmc

module jpfModel
state : [0 ..89] init O;
baglholdblock: bool init true;

[1 state = 0 -> 0.5:(state’=1) & (baglholdblock’= true) + 0.5:(state’=37) & (bagilholdblock’= true);
[1 state = 1 -> 0.5:(state’=2) & (baglholdblock’= true) + 0.5:(state’=24) & (baglholdblock’= true);
[1 state = 2 -> 0.5:(state’=3) & (baglholdblock’= true) + 0.5:(state’=15) & (baglholdblock’= true);
[1 state = 3 -> 0.5:(state’=4) & (baglholdblock’= true) + 0.5:(state’=10) & (bagilholdblock’= true);
[1 state = 4 -> 0.5:(state’=5) & (baglholdblock’= true) + 0.5:(state’=9) & (baglholdblock’= true);
[] state = 5 -> 0.5:(state’=6) & (baglholdblock’= false) + 0.5:(state’=8) & (baglholdblock’= false);
[1 state = 6 -> 1.0:(state’=89) & (baglholdblock’= false);

[1 state = 8 -> 1.0:(state’=88) & (baglholdblock’= false);

Figure 5.6: A Model for PrIiSM

5.3.4 Model Checking Agent Systems with Probabilistic
Behaviour

We will now look at a program with probabilistic behaviour. This program
is a modified version of one used in section 4.3. The program consists of a
robot, searcher.gwen, which searches a 3x3 grid in order to find a human and
an environment, RandomRobotEnv, in which a human is moving between the
squares and could be at (0, 1), (1, 1) or (2, 1) with a 50% chance of being at
(1, 1), a 30% chance of being at (2, 1) and a 20% chance of being at (0, 1).
The robot only finds the human if it is in the same square as the robot and
it immediately leaves the area once it finds the human (if it has checked every
square without finding the human then it checks every square again) therefore
there is a chance that the robot will never check the last square (2, 2).

In the directory for tutorial 3 you will find the AJPF configuration file
searcher. jpf for this program, that is shown in figure 5.7.

This file target’s the PRISM model checker and prints the model to standard
out. It uses the listener ajpf.MCAPLProbListener to record probabilistic in-
formation as the model is built. If you execute it in AJPF you get a print out
of the model after AJPF has finished executing. The start of this is shown in
figure 5.8.

In this state 0 can transition to three states representing the movement of
the human: state 1 (probability 0.5), state 72 (with probability 0.3) and state
73 (with probability 0.2) and so on.

This model also records one proposition bsearcherempty2020 which is false
in all the early states but if you look further into the model you will see it
becomes true when state 10 transitions to state 11.

66 CHAPTER 5. VERIFYING PROGRAMS USING AJPF

Qusing = mcapl

target = ail.util.AJPF_w_AIL
target.args = ${mcapll}/src/examples/gwendolen/ajpf_tutorials/tutorial3/searcher.ail,
${mcapl}/src/examples/gwendolen/ajpf_tutorials/tutorial3/searcher.psl,1

log.info = ail.mas.DefaultEnvironment,ajpf.product.Product
ajpf.model.location = stdout

ajpf.model_only = true

ajpf.target_modelchecker = prism
listener=ajpf.MCAPLProbListener
listener+=,.listener.ExecTracker

et.print_insn=false
et.show_shared=false

Figure 5.7: Configuration File for the searcher program

dtmc

module jpfModel
state : [0 ..80] init 0;
bsearcherempty2020: bool init false;

[] state = 0 -> 0.5:(state’=1) & (bsearcherempty2020’= false) + 0.3:(state’=72) & (bsearcherempt
[] state = 1 -> 0.5:(state’=2) & (bsearcherempty2020’= false) + 0.3:(state’=70) & (bsearcherempt
[] state = 2 -> 0.5:(state’=3) & (bsearcherempty2020’= false) + 0.3:(state’=68) & (bsearcherempt
[] state = 3 -> 0.3:(state’=66) & (bsearcherempty2020’= false) + 0.2:(state’=67) & (bsearcheremp
[] state = 4 -> 0.2:(state’=65) & (bsearcherempty2020’= false) + 0.5:(state’=5) & (bsearcherempt
[] state = 5 -> 1.0:(state’=80) & (bsearcherempty2020°’= false);

Figure 5.8: PrRISM model for the searcher program

5.3. TUTORIAL 3—- USING AJPF TO CREATE MODELS FOR OTHER MODEL-CHECKERS67

The property The property is the AJPF property Bscarcher empty(2,2) and
this has been stated in the property specification language file as property 1.

Model-checking the program in Prism In the tutorial directory you will
find a file prismprop2.pctl which is a PrRISM file containing the PCTL property
for P=7 o Bsearcher empty(2,2). If you run your PRisM model with this file you
should find that the property has a 35% chance of being true — i.e., the robot
has roughly a 35% chance of checking the final square.

In the property specification file there is a second property for Bseqrcher found
(that the searcher has found the human). If you generate a model for this prop-
erty and check it in PRISM you will find its probability is 1, even though there is
an infinite loop where the robot never finds the human. However the probability
that the robot will remain in this infinite loop forever is infinitesimally small.

A Note on Creating Environments with Probabilistic Behaviour

In order for AJPF’s probability listener to work correctly, all randomness (and
probabilistic behaviour) should be created using AIL’s Choice classes as docu-
mented in section 4.3.

It is important that probabilistic choices cause unique transitions in the
model. If, for instance, you generate four choices each with, say, a 25% prob-
ability but two of them end up leading to the same next state then AJPF will
only annotate the transition with one of the probabilities (not the sum of both)
and this will lead to PRISM generating an error. For instance say you have four
choices each representing a direction some human could move in, north, east,
south or west. If you are working in a grid world and if the selected direction
were to take the human off the grid then you might choose to have the human
remain in the same place instead. In this situation, when the human is in the
corner of the grid, two of those choices will lead to the same result (the human
remains in place) however only the probability for one of these occurring will be
annotated on the transition and PrisM will warn that the probabilities of the
transitions in this state do not sum to 1.

Exercise

You will find, in the tutorial directory an AIL program, pickuprubble.ail.
This controls a robot (called robot) that searches a small 2x3 grid for injured
humans. There is one human in the grid who moves around it randomly and
one building in the grid that may collapse. If the building collapses onto the
human then they will be injured. The robot systematically searches the grid. If
it encounters the human it will direct them to safety and if it finds them injured
it will assist them. However the once the robot has reached the top corner of the
grid it will stop searching. There is therefore, a chance that the robot will never
encounter the human and, what is more, that the human will visit the building
after the robot has checked and will be injured by the building collapsing.

68 CHAPTER 5. VERIFYING PROGRAMS USING AJPF

We are interested therefore in discovering the probability that if a hu-
man is injured then, eventually they are assisted by the robot. The
file prismprop_ex.pctl in the tutorial directory contains the property
P="O(P(injured_humans) = oA oporassist_humans).

Create an AJPF configuration file and property specification file that will
generate a PRISM model for this program and property. You should be able to
discover that there is an 88% chance of the robot assisting any injured human.
Note that the AJPF model build will take several minutes to run (it generates
3,546 states).

As usual solution files can be found in the answers directory.

5.4 Tutorial 4 — Verification Environments

This is the fourth in a series of tutorials on the use of the AJPF model checking
program. This tutorial covers the creation of Java Environments specifically
for use in the verification of Autonomous Systems — particularly systems that
intended to run in some environment, such as the real world, that is not written
in Java.

Files for this tutorial can be found in the mcapl distribution in the directory

src/examples/verifiableautonomoussystems/chapter5

The motorway simulator can be found in src/examples/motorwaysim
This tutorials assumes some familiarity GWENDOLEN programming and the
creation of environments for multi-agent systems as described in section 4.3

5.4.1 Where does the Automaton representing a BDI Agent
Program Branch?

A key part of model-checking is the full exploration of the state space of a pro-
gram (or model). It’s value is therefore in situations where there are branching
points in the possible execution of a program. A program which simply prints
out the numbers from 1 to 10, for instance, needs only to be tested once to see if
it actually does this since there is only one possible execution of the program. In
general BDI agent programming languages do not implement any randomness
within the language itself so branching in the execution of a program generally
occurs at two points.

Firstly, in a multi-agent system, individual agents may act in different orders.
Consider two agents, a1 and as each with a simple program which means that
a1 does act; and as does acty. Then there is potentially a run of this system
in which act; happens before acty and another in which acts happens before
acty. The AIL-toolkit provides support for different scheduling policies among
agents as discussed in section 4.3. These scheduling policies govern which agent
gets to make a state transition at any one time and can, for instance, enforce
strict turn taking among agents or, alternatively, select the next agent to make
a transition entirely at random. Depending upon the policy used then there

5.4. TUTORIAL 4 — VERIFICATION ENVIRONMENTS 69

may be branching points created in the automata checked by AJPF. At present
no language in AJPF allows two agents to make a transition at exactly the same
time, but this is not in principle excluded.

The second place in which branching may occur is in the information received
by the agent from perception or messages. Sometimes this information is gen-
erated by other agents in the system and so branching points are caused by the
scheduling policy which dictates when agents perform actions or send messages.
However we may also wish to represent non-determinism in the environment
within which the agents operate — for instance we might want to introduce the
possibility that messages get lost. In that case we can use randomness (as dis-
cussed in section 4.3) when we program our JAVA environment to create such
branching. The AIL-toolkit provides specific support for this randomness in
order both to assist the model-checking process and to allow replay of specific
paths through a program execution if a bug is detected.

5.4.2 The Problem with Environments

This desire to represent non-deterministic behaviour in the agents’ environ-
ment leads us to one of the key features of our approach to model-checking
autonomous systems. When we model check an agent in AJPF (or indeed any
model-checking system) we have to model check it in the context of a purely
JAvA environment that we have placed it in. However the reason we may be rep-
resenting non-determinism in that environment (e.g., message loss) is because
we believe that in the ‘real’ environment in which it will actually be deployed
different things may occur and we wish to understand the effect of this on the
system behaviour.

So when model-checking an autonomous hybrid agent system in AJPF we
have to construct a JAVA environment that represents a simulation of some ‘real’
world. We can encode assumptions about the behaviour of the ‘real” world in
this simulation, but we would prefer to minimize such assumptions. For much
of our autonomous systems work we try to have minimal assumptions where the
environment asserts or retracts percepts and messages on an entirely random
basis. By this we mean that we do not attempt to model assumptions about
the effects an agent’s actions may have on the world, or assumptions about the
sequence in which perceptions may appear to the agent. This approach is not
without its cost in terms of state space and the efficiency of model-checking.
As a result we often do have to build in assumptions about the real world. An
approach to mitigating the potential issues introduced by making assumptions
is discussed in [Ferrando et al., 2021].

The process for verifying an agent in this way, is to first analyse the agent
program in order to identify all the perceptions that have an effect on the
program. In multi-agent systems it is also necessary to identify all messages
that the agent may receive from other agents in the environment. Once a list
of perceptions and messages has been identified, an environment is constructed
for the agent alone in such a way that every time the agent takes an action the
set of perceptions and messages available to it are created at random. When

70 CHAPTER 5. VERIFYING PROGRAMS USING AJPF

model checking, the random selection causes the search tree to branch and the
model checker to explore all environmental possibilities.

We will illustrate this process with a simple, but hopefully instructive, ex-
ample. There is a fuller discussion of the methodology in [Dennis et al., 2014].

5.4.3 Example: Cars on a Motorway

We explain our approach to model-checking autonomous systems via an example
of two cars on a motorway>

Example 7 We will consider an intelligent cruise control for a car, focusing
simply on when to accelerate and when to maintain its speed. The GWENDOLEN
code for this is show below. There are two cars, carl and car2 and, in both cases,
when the car has a goal to reach the speed limit, +! at_speed_limit [achieve],
it accelerates and then waits until the goal is achieved (The ‘*’ symbol is the
GWENDOLEN syntax for ‘waiting’). The first car then also sends a message to
car2. Once the cars have reached the speed limit they perform a maintain_speed
action followed by a finished action. Carl gets the goal to be at the speed limit
when it perceives that it has started, while Car2 gets the goal only when it receives
a message to achieve the goal.

:name: carl 1
2

:Initial Beliefs: 3
4

:Initial Goals: 5
6

:Plans: 7
+started: {True} < +lat_speed_limit[achieve]; 8
9

+! at_speed_limit [achieve] : {True} + 10
accelerate , 11
xat_speed_limit , 12
.send(car2, :achieve, at_speed_limit); 13

14

+at_speed_limit: {True} « 15
maintain_speed , 16
finished; 17

18

:name: car2 19
20

:Initial Beliefs: 21
22

:Initial Goals: 23
24

:Plans: 25

3Examples from this tutorial can be found in src/examples/verifiableautonomoussystems/chapters
within the MCAPL distribution. The motorway simulator can be found in
src/examples/motorwaysim.

5.4. TUTORIAL 4 — VERIFICATION ENVIRONMENTS 71

+.received (:achieve, G): {True} + +!G [achieve]; 26
27

+! at_speed_limit [achieve] : {True} «+ 28
accelerate , 29
*at_speed_limit; 30

31

+at_speed_limit: {True} «+ 32
maintain_speed , 33
finished ; 34

Executing the Program

In order to execute the above program, it needs to be connected either to physi-
cal vehicles or simulations. Figure 8.2 shows the output in a very simple vehicle
simulator. The simulator has two cars each in their own motorway lane. The
lanes loop around so when one car reaches the end of its lane it loops back to
the start. The simulator reports both the speed of each car and their distance
from the start of the motorway.

The agents are connected to the simulator via a JAVA environment which
communicates using a standard socket mechanism. It reads the speeds of the
cars from the sockets and publishes values for required acceleration to the socket.
If a car’s speed becomes larger than 5 then the environment adds a perception
that the car is at the speed limit. If a car agent performs the accelerate action
then the environment publishes an acceleration of 0.1 to the socket. If a car
agent performs the maintain_speed action then the environment publishes an
acceleration of 0 to the socket.

Verification: Building a model by Examining the Environment

Suppose we wish to use AJPF to verify our agents for controlling the two cars.
We cannot include the whole of the motorway simulator program in our formal
verification since it is an external program. We need to replace the socket calls
to this simulator in our JAVA environment with some model of its behaviour.

A naive way to set about this might be to capture the obvious behaviour of
the simulator. We could use a scheduler to alternately execute a method, gener-
ally called do_job in AIL-supporting environments, in the simulator to calculate
the position of each car and then to execute one step in the reasoning cycle of
each car. If a car agent executes accelerate then each call of do_job increases the
car’s speed by 1. If the car agent executes maintain_speed then the car’s speed
remains constant. As in the JAVA environment that communicated with the
simulator, once the speed has reached 5 this is set as a percept, at_speed_limit
that the agent can receive.

Such a model is, in fact, entirely deterministic (like the program that counted
to 10 in Section 5.4.1) because of the turn based control of the environment and

72 CHAPTER 5. VERIFYING PROGRAMS USING AJPF

o Motorway ‘o Motorway
D D Speed Car 1: 0 D Speed Car 1: 2
Distance Car 1. 0 Distance Car 1: 265
Speed Car 2: 0 Speed Car 2: 0
Distance Car 2: 0 Distance Car 2: 0
O
Start Start
[] Motorway 1 [] Motorway
Speed Car 1: S Speed Car 1: S
Distance Car 1: 426 Distance Car 1: 150
Speed Car 2: 2 Speed Car 2: 5
Distance Car 2: 374 Distance Car 2: 399
0
0
]
]
Start Start

Figure 5.9: Simulating two cars on a motorway. Images from left to right show:
(a) two cars waiting at the start; (b) the first car accelerating; (c) as the first

car reaches a speed of 5 it messages the second car which begins accelerating;
until (d) both cars are moving at a speed of 5.

5.4. TUTORIAL 4 — VERIFICATION ENVIRONMENTS 73

the two agents. There is no need for more sophisticated model checking since
we can simply run the program once and see what happens.

Obviously we can make our model more complex — for instance we could
introduce a random element into whether the car detects that it has reached
the speed limit, or exactly how much acceleration is created. There are some
limitations to this, however. For instance, we need our model to contain a
reasonable number of states, so we can not simply vary the acceleration by a
random double since that would introduce a very large search space, creating a
search branch for each possible double value that could be used at that point.

Similarly as the world we wish to model becomes more complicated, such
environments inevitably become harder and harder to craft in ways that behave
with appropriate fidelity.

Verification: Building a Model by Examining the Agents

The alternative to trying to create a JAVA model to accurately describe the be-
haviour of the real world is to analyse instead the inputs in terms of perceptions
and messages received by the agent program. This is our approach. We con-
struct a model in which, every time the agent program queries the environment
for perceptions, the environment returns a random subset of these. In the case
of carl there are only two perceptions at_speed_limit and started and so we
need an environment that generates inputs from these two.

The MCAPL framework provides support for creating these kinds of envi-
ronments for GWENDOLEN programs through an abstract

gwendolen.mas.VerificationofAutonomousSystemsEnvironment

class that can, in turn, be sub-classed. The sub-classes simply have to sub-class
the methods for generating random perceptions, generate_percepts, and random
messages, generate_messages.

Example 8
public Set<Predicate> generate_percepts|() 1
{ 2
Set<Predicate> beliefs = new HashSet<Predicate >(); 3
4
boolean at_speed_limit =)
random_bool_generator.nextBoolean (); 6
boolean started = 7
random_bool_generator.nextBoolean (); 8
if (at_speed_limit) 9
10
beliefs.add(new Predicate(” at_speed_limit")); 11
AJPFLogger.info (logname, "At Speed Limit"); 12
} 13
14

if (started) 15

74 CHAPTER 5. VERIFYING PROGRAMS USING AJPF

16

beliefs.add(new Predicate(” started”)); 17
AJPFLogger.info (logname, "Started”); 18

} 19
return beliefs; 20

} 21

Here, we show the generate_percepts method. Two booleans are generated at
random and are used to decide whether or not a percept is added to the set
returned to the agent. For our car example, the two percepts in question are
at_speed_limit and started. A similar mechanism can be used to generate mes-
sages at random. A logging mechanism AJPFlogger prints output about the
perceptions generated for a user to see.

Using this environment many simple properties are false, for instance “if cari
accelerates, eventually it will be at the speed limit” is false. This is because
the environment does not link the acceleration action in any way to the car’s
speed. In fact the actions taken by the agent in such an environment have no
causal link to the perceptions that are returned. Essentially, we cannot make
any assumptions about whether the software and machinery involved in making
acceleration happen are working, nor whether the sensors for detecting the car’s
speed are working.

To prove useful properties with this kind of environment we typically prove
properties of the general form

“If whenever the agent does X eventually the agent believes Y then...”.

So for instance we can prove, using the above environment, that “provided that,
if carl invokes acceleration then eventually carl believes it is at the speed limit,
then eventually carl will invoke finished”, i.e:

O(Acar1accelerate — 0B at_speed _limilt) — ©Acqr1 finished.

There are many properties of this form discussed in the examples in the MCAPL
distribution.

Just as we could make our model based on examination of the environment
more complex and so increase the state space, we can reduce the state space for
models based on examination of the agents by linking the generation of percepts
to actions. By default VerificationofAutonomousSystemsEnvironment only
randomly generates new sets of perception after an action has been invoked —
any other time the agent polls the environment for perceptions it receives the
same set it was sent last time it asked. While this does introduce assumptions
about the behaviour of the real world — that changes in perceptions only occur
after an agent has taken some action, it is normally comparatively safe if you
can assume that agent deliberation is very fast compared to the time it takes
to execute an action and for changes in the world to occur. This reduces the
possibilities and the complexity of the model-checking problem.

5.4. TUTORIAL 4 — VERIFICATION ENVIRONMENTS 75

It is also possible to make application specific assumptions to constrain the
generation of sets by the environment: for instance that the at_speed_limit
perception can not be included in a set until after the accelerate action has
been performed at least once. This does increase the risk that the environment
used for verification may exclude behaviours that would be observed in the real
environment.

76

CHAPTER 5. VERIFYING PROGRAMS USING AJPF

Part 11

Agent Programming
Languages

7

Chapter 6

The GWENDOLEN
Programming Language

This chapter contains a set of tutorials on the GWENDOLEN programming lan-
guage. The semantics of the language can be found in [Dennis, 2017]. These
tutorials give an introduction to the use of the language.

6.1 Tutorial 1 — Introduction to Running Gwen-
dolen Programs

This is the first in a series of tutorials on the use of the GWENDOLEN pro-
gramming language. This tutorial covers the basics of running GWENDOLEN
programs, the configuration files, perform goals and print actions. It assumes
the reader is familiar with the basics of Prolog notation. Files for this tutorial
can be found in the mcapl distribution in the directory

src/examples/gwendolen/tutorials/tutoriall.

The tutorials assume some familiarity with the Prolog programming language
as well as the basics of running Java programs either at the command line or in
Eclipse.

6.1.1 Hello World

You will find a GWENDOLEN program in the tutorial directory called
hello_world.gwen. It’s contents should look like Example 9.

This can be understood as follows. Line 1 states the language in which
the program is written (this is because the AIL allows us to create multi-agent
systems from programs written in several different languages). Line 3 gives the
name of the agent (hello). Line 5 starts the section for initial beliefs (there are
none). Line 7 starts the section for initial goals. There is one a perform goal

79

80 CHAPTER 6. THE GWENDOLEN PROGRAMMING LANGUAGE

Example 9
GWENDOLEN 1
2
:name: hello 3
4
:Initial Beliefs: 5
6
:Initial Goals: 7
8
say_hello [perform] 9
10
:Plans: 11
12
+!say_hello [perform] : {True} « print(hello); 13

to say_hello (we will cover the different sorts of goal in a later tutorial). Line
11 starts the section for plans. There is one plan which can be understood as
saying if the goal is to say hello +!say_hello then do the action print (hello).
There is a third component to the plan ({True}) which is a guard that must be
true before the plan is applied. In this case the guard is always true so the plan
applies whenever the agent has a goal to perform +!say_hello.

Running the Program

To run the program you need to run the JAVA program ail.mas.AIL and
supply it with a suitable configuration file as an argument. You will find
an appropriate configuration file, hello world.ail in the same directory as
hello world.gwen. You can do this either from the command line or using the
IntelliJ or Eclipse run-AIL configuration (with hello_world.ail selected in the
Project Files/Package Explorer window) as detailed in chapter 3.

Run the program now.

6.1.2 The Configuration File

Now open the configuration file, hello_world.ail shown in figure 6.1.
This is a very simple configuration consisting of four items only.

mas.file gives the path to the GWENDOLEN program to be run.

mas.builder gives a java class for building the file. In this case
gwendolen.GwendolenMASBuilder parses a file containing one or more
GWENDOLEN agents and compiles them into a multi-agent system.

env provides an environment for the agent to run in. In this case we use the
default environment provided by the AIL.

6.2. TUTORIAL 2 — SIMPLE BELIEFS, GOALS AND ACTIONS 81

mas.file = /src/examples/gwendolen/tutorials/tutoriall/hello_world.gwen
mas.builder = gwendolen.GwendolenMASBuilder

env = ail.mas.DefaultEnvironment

log.warning = ail.mas.DefaultEnvironment

Figure 6.1: A Simple Configuration File

log.warning sets the level of output for the class
ail.mas.DefaultEnvironment. This is a pretty minimal level of
output (warnings only). We will see in later tutorials that it is often
useful to get more output than this.

6.1.3 Some Simple Exercise to Try

1. Change the filename of hello_world.gwen to something else (e.g.,
hello.gwen). Update hello_world.ail to reflect this change. Check
you can still run the program.

2. Edit the hello world program so it prints out hi instead of hello.

3. Edit the hello world program so the goal is called hello instead of
say_hello. If you don’t change the plan notice how the behaviour of
the program changes. Edit the plan to return to the original behaviour of
the program.

4. Change the plan to
+!say_hello [perform] : {True} <- print(hello), print(louise);

and see how this changes the behaviour of the program.

5. Experiment getting the program to print out various different strings.
Note that in order to print a string containing whitespace, the string must
be contained in double quotes (i.e. print (" hello world");)

6.2 Tutorial 2 — Simple Beliefs, Goals and Ac-
tions

This is the second in a series of tutorials on the use of the GWENDOLEN pro-
gramming language. This tutorial covers the basics of beliefs, goals and actions
as they appear in GWENDOLEN.

Files for this tutorial can be found in the mcapl distribution in the directory

82 CHAPTER 6. THE GWENDOLEN PROGRAMMING LANGUAGE

src/examples/gwendolen/tutorials/tutorial?.

6.2.1 Pick Up Rubble

You will find a GWENDOLEN program in the tutorial directory called
pickuprubble.gwen. It’s contents should look like Example 10.

Example 10
GWENDOLEN 1
2
:name: robot 3
4
:lnitial Beliefs: 5
6
:Initial Goals: 7
8
goto55 [perform] 9
10
:Plans: 11
12
+!goto55 [perform] : {True} < move_to(5, 5); 13
14
+rubble(5, 5): {True} «+ lift_rubble; 15
16
+holding (rubble): {True} < print(done); 17

This is a program for moving around a simple grid based environment and
picking up rubble. The robot can perform three actions in this environment,

move_to(X, Y) moves to grid square (X, Y) and adds the belief at(X, Y).

lift_rubble attempts picks up a piece of rubble and adds the belief
holding (rubble) if there is rubble at the robot’s location.

drop drops whatever the robot is holding and removes any beliefs about what
the robot is holding.

The default actions (e.g., print) are also available to the robot. As the envi-
ronment is set up there is a block of rubble at square (5, 5) which the robot
will see if is in square (5, 5). When the robot picks something up it can see
that it is holding it. This environment is programmed in JAVA and is the class
gwendolen. tutorials .SearchAndRescueEnv.

The program can be understood as follows.

Line 1 states the language in which the program is written (this is because
the AIL allows us to create multi-agent systems from programs written in
several different languages).

6.2. TUTORIAL 2 — SIMPLE BELIEFS, GOALS AND ACTIONS 83

Line 3 gives the name of the agent (robot).
Line 5 starts the section for initial beliefs (there are none).
Line 7 starts the section for initial goals. There is one a perform goal to goto55.

Line 11 starts the section for plans. There are three plans. The first (line 13)
states that in order to perform goto55 the agent must move to square (5,
5). The second (line 15) states that if the agent sees rubble at 5, 5 it
should lift the rubble and the third (line 17) states that if the agent sees
it is holding rubble then it should print done.

There are three different sorts of syntax being used here to distinguish be-
tween beliefs, goals and actions.

Beliefs Beliefs are predicates (e.g., rubble (5, 5) that are preceded either by a +
symbol (to indicate a adding a belief) or a - symbol (to indicate removing
a belief).

Goals Goals are predicates preceded by an exclamation mark (e.g., !goto55)
again these are then preceded either by a + symbol (to indicate a adding a
goal) or a - symbol (to indicate removing a goal). After the goal predicate
there is also a label stating what kind of goal it is. Goals can either be
perform goals or achieve goals. We will discuss the difference between
these in a moment.

Actions Are just predicates. Actions are performed externally to the agent
and can not be added or removed (they are just done).

Running the Program and Getting more Log output

To run the program you need to call ail.mas.AIL and supply it with a
suitable configuration file. You will find an appropriate configuration file,
pickuprubble.ail in the same directory as pickuprubble.gwen. You can do
this either from the command line or using the IntelliJ or Eclipse run-AIL con-
figuration as detailed in the MCAPL manual.

Run the program now.

As in Tutorial 1, all you see is the robot printing the message done once it
has finished. However what has happened is that the robot moved to square (5,
5) (because of the perform goal). Once in square (5, 5) it saw the rubble and so
lifted it (thanks to the second plan). Once it had lifted the rubble it saw that
it was holding it and printed done (thanks to the third plan).

You can get more information about the execution of the program by chang-
ing the logging information in the configuration file. Open the configuration file
and edit

log.warning = ail.mas.DefaultEnvironment

to

84 CHAPTER 6. THE GWENDOLEN PROGRAMMING LANGUAGE

log.info = ail.mas.DefaultEnvironment

You will now see logging information printed out about each action the robots
takes.
If you add the line

log.format = brief

to the configuration file you will get the log messages in a briefer form.

6.2.2 Perform and Achieve Goals

pickuprubble_achieve . gwen is a slightly more complex version of the rubble lift-
ing program which introduces some new concepts. It is shown in Example 11
The first changes are in lines 7-9. Here we have a list of initial beliefs. The

Example 11
GWENDOLEN 1
2
:name: robot 3
4
:Initial Beliefs: 5
6
possible_rubble (1, 1) 7
possible_rubble (3, 3) 8
possible_rubble (5, 5) 9
10
:Initial Goals: 11
12
holding (rubble) [achieve] 13
14
:Plans: 15
16
+!holding (rubble) [achieve] : 17
{B possible_rubble (X, Y), "B no_rubble(X, Y)} < move_to(X, Y); 18
19
+at(X, Y) : {"B rubble(X, Y)} < +no_rubble(X, Y); 20
21
+rubble(X, Y): {B at(X, Y)} « lift_rubble; 22
23
+holding (rubble): {True} < print(done); 24

agent believes there may be rubble in one of three squares (1, 1), (3, 3) and (5,
5). As we know, in the environment, there is only rubble in (5, 5).

The next change is in line 13. Here instead of a perform goal, gotob5 [perform]
there is an achieve goal, holding(rubble) [achieve]. The difference between per-
form goals and achieve goals is as follows:

6.2. TUTORIAL 2 — SIMPLE BELIEFS, GOALS AND ACTIONS 85

e When an agent adds a perform goal it searches for a plan for that goal,
executes the plan and then drops the goal, it does not check that the plan
has succeeded.

e When an agent adds an achieve goal it searches for a plan for that goal,
executes the plan and then checks to see if it now has a belief corresponding
to the goal. If it has no such beliefs it searches for a plan again, if it does
have such a belief then it drops the goal.

In the case of this program the robot will continue executing the plan for
holding (rubble) until it actually believes that it is holding some rubble.

On lines 17 and 18, you can see the plan for the goal. This plan no longer
has a trivial guard. Instead the plan only applies if the agent believes that there
is possible rubble in some square (X, Y) and it does not (the ~ symbol) believe
there is no rubble in that square. If it can find such a square then the robot
moves to it. The idea is that the robot will check each of the possible rubble
squares in turn until it successfully finds and lifts some rubble. Note that we
are using capital letters for variables that can be unified against beliefs (like in
Prolog).

The plan at line 20 gets the robot to add the belief no_rubble(X, Y) if it is at
some square, (X, Y), and it can’t see any rubble there. By this means the plan
in lines 17 and 18 will be forced to pick a different square next time it executes.
Up until now all the plans you have used have simply executed actions in the
plan body. This one adds a belief.

The plan at line 22 is similar to the plan in line 15 of Example 10 only in
this case we are using variables for the rubble coordinates rather than giving it
the coordinates (5, 5).

You can run this program using the pickuprubble_achieve . ail configuration
file.

6.2.3 Some Simple Exercise to Try

1. Instead of having the robot print done once it has the rubble, get it to
move to square (2, 2) and drop the rubble.

Hint: you may find you need to add a “housekeeping” belief that the
rubble has been moved to prevent the robot immediately picking up the
rubble once it has been dropped.

2. Rewrite the program so that instead of starting with an achievement goal
holding(rubble), it starts with an achievement goal rubble (2, 2) —i.e., it
wants to believe there is rubble in square (2, 2).

Hint: you may want to reuse the plan for achieve holding(rubble) by
setting it up as a subgoal. You can use this by adding the command
+!holding(rubble) [achieve] in the body of a plan.

Sample answers for these two exercises can be found in
gwendolen/examples/tutorials/tutorial2/answers.

86 CHAPTER 6. THE GWENDOLEN PROGRAMMING LANGUAGE

6.3 Tutorial 3 — Plan Guards and Reasoning
Rules

This is the third in a series of tutorials on the use of the GWENDOLEN program-
ming language. This tutorial covers the use of Prolog style rules as they appear
in GWENDOLEN and also looks at plan guards in a little more detail.

Files for this tutorial can be found in the mcapl distribution in the directory

src/examples/gwendolen/tutorials/tutorial3.

6.3.1 Pick Up Rubble (Again)

You will find a GWENDOLEN program in the tutorial directory called
pickuprubble_achieve.gwen. Its contents should look like Example 12.

Example 12
GWENDOLEN 1
2
:name: robot 3
4
:Initial Beliefs: 5
6
possible_rubble (1, 1) possible_rubble (3, 3) possible_rubble (5, 5) 7
8
:Reasoning Rules: 9
10
square_to_check (X, Y) :— possible_rubble (X, Y), “no_rubble(X, Y); 11
12
:Initial Goals: 13
14
holding (rubble) [achieve] 15
16
:Plans: 17
18
+!holding (rubble) [achieve] : {B square_to_check (X, Y)} <« 19
move_to (X, Y); 20
+at(X, Y) : {"B rubble(X, Y)} + +no_rubble(X, Y); 21
+rubble(X, Y): {B at(X, Y)} <« lift_rubble; 22
+holding (rubble): {True} « print(done); 23

This is very similar to the second program in section 6.2. However instead
of having

{B possible_rubble(X, Y), "B no_rubble(X, Y)}

as the guard to the first plan we have B square_to_check(X, Y) as the guard.

6.3. TUTORIAL 3 — PLAN GUARDS AND REASONING RULES 87

We can then reason about whether there is a square to check using the Prolog
style rule on line 13. The syntax is very similar to Prolog syntax but there are
a few differences. We use the symbol, ~, to indicate “not”. It is possible to
use Prolog “cuts” to control backtracking in belief reasoning in GWENDOLEN
programs using the standard ! syntax to indicate the cut. Standard Prolog
built-in predicates such as member, var etc., are not currently available.

6.3.2 Using Prolog Lists

You can use Prolog style list structures in GWENDOLEN programs. Example 13
shows the previous example using lists.

Example 13
:name: robot 1
2
:Initial Beliefs: 3
4
possible_rubble ([sq(1, 1), sq(3, 3), sq(5, 5)]) 5
6
: Reasoning Rules: 7
8
square_to_check (X, Y) :— possible_rubble(L), check_rubble(L, X, Y);
10
check_rubble ([sq(X, Y) | T], X, Y) :— “no_rubble(X, Y); 11
check_rubble ([sq(X, Y) | T], X1, Y1) :— no-rubble(X, Y), 12
check_rubble (T, X1, Y1); 13
14
:Initial Goals: 15
16
holding (rubble) [achieve] 17
18
:Plans: 19
20
+!holding(rubble) [achieve] : {B square_to_check (X, Y)} «+ 21
move_to (X, Y); 22
+at(X, Y) : {"B rubble(X, Y)} < +4no-rubble(X, Y); 23
+rubble (X, Y): {B at(X, Y)} < lift_rubble; 24
+holding (rubble): {True} < print(done); 25

Prolog list structures can also be used in GWENDOLEN plans and a recursive
style plan may sometimes provide a more efficient program than the kind of
program that relies on the failure of a plan to achieve a goal to re-trigger the
plan. Example 14 shows an example of this style of programming where the
achieve goal calls a perform goal that recurses through the list of squares one
at a time.

88 CHAPTER 6. THE GWENDOLEN PROGRAMMING LANGUAGE

Example 14
:name: robot 1
2
:Initial Beliefs: 3
4
possible_rubble ([sq(1, 1), sq(3, 3), sq(5, 5)]) 5
6
:Reasoning Rules: 7
8
rubble_in_current :— at(X, Y), rubble(X, Y); 9
10
:Initial Goals: 11
12
holding (rubble) [achieve] 13
14
:Plans: 15
16
+!holding (rubble) [achieve] : {B possible_rubble (L)} « 17
+! check_all_squares(L) [perform]; 18
19
+!check-all_squares ([]) [perform] : {True} < print(done); 20
+!check_all_squares ([sq(X, Y) | T]) : {"B rubble_in_current} « 21
move_to (X, Y), 22
+!check_all_squares(T) [perform]; 23
+!lcheck_all_squares ([sq(X, Y) | T]) : {B rubble_in_current} + 24
print (done); 25
26
+at(X, Y) : {"B rubble(X, Y)} « +no-rubble(X, Y); 27
28
+rubble (X, Y): {B at(X, Y)} < lift_rubble; 29

6.3.3 More Complex Prolog Reasoning — Grouping pred-
icates under a negation

pickuprubble_grouping.gwen shows more complex use of Reasoning Rules in-
cluding some syntax not available in Prolog. This is shown in example 15

In this program the agent’s goal is to achieve done. It achieves this either if
it is holding rubble (deduced using the code on line 14), or if there is no square
it thinks may possibly contain rubble that has no rubble in it (deduced using
the code on line 15).

The rule on line 15

done :- ~ (possible_rubble(X, Y), “no_rubble(X, Y));

isn’t standard Prolog syntax. Here we group the two predicates
possible_rubble (X, Y), “no_rubble(X, Y) (from square_to_check) together using
brackets and then negate the whole concept (i.e., there are no squares left to
check).

6.3. TUTORIAL 3 — PLAN GUARDS AND REASONING RULES 89

Example 15
GWENDOLEN 1
2
:name: robot 3
4
:Initial Beliefs: 5
6
possible_rubble (1, 1) 7
possible_rubble (3, 3) 8
possible_rubble (5, 5) Y
10
:Reasoning Rules: 11
12
square_to_check (X, Y) :— possible_rubble (X, Y), “no_rubble(X, Y); 13
done :— holding(rubble); 14
done :— ~ (possible_rubble(X, Y), “"no_rubble(X, Y)); 15
16
:Initial Goals: 17
18
done [achieve] 19
20
:Plans: 21
22
+!done [achieve] : {B square_to_check(X, Y)} + move_to(X, Y); 23
24
+at(X, Y) : {"B rubble(X, Y)} < +no_rubble(X, Y); 25
26
+rubble (X, Y): {B at(X, Y)} « lift_rubble; 27
28
+holding(rubble): {True} « print(done); 29

Some Simple Exercises to Try

1. Try removing the initial belief that there is possible rubble in square (5,
5). You should find the the program still completes and prints out done.

2. Try replacing the rule on line 15 with one that refers to square_to_check

6.3.4 Using Goals in Plan Guards

pickuprubble_goal.gwen shows how reasoning rules can be used to reason
about both goals and beliefs. This is shown in example 16. Recall that in
the exercises in section 6.2 we had to use a belief to prevent the robot pick-
ing up the rubble after it had put it down. Here instead we have added
G holding(rubble) [achieve] as a guard to the plan that is activated when the
robot sees some rubble. In this case it only picks up the rubble if it has goal to
be holding rubble.

90 CHAPTER 6. THE GWENDOLEN PROGRAMMING LANGUAGE

Example 16
GWENDOLEN 1
2
:name: robot 3
4
:Initial Beliefs: 5
6
possible_rubble (1, 1) 7
possible_rubble (3, 3) 8
possible_rubble (5, 5) 9
10
:Initial Goals: 11
12
rubble (2, 2) [achieve] 13
14
:Plans: 15
16
+!rubble(2, 2) [achieve]: {True} < +! holding(rubble)[achieve], 17
move_to (2, 2), 18
drop; 19
20
+!holding (rubble) [achieve] : 21
{B possible_rubble (X, Y), "B no_rubble(X, Y)} <« 22
move_to (X, Y);
23
+at(X, Y) : {"B rubble(X, Y)} + +no_rubble(X, Y); 24
25
+rubble (X, Y): {B at(X, Y), G holding(rubble) [achieve]} < 26
lift_rubble; 27

6.3.5 Reasoning about Beliefs and Goals

pickuprubble_goalat.gwen shows how goals can be used in plan guards. This
is shown in example 17. Here the reasoning rule on line 13 is used both in the
plan on line 29 in order to reason about whether the robot is holding the rubble
at square (2, 2) and in the plan on line 31 to deduce that the robot has a goal
to get the rubble to square (2, 2), from the the fact that it has a goal to be
holding rubble (added on line 21) and a goal to be at (2, 2) — the initial goal.

Note that we can’t use reasoning rules to break down a goal into subgoals.
So if you gave the robot the initial goal rubble_at_22 you need to provide a plan
specifically for rubble_at 22. It is no good providing a plan for holding rubble
and a plan for being at 2, 2 and then expecting the robot to compose these
sensibly in order to achieve rubble_at_22.

Try changing the agent’s initial goal to rubble_at.22 [achieve] without
changing anything else in the program. You should see a warning generated
that the agent can not find a plan for the goal. At this point the program

6.3. TUTORIAL 3 — PLAN GUARDS AND REASONING RULES 91
Example 17
GWENDOLEN 1
2
:name: robot 3
4
:Initial Beliefs: 5
6
possible_rubble (1, 1) 7
possible_rubble (3, 3) 8
possible_rubble (5, 5) Y
10
:Reasoning Rules: 11
12
rubble_at_-22 :— holding(rubble), at(2, 2); 13
14
:Initial Goals: 15
16
at(2, 2) [achieve] 17
18
:Plans: 19
20
+lat (X, Y) [achieve]: {True} < +! holding(rubble)[achieve], 21
move_to (X, Y); 22
23
+!holding (rubble) [achieve] : 24
{B possible_rubble (X, Y), "B no_rubble(X, Y)} « 25
move_to (X, Y);
26
+at(X, Y) : {"B rubble(X, Y), "B rubble_at_22} « 27
+no_rubble (X, Y); 28
+at(X, Y) : {B rubble_at_22} <« drop; 29
30
+rubble (X, Y): {B at(X, Y), G rubble_at_22 [achieve]} <« 31
lift_rubble; 32

will fail to terminate (when GWENDOLEN can’t find a plan for a goal it cycles
infinitely looking a plan to handle a failed goal (most programs don’t include
one of these)). You will need to terminate the program (control-C at the

command line or clicking the red stop square in Eclipse).

6.3.6 Some Simple Programs to Write

NB. The environment gwendolen.tutorials.SearchAndRescueEnv contains

rubble both at (5, 5) and at (3, 4).

1. Write a program to make the robot check every square in a 5x5 grid (i.e.,
(1, 1), (1, 2), (1, 3) etc.,) until it finds some rubble at which point it stops.
Try implementing this program both with and without using lists in plans.

92 CHAPTER 6. THE GWENDOLEN PROGRAMMING LANGUAGE

(NB. For the list version you may need to insert a plan that asserts a belief
when the rubble is seen, in order to make sure the robot doesn’t progress
through the squares too rapidly. See comment about do_nothing in the
next exercise and further discussion of this in later tutorials).

2. Write a program to make the robot search every square in a 5x5 grid (i.e.,
(1, 1), (1, 2) etc.,) taking all the rubble it finds to the square (2, 2) until
it believes there is only rubble in square (2, 2).

Hints:

(a) You may see the warning similar to:

ail.semantics.operationalrules.GenerateApplicablePlansEmptyProblemGoal [WARNING |main|2:
Warning no applicable plan for goal _aall_squares_checked()

As noted above, this warning appears if the agent can not find a plan
to achieve a goal. Sometimes this arises because of bugs in the code,
but it can also happen if the agent has not had a chance to process
all new perceptions/beliefs before it once again looks for a plan to
achieve a goal (we will talk about this some more in later tutorials).
It may be worth adding an action, do_nothing, into your plan, this
will act to delay the next time the agent attempts to achieve the goal
giving it time to process all new beliefs.

(b) You may need to include at(2, 2) in your goal in some way to make
sure the agent actually takes the final piece of rubble to the square
(2, 2).

Sample answers for these two exercises can be found in
gwendolen/examples/tutorials/tutorial3/answers.

6.4 Tutorial 4 — Troubleshooting

This is the fourth in a series of tutorials on the use of the GWENDOLEN pro-
gramming language. This tutorial looks at some of the things that typically
cause errors in GWENDOLEN programs and how to identify and fix the errors.

For this tutorial we will be working with files from previous tutorials but
editing them to introduce errors. You may wish to create a separate folder,
tutorial4 for this work and copy files into it. Remember to update the paths
in your configuration files if you do so.

GWENDOLEN does not have its own debugger, however you can get a long
way using error outputs and logging information.

6.4.1 Path Errors

If you supply the wrong path or filename in a configuration file GWENDOLEN
will not be able to find the program you want to run. You will see an error
similar to the following:

6.4. TUTORIAL 4 — TROUBLESHOOTING 93

ail.mas.AIL[SEVERE|main|3:24:57]: Could not find file. Checked:
/src/examples/gwendolen/tutorials/tutorial3/pickuprubble_achiev.gwen,
/Users/lad/src/examples/gwendolen/tutorials/tutorial3/pickuprubble_achiev.gwen,
/Users/lad/Eclipse/mcapl/src/examples/gwendolen/tutorials/tutorial3/pickuprubble_achiev.gwen

GWENDOLEN looks for program files on

1. The absolute path given in the configuration file —

/src/examples/gwendolen/tutorials/tutorial3/pickuprubble_achiev.gwen
above.

2. The path from the HOME environment variable (normally the user’s home
directory on Unix systems) —

/Users/lad/src/examples/gwendolen/tutorials/tutorial3/pickuprubble_achiev.gwen
above.

3. The path from the directory from which the JAVA program ail.mas.AIL
is called —

/Users/lad/Eclipse/mcapl/src/examples/gwendolen/tutorials/tutorial3/pickuprubble_achiev.gwen
above.

4. and the path from AJPF_HOME if that environment variable has been set —
not shown above.

These should provide sufficient information to appropriately correct the path
name.

6.4.2 Parsing Errors

Parsing errors typically arise because of failures to punctuate your program
correctly. E.g., failing to close brackets, missing out commas or semi-colons etc.

This is the output that arises if you remove the comma between possible_rubble (X, Y)
and “no_rubble(X, Y) in pickuprubble_achieve.gwen from Tutorial 3.

line 36:47 mismatched input ’~’ expecting SEMI

followed by the program nevertheless attempting to execute and failing to ter-
minate, so you will need to kill this.

The first line of this output is from the parser. This identifies the line number
(36) and character in the line (47) where the error was first noticed. It highlights
the character that has caused the problem, ~ and then makes a guess at what it
should have been. In this case the guess is incorrect. It suggests a semi-colon,
SEMI, when a comma is needed. This first line is frequently the most useful
piece of output for parsing errors so it is worthwhile watching for these kinds of
errors at the start when you try to execute a program.

Parsing errors can also cause plans to fail to apply. For instance, if we delete
the comma from between X and Y in the guard of the first plan of this program
we get the following output:

94 CHAPTER 6. THE GWENDOLEN PROGRAMMING LANGUAGE

line 44:51 extraneous input ’Y’ expecting CLOSE
ail.semantics.operationalrules.GenerateApplicablePlansEmptyProblemGoal [WARNING |main|3::
Warning no applicable plan for goal _aholding(rubble) ()

In this case we once again get some useful output from the parser giving us
the line and position in the line where the error occurred. It is followed by a
warning that no plan can be found to match the goal holding(rubble). That
is because this is the plan that didn’t parse.

Some Exercises

Experiment with adding and deleting syntax from your existing programming
files and get used to the kinds of parsing errors that they generate. Remember
that where a no applicable plan warning is generated you will often need to
manually stop the program execution.

6.4.3 Why isn’t my plan applicable?

As mentioned in section 6.3 sometimes a plan can fail because the agent has
not had time to process incoming beliefs and perceptions. We can get more
information about the agent’s operation by using log messages.

Add the lines

log.fine = ail.semantics.AILAgent

to the configuration file for the sample solution to the second exercise in sec-
tion 6.3.6. This is in

/src/examples/gwendolen/tutorials/tutorial3/answers/pickuprubble_ex5.2.ail

This generates a lot of output. If you are using Eclipse you may need to set
Console output to unlimited in Eclipse — Preferences — Run/Debug — Con-
sole.

The output should start

ail.semantics.AILAgent [FINE|main|4:03:27]: Applying Perceive
ail.semantics.AILAgent [FINE|main|4:03:27]: robot

After Stage StageE :
[square/2-square(1,1), square(1,2), square(1,3), square(1,4), square(1,5),
square(2,1), square(2,2), square(2,3), square(2,4), square(2,5),
square(3,1), square(3,2), square(3,3), square(3,4), square(3,5),
square(4,1), square(4,2), square(4,3), square(4,4), square(4,5),
square(5,1), square(5,2), square(5,3), square(5,4), square(5,5),]
(]
(]
source(self)::

* start||Truel|+!_aall_squares_checked()) || []

(1

6.4. TUTORIAL 4 — TROUBLESHOOTING 95

This tells us that the agent is applying the rule from the agent’s reasoning cycle
called Percieve (we will discuss the reasoning cycle in a later tutorial).

Then we get the current state of the agent. It is called, robot, and we have
a list of its beliefs (lots of beliefs about squares), then a list of goals (none at the
start because it hasn’t yet added the initial goal) and then a list of sent messages
(also empty) and then the intentions. In this case the initial intention is the
start intention and the intention is to acquire the goal all_squares_checked
which is an achievement goal (the _a at the start of the goal name) — again we
will cover intentions in a later tutorial.

A little further on in the output the agent adds this as a goal:

ail.semantics.AILAgent [FINE|main|4:10:45]: Applying Handle Add Achieve Test Goal with Event
ail.semantics.AILAgent [FINE|main|4:10:45]: robot

After Stage StageD :
[square/2-square(1,1), square(1,2), square(1,3), square(l,4), square(1,5), square(2,1), square(2,
[all_squares_checked/0-[_aall_squares_checked()]]

(1
source(self)::

* +!_aall_squares_checked() | |Truel lnpyO || []

* start||Truel||+!_aall_squares_checked() () || []
(]

So you can see that all_squares_checked now appears as a goal in the goal
list.

If you remove the action donothing from the first plan in
pickuprubble_ex5.2.gwen then you end up with repeating output of
the form:

ail.semantics.AILAgent [FINE|main|4:20:16]: Applying Generate Applicable Plans Empty with Problem
ail.semantics.AILAgent [FINE|main|4:20:16]: robot

After Stage StageB :
[at/2-at(5,5), ,
checked/2-checked(1,1), checked(1,2), checked(1,3), checked(1,4), checked(1,5), checked(2,1), che
holding/1-holding(rubble), ,
rubble/2-rubble(2,2), ,
square/2-square(1,1), square(1,2), square(1,3), square(1,4), square(1,5), square(2,1), square(2,’
[all_squares_checked/0-[_aall_squares_checked()]]
[]
source(self)::
* x!_aall_squares_checked() | |Truel lnpyO || []
* +!_aall_squares_checked() | |True| lnpy) || []
* start]||Truel||+!_aall_squares_checked() O || []

Where x!_aall_squares_checked()||Truel|npy()||[] indicates that
there is some problem with the goal and the agent is seeking to handle this.

96 CHAPTER 6. THE GWENDOLEN PROGRAMMING LANGUAGE

Finding where this problem first occurred in all the output is something of a
chore though it can sometimes be possible to search forwards through the out-
put for the first occurrence of x!_ or for the Warning message. Here we see the
agent is in the following state:

ail.semantics.operationalrules.GenerateApplicablePlansEmptyProblemGoal [WARNING |main|4::
ail.semantics.AILAgent [FINE|main|4:20:15]: Applying Generate Applicable Plans Empty wi
ail.semantics.AILAgent [FINE|main|4:20:15]: robot

After Stage StageB :

[at/2-at(5,5), ,

checked/2-checked(1,1), checked(1,2), checked(1,3), checked(1,4), checked(1,5), checke
rubble/2-rubble(2,2), rubble(5,5), ,

square/2-square(1,1), square(1,2), square(1,3), square(1,4), square(1,5), square(2,1),
[all_squares_checked/0O-[_aall_squares_checked()]]

(]
source(self)::

* +!_aall squares_checked() | [True| lnpy) |1 []

* start||Truel|+!_aall_squares_checked() () || []
[source(self)::

* +checked(5,5) | |Truel lnpy O |1 []
, source(percept)::

* start||Truel|-rubble(5,5) O || []
, source(percept)::

* start||Truel [+holding(rubble) O || []
]

Here we see the agent believes it is at square (5, 5). It believes it has checked all
the squares. But it does not yet believe it is holding any rubble. It does have
an intention to hold rubble:

source(percept) : :
* start||Truel |+holding(rubble) () || []

but it hasn’t processed this yet and so hasn’t added holding(rubble) to its
belief base.

As you learn more about GWENDOLEN, the reasoning cycle and intentions
you will be able to get more information from this output. However at the
moment it is important to note it can be useful for seeing exactly what is in the
agent’s belief base and goal base at any time.

Some Exercises

Run some of your other programs with ail.semantics.AILAgent set at log
level fine and see if you can get a feel for how an agents beliefs and goals
change as the program executes.

Note: If you add

6.4. TUTORIAL 4 — TROUBLESHOOTING 97

pretty = gwendolen

you will get a slightly different presentation of the output in a more natural
language format. You may want to experiment with which style of output. you
prefer.

6.4.4 Tracing the execution of reasoning rules

Another logger that can be useful is the one that traces the application of
Prolog reasoning rules. This can be also be useful for working out why a plan
that should apply does not. Try adding the line

log.fine = ail.syntax.EvaluationAndRuleBaselterator

to pickuprubble_achieve.ail in section 6.3. If you now run the program you
will get a lot of information about the unification of the reasoning rule starting

with:

ail...[FINE|...]: Checking unification of holding(rubble) () with unifier []

ail...[FINE|...]: Checking unification of square_to_check(X,Y)() with unifier []

ail...[FINE|...]: Looking for a rule match for square_to_check(X0,Y0) :- (possible_rubble(X0,Y0) & not (no_:
ail...[FINE|...]: Checking unification of square_to_check(X,Y)() with unifier []

ail...[FINE|...]: Checking unification of possible_rubble(X0,Y0) with unifier [X-_VC1, X0-_VC1, Y-_VC2, YO-
ail...[FINE|...]: Checking unification of possible_rubble(X0,Y0) and <possible_rubble(1,1), >
ail...[FINE|...]: Unifier for possible_rubble(X0,Y0) and <possible_rubble(1,1), > is [X-1, X0-1, Y-1, Y0-1]
ail...[FINE|...]: Checking unification of no_rubble(X0,Y0) with unifier [X-1, X0-1, Y-1, YO-1]
ail...[FINE|...]: square_to_check(X,Y) () matches the head of a rule.

ail...[FINE|...]: Rule instantiated with [X-1, X0-1, Y-1, YO-1]

ail...[FINE|...]: Checking unification of square_to_check(X,Y)() with unifier []

ail...[FINE|...]: Looking for a rule match for square_to_check(X0,Y0) :- (possible_rubble(X0,Y0) & not (no_
ail...[FINE|...]: Checking unification of square_to_check(X,Y)() with unifier []

ail...[FINE|...]: Checking unification of possible_rubble(X0,Y0) with unifier [X-_VC3, X0-_VC3, Y-_VC4, YO-
ail...[FINE|...]: Checking unification of possible_rubble(X0,Y0) and <possible_rubble(1,1), >
ail...[FINE|...]: Unifier for possible_rubble(X0,Y0) and <possible_rubble(1,1), > is [X-1, X0-1, Y-1, Y0-1]
ail...[FINE|...]: Checking unification of no_rubble(X0,Y0) with unifier [X-1, X0-1, Y-1, YO-1]
ail...[FINE|...]: square_to_check(X,Y) () matches the head of a rule.

ail...[FINE|...]: Rule instantiated with [X-1, X0-1, Y-1, Y0-1]
ail.mas.DefaultEnvironment [INFO|main|4:44:40]: robot done move_to(1,1)

This is the selection process for the first plan in the program. We discuss it
line by line.

e First it unifies with the achieve goal holding(rubble). This does not
instantiate any variables so there is an empty unifier, [].

e Then it checks the plan guard which is B square_to_check(X, Y).

e Since there is nothing in the belief base about this but there is a reasoning
rule it now looks for a unifier between these. Notice how it has renamed
the variables in the rule to X0 and YO — this is to avoid errors arising from
false unifications.

98

CHAPTER 6. THE GWENDOLEN PROGRAMMING LANGUAGE

It then attempts to unify B square_to_check(X, Y) with the head of this
rule.

As a result of this unification X and X0 are unified and Y and YO are unified.
For technical reasons these are unified via variable clusters, VC1 and VC2
respectively.

It then checks the body of the rule starting with looking for some-
thing to unify possible_rubble(X0, Y0). This unifies with the belief
possible_rubble(1l, 1).

The unifier is reported showing all the variables are now unified with the
number 1.

The system then checks to see if no_rubble (X0, YO) unifies with anything
using this unifier. The rule will fail if it does match because this predicate
was negated.

It doesn’t match so the rule has matched.
With everything unified to 1.

The process then repeats because of the way the reasoning rule processes
transitions.

If we look later in the trace we can see the same process being run after
no_rubble(1, 1) has been added to the belief base.

ail...
ail...
ail..
ail...
ail...
ail...
ail...
ail..
ail...
ail...
ail...
ail...
ail..
ail...
ail...
ail...

[FINE|...]: Checking unification of square_to_check(X,Y) () with unifier []
[FINE|...]: Looking for a rule match for square_to_check(X0,Y0) :- (possible_rub
.[FINE|...]: Checking unification of square_to_check(X,Y)() with unifier []
[FINE|...]: Checking unification of possible_rubble(X0,Y0) with unifier [X-_VC5,
[FINE|...]: Checking unification of possible_rubble(X0,Y0) and <possible_rubble(
[FINE|...]: Unifier for possible_rubble(X0,Y0) and <possible_rubble(1,1), > is [
[FINE|...]: Checking unification of no_rubble(X0,Y0) with unifier [X-1, X0-1, Y-
.[FINE|...]: Checking unification of no_rubble(X0,Y0) and <no_rubble(1l,1), >
[FINE|...]: Unifier for no_rubble(X0,Y0) and <no_rubble(1,1), > is [X-1, X0-1, Y
[FINE|...]: Checking unification of possible_rubble(X0,Y0) with unifier [X-_VC5,
[FINE|...]: Checking unification of possible_rubble(X0,Y0) and <possible_rubble(
[FINE|...]: Unifier for possible_rubble(X0,Y0) and <possible_rubble(3,3), > is [
.[FINE|...]: Checking unification of no_rubble(X0,Y0) with unifier [X-3, X0-3, Y-
[FINE|...]: Checking unification of no_rubble(X0,Y0) and <no_rubble(1,1), >
[FINE|...]: square_to_check(X,Y) () matches the head of a rule.
[FINE|...]: Rule instantiated with [X-3, X0-3, Y-3, Y0-3]

Here after a unifier is found for no_rubble(1, 1) that unifier for the
rule has failed and the process backtracks to look for a different unifier for
possible_rubble(X0, YO) in this instance finding (3, 3) and this time the rule
succeeds.

6.5. TUTORIAL 5 — EVENTS AND INTENTIONS 99

6.4.5 Conclusion

Hopefully this tutorial has given you some basic tools for tracking errors in your
GWENDOLEN programs. Although the logging facilities generate a lot of output
that can be tiresome to read through, they are occasionally very useful for
working out what is going wrong in a program. We will look at more debugging
possibilities after we have covered the GWENDOLEN reasoning cycle in a tutorial.

6.5 Tutorial 5 — Events and Intentions

This is the fifth in a series of tutorials on the use of the GWENDOLEN program-
ming language. This tutorial looks in more depth at the GWENDOLEN concepts
of Event and Intention. It is primarily theoretical but these will be important
concepts for future tutorials.

For this tutorial we will be working with files from previous tutorials. You
may wish to create a separate folder, tutorial5b for this work and copy files
into it. Remember to update the paths in your configuration files if you do so.

6.5.1 AIL — The Agent Infrastructure Layer

GWENDOLEN is implemented using the AIL Toolkit. This is mostly irrelevant
to the programming of GWENDOLEN agents, however it can be useful in under-
standing some of the logging output that you may wish to use for debugging,
since the logging is based around the underlying JAvVA data structures rather
than their specific implementation in GWENDOLEN.

The following discussion of intentions in the AIL is taken
from [Dennis et al., 2011].

6.5.2 Intentions

AIL’s most complex data structure is that which represents an intention. BDI
languages use intentions to store the intended means for achieving goals — this
is generally represented as some from of deed stack (deeds include actions, belief
updates, and the commitment to goals). Intention structures in BDI languages
may also maintain information about the (sub-)goal they are intended to achieve
or the event that triggered them. In AIL, we aggregate this information: an
intention becomes a stack of tuples of an event, a guard, a deed, and a unifier.
This AIL intention data structure is most simply viewed as a matrix structure
consisting of four columns in which we record events (new perceptions, goals
committed to and so forth), deeds (a plan of future actions, belief updates, goal
commitments, etc.), guards (which must be true before a deed can be performed)
and unifiers. These columns form an event stack, a deed stack, a guard stack,
and a unifier stack. Rows associate a particular deed with the event that has
caused the deed to be placed on the intention, a guard which must be believed
before the deed can be executed, and a unifier. New events are associated with
an empty deed, e.

1000 CHAPTER 6. THE GWENDOLEN PROGRAMMING LANGUAGE

Example The following shows the full structure for a single intention to clean
a room. We use a standard BDI syntax: !g to indicate the goal g, and +!g to
indicate the commitment to achieve that goal (i.e., a new goal that g becomes
true is adopted). Constants are shown starting with lower case letters, and
variables with upper case letters.

event [guard [deed [unifier
+!clean() | dirty(Room) | +!goto(Room) Room = rooml
+!clean() T +!vacuum(Room) Room = roomil

This intention has been triggered by a desire to clean — the commitment to the
goal clean() is the trigger event for both rows in the intention. An intention
is processed from top to bottom so we see here that the agent first intends to
commit to the goal goto(Room), where Room is to be unified with room1. Tt
will only commit to this goal if it believes the (guard) statement, dirty(Room).
Once it has committed to that goal it then commits to the goal vacuum(Room,).
In many languages the process of committing to a goal causes an expansion of
the intention stack, pushing more deeds on it to be processed. So goto(Room)
may be expanded before the agent commits to vacuuming the room. In which
case the above intention might become

event [guard [deed [unifier

+!goto(Room) T +!planRoute (Room, Route) Room = rooml
+!goto(Room) T +!follow(Route) Room = rooml
+!goto(Room) | T +lenter (Room) Room = rooml
+!clean() T +!vacuum(Room) Room = rooml

At any moment, we assume there is a current intention which is the one
being processed at that time. The function Sy (implemented as a method
in AIL) may be used to select an intention. By default, this chooses the first
intention from a queue, but this choice may be overridden for specific languages
and applications. Intentions can be suspended which allows further heuristic
control. A suspended intention is, by default, not selected by Sint. Typically an
intention will remain suspended until some trigger condition occurs, such as a
message being received. Many operational semantic rules (such as those involved
with perception) resume all intentions — this allows suspension conditions to
be re-checked.

6.5.3 Events

Events are things that occur within the system to which an agent may wish to
react. Typically we think of these as changes in beliefs or the new commitment
to goals. In many (though not all) programming languages, events trigger plans
(i.e., a plan might selected for execution only when the corresponding event has
taken place).

In AIL there is a special event, ‘start’, that is used to start off an intention
which is not triggered by anything specific. This is mainly used for the initial
goals of an agent — the intention begins as a start intention with the deed to
commit to a goal. In some languages the belief changes caused by perception

6.5. TUTORIAL 5 — EVENTS AND INTENTIONS 101

are also treated in this way. Rather than being added directly to the belief base,
in AIL such beliefs are assigned to intentions with the event start and then
added to the belief base when the intention is actually executed.

6.5.4 Intentions in GWENDOLEN
Let us look back at some of the logging output generated in section 6.4

ail.semantics.AILAgent [FINE|main|4:10:45]: Applying Handle Add Achieve Test Goal with Event
ail.semantics.AILAgent [FINE|main|4:10:45]: robot

After Stage StageD :
[square/2-square(1,1), square(1,2), square(1,3), square(1,4), square(1l,5), square(2,1), square(2,
[all_squares_checked/0O-[_aall_squares_checked()]]

(1
source(self)::

* +!_aall_squares_checked() | |True| lnpy) || []

* start||Truel| |+!_aall_squares_checked()) || []
(1

In the above agent state you can see the belief base (beliefs about squares),
goal base (all_squares_checked), the empty sent messages box and then the
current intention. The main addition is the record of a source for the intention
(in this case self — which means the agent generated the intention itself rather
than getting it via perception).

As you can see GWENDOLEN uses the start event mentioned above for new
intentions. In this case it was the intention to commit to the achieve goal
I all_squares_checked . When the goal was committed to it became an event and
was placed as a new row on the top of the intention. The row associated with
the start event remains on the intention because this will force the agent to
check if the goal is achieved when it reaches that row again. A special deed has
been used npy () which stands for no plan yet. This means that although the
goal has been committed to the agent has not yet looked for an applicable plan
for achieving the goal.

If you run pickuprubble_ex5.2.gwen with logging for
ail.semantics.AILAgent set to fine then you will later see the intention
become:

source(self)::
* +!_aall_squares_checked() | |True| Imove_to(X,Y) () || [X-1, X0-1, Y-1, YO0-1]
* start||Truel||+!_aall_squares_checked() O || []

when an applicable plan is found the intention becomes

source(self)::
* +!_aall_squares_checked() | |Truel| Imove_to(X,Y) OO || [X-1, X0-1, Y-1, Y0-1]
+!_aall_squares_checked() | |Truel |do_nothing() | | [X-1, X0-1, Y-1, YO-1]
* start||Truel|+!_aall_squares_checked()) || []

102 CHAPTER 6. THE GWENDOLEN PROGRAMMING LANGUAGE

So now the intention is to first take a move_to action in order to get to (1, 1) and
then make a do_nothing action and then check if the goal has been achieved.

After the agent performs the move action new information comes in from
perception.

source (percept) : :
* start||Truel [+at(1,1) 0110

[source(self)::
* +!_aall_squares_checked() | |Truel |do_nothing () | | []
* start||Truel |+!_aall_squares_checked() () || []

]

The first intention in this list is the current intention which is the one the agent
will handle next. In this case it is a new intention (indicated by the start event)
and the intention is to add the belief, at (1, 1). The source of this intention is
noted as percept (i.e., perception) rather than the agent itself.

Since the agent hadn’t finished processing the existing intention this is now
contained in a list of other intentions.

When the agent adds the new belief the current intention becomes empty,
but GWENDOLEN actually adds yet another new intention indicating that a new
belief has been adopted which allows the agent to react to this with a new plan.
So the agent’s intentions become

source (percept) : :

[source(self)::
* +!_aall_squares_checked() | |Truel |do_nothing() | | []
* start||Truel [+!_aall_squares_checked() O || []

, source(self)::
* +at(1,1) | [Truel lnpyO | []

]

The current intention is empty, and there are now two intentions waiting for
attention. The empty intention will be removed as the agent continues process-
ing.

GWENDOLEN works on each intention in turn handling the top row on the
intention. So the very first intention becomes the current intention again in due
course:

source(self)::
* +!_aall_squares_checked() | |True| |do_nothing() || []
* start||Truel [+!_aall_squares_checked() O || []

[source(self)::
* +at(1,1)||Truel InpyO |10

6.6. TUTORIAL 6 — MANIPULATING INTENTIONS AND DROPPING GOALS103

After the agent has done nothing, therefore, the new intention triggered by
the new belief at (1, 1) becomes the current intention:

source(self)::
* +at(1,1) | ITruel lnpy O 11 []

[source(self)::
* start||Truel |+!_aall_squares_checked() O || []
]

If there was no plan for reacting to the new belief the agent would just delete
the intention but since there is a plan the intention becomes

source(self)::
* +at(X0,Y0) | |Truel | +checked (X0,Y0) O || [X-1, X0-1, Y-1, Y0-1]

[source(self)::
* start]||Truel||+!_aall_squares_checked() () || []
]

And so on.

Exercises

Run some of your existing programs with logging of ail.semantics.AILAgent
set to fine and see if you can follow how the agent is handling events, intentions
and plans.

6.6 Tutorial 6 — Manipulating Intentions and
Dropping Goals

This is the sixth in a series of tutorials on the use of the GWENDOLEN program-
ming language. This tutorial covers finer control of intentions by suspending
and locking them. It also looks at how goals can be dropped.

Files for this tutorial can be found in the mcapl distribution in the directory

src/examples/gwendolen/tutorials/tutorial6.

6.6.1 Wait For: Suspending Intentions

Recall the sample answer to the second exercise in section 6.3 in which we
had to introduce a “do nothing” action in order to delay the replanning of an
achievement goal. In the code in Example 18 we use, instead some new syntax
xchecked(X, Y) which means wait until checked(X,Y) is true before continuing.

We have adapted the program so that after moving to the square (X, Y)
the agent waits until it believes it has checked that square. Then we delay the
addition of that belief until after the agent as lifted rubble.

104 CHAPTER 6. THE GWENDOLEN PROGRAMMING LANGUAGE

Example 18
GWENDOLEN 1
2
:name: robot 3
4
:Initial Beliefs: 5
6
square(1l, 1) square(l, 2) square(l, 3) square(l, 4) square(l, 5) 7
square (2, 1) square(2, 2) square(2, 3) square(2, 4) square(2, 5) 8
square(3, 1) square(3, 2) square(3, 3) square(3, 4) square(3, 5) 9
square(4, 1) square(4, 2) square(4, 3) square(4, 4) square(4, 5) 10
square(5, 1) square(5, 2) square(5, 3) square(5, 4) square(5, 5) 11
12
:Reasoning Rules: 13
14
square_to_check (X, Y) :— square(X, Y), “checked (X, Y); 15
no_rubble_in (X, Y) :— checked(X, Y), no_rubble(X, Y); 16
all_squares_checked :— 17
“square_to_check (X, Y), “holding(rubble), at(2, 2); 18
19
:Initial Goals: 20
21
all_squares_checked [achieve] 22
23
:Plans: 24
25
+lall_squares_checked [achieve] : 26
{B square_to_-check (X, Y), "B holding(rubble)} <« 27
move_to (X, Y), xchecked (X, Y); 28
+lall_squares_checked [achieve] : {B holding(rubble)} <« 29
move_to(2, 2), drop; 30
31
+rubble(X, Y) : {"B at(2, 2)} <« lift_rubble , 4+checked(X, Y); 32
33
+at(X, Y) : {"B rubble(X, Y)} <« +4checked (X, Y); 34
+at(2, 2) : {True} «+ +checked(2, 2); 35

If you run this program with logging for ail.semantics.AILAgent, you
will see that the intention is marked as SUSPENDED when the wait for deed is
encountered.

SUSPENDED

source(self)::
* +1_aall_squares_checked() | |Truel| |+*...checked(1,1) O || [X-1, Y-1]
* start||Truel|+!_aall_squares_checked() () || []

Once an intention is suspended it can not become the current intention until it
is unsuspended. In the case of the wait for command this happens when the

6.6. TUTORIAL 6 — MANIPULATING INTENTIONS AND DROPPING GOALS105

predicate that is waiting for is believed. Below you can see how this happens
when checked(1, 1) is added to the belief base.

ail.semantics.AILAgent [FINE|main|4:01:48]: robot

After Stage StageC :

[at/2-at(1,1), ,

square/2-square(1,1), square(1,2), square(1,3), square(1,4), square(1,5), square(2,1), square(2,:
[all_squares_checked/0O-[_aall_squares_checked()]]

(]
source(self)::
* +at(X0,Y0) | |Truel |+checked (X0,Y0) O | | [X-1, X0-1, Y-1, YO-1]
[SUSPENDED
source(self)::
* +!_aall_squares_checked() | |Truel |+*...checked(1,1) O || [X-1, Y-1]
* start]||Truel||+!_aall_squares_checked()) || []
]

ail.semantics.AILAgent [FINE|main|4:01:48]: Applying Handle Add Belief with Event
ail.semantics.AILAgent [FINE|main|4:01:48]: robot

After Stage StageD :

[at/2-at(1,1), ,

checked/2-checked(1,1), ,

square/2-square(1,1), square(1,2), square(1,3), square(1,4), square(1,5), square(2,1), square(2,:
[all_squares_checked/0-[_aall_squares_checked()]]

[]

source(self)::

[source(self)::
* +!_aall_squares_checked() | |True| |+*...checked(1,1) O || [X-1, Y-1]
* start||Truel||+!_aall_squares_checked()) || []

, source(self)::
* +checked(1,1) | |Truel |npy) | | []

]

The wait for command is particularly useful in simulated or physical envi-
ronments where actions may take some time to complete. It allows the agent
to continue operating (e.g., performing error monitoring) while waiting until it
recognises that an action has finished before continuing with what it was doing.

6.6.2 Lock and Unlock: Preventing interleaving of Inten-
tions

In the code in Example 19 we have complicated our agent’s situation a little.
This agent has to explore squares (0, 0) to (0, 5) as well as the squares it was

106 CHAPTER 6. THE GWENDOLEN PROGRAMMING LANGUAGE

exploring previously. It also has to switch warning lights on and off before and
after it lifts rubble. Lastly if a warning sounds it must stop searching and move
to square (0, 0) until it is able to continue searching again.

We use some new syntax here.

e At line 34 we have an empty plan. This can be useful in situations where
we don’t want to raise a “no plan” warning but we don’t want the agent
to actually do anything.

e At line 36 we have a plan triggered by —warning. This is a plan that
is triggered when something is no longer believed (in this case that the
warning sound can no longer be heard).

e At line 37 we include the deed, —search_mode in a plan. This is an in-
struction to remove a belief.

The agent in Example 19 uses a belief, search_mode to control whether it
is actively searching squares or whether it is returning to to the “safe” square
(0,0) in order to wait for the warning to switch off.

Run this program and see if you can spot a problem with its execution.

Hopefully you observed an output something like:

ail.mas.DefaultEnvironment [INFO|main|10:31:44]: robot done move_to(0,1)
ail.mas.DefaultEnvironment [INFO|main|10:31:44]: robot done move_to(0,2)
gwendolen.tutorials.SearchAndRescueEnv [INFO|main|10:31:44]: Warning is Sounding
ail.mas.DefaultEnvironment [INFO|main|10:31:44]: robot done warning_ lights_on
ail.mas.DefaultEnvironment [INFO|main|10:31:44]: robot done move_to(0,0)
gwendolen.tutorials.SearchAndRescueEnv [INFO|main|10:31:44]: Warning Ceases
ail.mas.DefaultEnvironment [INFO|main|10:31:44]: robot done lift_rubble
ail.mas.DefaultEnvironment [INFO|main|10:31:44]: robot done warning lights_off
ail.mas.DefaultEnvironment [INFO|main|10:31:44]: robot done move_to(2,2)

So before the robot lifts the rubble at square (0, 2) it has moved to square (0, 0)
because the warning has sounded. This is happening because GWENDOLEN exe-
cutes the top deed from each intention in turn. So it executes warning_lights_on
from the intention triggered by finding rubble, then it moves to (0, 0) from the
intention triggered by hearing the warning and then it lifts the rubble (next in
the intention to do with seeing the rubble).

This situation often arises where there are a sequence of deeds that need to
be performed without interference from other intentions such as moving to the
wrong place. To overcome this GWENDOLEN has a special deed, .lock which
“locks” an intention in place and forces GWENDOLEN to execute deeds from
that intention only until the intention is unlocked. The syntax +.lock locks an
intention and the syntax —.lock unlocks an intention.

Exercise Add a lock and an unlock to pickuprubble_lock in order to force
it to pick up the rubble before obeying the warning.

NB. As usual you can find a sample solution in
/src/examples/gwendolen/tutorials/tutorial6/answers

6.6. TUTORIAL 6 — MANIPULATING INTENTIONS AND DROPPING GOALS107

Example 19
GWENDOLEN 1
2
:name: robot 3
4
:Initial Beliefs: 5
6
square (0, 0) 7
square (0, 1) square(0, 2) square(0, 3) square(0, 4) square(0, 5) 8
square(1l, 1) square(l, 2) square(l, 3) square(l, 4) square(l, 5) 9
square(2, 1) square(2, 2) square(2, 3) square(2, 4) square(2, 5) 10
square(3, 1) square(3, 2) square(3, 3) square(3, 4) square(3, 5) 11
square (4, 1) square(4, 2) square(4, 3) square(4, 4) square(4, 5) 12
square(5, 1) square(5, 2) square(5, 3) square(5, 4) square(5, 5) 13
14
search_mode 15
16
:Reasoning Rules: 17
18
square_to_check (X, Y) :— square(X, Y), “checked (X, Y); 19
no_rubble_in (X, Y) :— checked(X, Y), no_rubble(X, Y); 20
all_squares_checked :— 21
“square_to_check (X, Y), “holding(rubble), at(2, 2); 22
23
:Initial Goals: 24
25
all_squares_checked [achieve] 26
27
:Plans: 28
29
+lall_squares_checked [achieve] : {” B search_mode} «+ 30
*search_mode ; 31
+lall_squares_checked [achieve] : 32
{B search_mode, B square_to_check (X, Y), "B holding(rubble)} 33
move_to (X, Y), xchecked (X, Y); 34
+lall_squares_checked [achieve] : {B holding(rubble)}; 35
36
—warning: {True} < +search_mode; 37
+warning: {True} < —search_mode, move_to(0, 0); 38
39
+rubble (X, Y) : {"B at(2, 2)} « 40
warning_lights_on , 41
lift_rubble , 42
warning_lights_off , 43
move_to (2, 2), 44
drop , 45
+checked (X, Y); 46
47
+at(X, Y) : {"B rubble(X, Y)} < +checked(X, Y); 48

+at(2, 2) : {True} < +checked(2, 2); 49

108 CHAPTER 6. THE GWENDOLEN PROGRAMMING LANGUAGE

6.6.3 Dropping Goals

As a final note as well as dropping beliefs as a deed in plans (as we are doing
with warning and search_mode in the programs here, it is possible to drop goals
with the syntax —!goalname [goaltype] - e.g., —! all_squares_checked [achieve].

Goal drops can appear in the deeds of plans but can not! be used to trigger
plans.

Exercise Write a program for picking up and moving rubble which, on hearing

the warning sound, drops all its goals and leaves the area (use the action leave).
NB. As usual you can find a sample solution in

/src/examples/gwendolen/tutorials/tutorial6/answers

6.7 Tutorial 7— The Gwendolen Reasoning Cy-
cle

This is the seventh in a series of tutorials on the use of the GWENDOLEN pro-
gramming language. This tutorial covers the GWENDOLEN Reasoning Cycle,
looks at some simple ways to use a Java Debugger to debug GWENDOLEN pro-
grams and sets a more significant programming challenge than previous tutori-
als.

Files for this tutorial can be found in the mcapl distribution in the directory

src/examples/gwendolen/tutorials/tutorial?.

6.7.1 The GWENDOLEN Reasoning Cycle

The execution of a GWENDOLEN agent is governed by a reasoning cycle. This is
a set of stages the agent passes through, each stage is governed by a set of rules
and the agent may choose one to execute in that stage. The reasoning cycle is
shown in figure 6.2

Stage A A GWENDOLEN agent starts execution in stage A. In this stage the
agent selects an intention to be the current intention. GWENDOLEN will
cycle through the set of intentions ignoring any that are suspended un-
til the current intention is locked in which case it will be reselected. If
there are no unsuspended intentions GWENDOLEN will sleep the agent.
In multi-agent contexts this means the agent will not do anything until
GWENDOLEN detects that something has changed which may mean the
agent now has something to do. In single agent contexts the program
stops when the agent sleeps. At this stage GWENDOLEN also cleans up
any empty intentions.

Stage B The system generates all possible plans for the current intention - if
the intention has already been planned then these are simply to continue

Lat least not at present.

6.7. TUTORIAL 7 — THE GWENDOLEN REASONING CYCLE 109

Are

t A
Stage there any Stage B
Select a Current Intention unsuspenc:ed Yes Find all Plans Applicable to
or Sleep the Agent non-empty the Current Intention
intentions?
St: F Stage C
age N Is the Current 9
o i " .
Process new Messages Intention Pick a Plan and Apply it
empty?
Yes
/ "
Stage E Stage D
Get new Perception and Execute the Top Deed on the
Messages Current Intention

Figure 6.2: The GWENDOLEN Reasoning Cycle

processing the intention. If the agent can’t find a plan then it deletes the
intention unless it has been triggered by a goal in which case it registers
that there is a problem with the goal and generates a warning.

Stage C GWENDOLEN has a list of plans. It selects the first one in the list and
applies it to the current intention.

Stage D GWENDOLEN executes the top deed on the intention. This might be
taking an action, adding or removing a goal, adding or removing a belief,
locking or unlocking the intention or suspending the intention using “wait

9

for”.

Stage E GWENDOLEN requests that the agent’s environment send it a list of
percepts (things the agent can detect) and messages. The messages are
stored for processing in the agent’s inbox. The percepts are compared
with the agent’s beliefs. If a percept is new then an intention is created
to add a belief corresponding to the percept. If a previous percept can no
longer be perceived then an intention is created to delete the belief.

Stage F The agent sorts though its inbox and converts the messages into new
intentions.

The actual code for the reasoning cycle can be found in
gwendolen.semantics.GwendolenRC. Fach of the various rules that can
be used in in a stage is a java class and they can all be found in the package
ail.semantics.operationalrules.

110 CHAPTER 6. THE GWENDOLEN PROGRAMMING LANGUAGE

6.7.2 Using Java Debuggers to Debug GWENDOLEN pro-
grams

Since the GWENDOLEN reasoning cycle is implemented in JAVA it is possible
to use a JAVA debugger to debug GWENDOLEN programs. In particular it can
be useful to use a JAVA debugger to step through a GWENDOLEN program one
stage of the reasoning cycle at a time watching to see how the state of the agent
changes at each stage.

It is outside the scope of these tutorials to explain the use of JAVA debuggers.
There are many out there and one is built into most IDE’s including Eclipse.

In our experience it is particularly useful when debugging in this way to place
breakpoints in the JAVA ail.semantics.AILAgent class which is the generic
class supporting agents in the Agent Infrastructure Layer (upon which GWEN-
DOLEN is built). In particular ail.semantics.AILAgent has a method called
reason which controls looping through an agent’s reasoning cycle. We recom-
mend placing such a break point either after while(! RC.stopandcheck())
which is the top level loop through the reasoning cycle or at rule.apply(this)
which is the moment that the outcome of a rule is calculated.

Exercise Find a JavA debugger (e.g., the one shipped with Eclipse) and
discover how to set breakpoints using the debugger. Set a breakpoint at
rule.apply(this) in the reason() method in ail.semantics.AILAgent (you
can find this in the src/classes/ail/semantics directory). Run one of your
programs with this breakpoint in place and see what happens and experiment
in seeing what information you can discover about the agent state.

6.7.3 Programming Exercise

This is a fairly major programming exercise using the GWENDOLEN constructs
you have already been introduced to. As usual a sample solution can be found
in the answers subdirectory for tutorial?.

In examples/gwendolen/tutorials/tutorial? you will find a new envi-
ronment, SearchAndRescueDynamicEnv. java. This extends the previous search
and rescue example so that the environment may change with the agent directly
taking any action. The following describes the environment.

The environment consists of a 5x5 grid of squares. The squares in the grid
are numbered from (0, 0) (bottom left) to (4, 4) (top right). On this grid are

e Exactly four humans which may start in any square on the grid. Some of
these humans may be injured.

e Exactly one robot which starts in the bottom left corner of the grid.
e Up to four buildings which may appear in any square on the grid.

e Up to four bits of rubble which may appear in any square on the grid.
Any human on the same square as some rubble at the start is injured
and is hidden under the rubble.

6.7. TUTORIAL 7 — THE GWENDOLEN REASONING CYCLE 111

At any point the following may happen:

e A human who is not injured, in a building, or has been directed to
leave the area may move one square in any direction.

e A building may collapse into rubble.
The robot has the following actions available to it:

back_left If possible the robot will move one square diagonally down the grid
and to the left. If not possible the robot will do nothing.

back If possible the robot will move one square down the grid. If not possible
the robot will do nothing.

back_right If possible the robot will move one square diagonally down the grid
and to the right. If not possible the robot will do nothing.

left If possible the robot will move one square to the left. If not possible the
robot will do nothing.

right If possible the robot will move one square to the right. If not possible
the robot will do nothing.

forward_left If possible the robot will move one square diagonally forward in
the grid and to the left. If not possible the robot will do nothing.

forward If possible the robot will move one square forward in the grid. If not
possible the robot will do nothing.

forward_right If possible the robot will move one square diagonally forward
in the grid and to the right. If not possible the robot will do nothing.

lift_rubble If the robot is not currently holding rubble then it will pick up one
piece of rubble in the square revealing anything underneath it.

drop_rubble If the robot is holding rubble then it will drop it in the current
square, injuring and concealing any humans if they are in the square.

assist_human If there is an injured human in the square then the robot treats
them with first aid. After this the human is not injured.

direct_humans If there are any humans in the square then the robot tells them
to leave the area immediately.

check_building If there is a building in the square then the robot looks inside
it to see if there is a human there.

Other Actions Other standard actions such as print and do_nothing are also
available.

The robot may perceive the following things:

112 CHAPTER 6. THE GWENDOLEN PROGRAMMING LANGUAGE

holding_rubble perceived if the robot has rubble in its hands.

rubble(X, Y) perceived if the robot sees some rubble in square (X, Y). The
robot can see the square it is in and one square in each direction.

building(X, Y) perceived if the robot sees a building in square (X, Y). The
robot can see the square it is in and one square in each direction.

injured_human(X, Y) perceived if the robot sees an injured human in square
(X, Y). The robot can see the square it is in and one square in each
direction.

uninjured_human(X, Y) perceived if the robot sees an uninjured human in
square (X, Y). The robot can see the square it is in and one square in each
direction.

The following also hold true:

e If a human is in a building when it collapses then they will be injured
and concealed by the rubble.

e If a human is in a building then the robot can not see them unless it
checks the building.

Humans exhibit the following behaviour:

e injured humans do not move.

e directed humans move diagonally down and left until they leave the grid.
They do not enter buildings.

e If a human is not directed and finds itself in a square with a building
then it will enter the building and stay there.

e Humans which are not injured, directed or in a building will move at
random around the grid.

Recording and Replaying AIL Programs

We will cover recording and replaying AIL programs in more detail in a later
tutorial. However some of the challenges from this tutorial will arise because of
the difficulty in reproducing a specific sequence of events in the environment.
In the AIL configuration file you can put the line

ajpf.record = true

This will record the sequence of events that occur in the environment (and
store them in a file called record.txt in the folder records). If you want to
replay the last recorded run of the problem then replace

ajpf.record = true
with

ajpf.replay = true

6.8. TUTORIAL 8 — MULTI-AGENT SYSTEMS AND COMMUNICATION113

Exercise

Write a GWENDOLEN program that will get the robot to search the grid until
all humans have been found, assisted if injured, and directed to leave.

6.8 Tutorial 8 — Multi-Agent Systems and Com-
munication

This is the eighth in a series of tutorials on the use of the GWENDOLEN program-
ming language. This tutorial covers the use of communication in GWENDOLEN
and also looks at setting up a multi-agent system.

Files for this tutorial can be found in the mcapl distribution in the directory

src/examples/gwendolen/tutorials/tutorial8.

6.8.1 Pick Up Rubble (Again)

You will find a GWENDOLEN program in the tutorial directory called
simple mas.gwen. Its contents should look like Example 20.

This is very similar to the first program in section 6.2. However there are
now two agents, lifter and medic. As in the program in section 6.2, the lifter
robot moves to square (5, 5) and lifts the rubble there. However if he sees a
human he performs a special kind of action which is a send action. This sends
a message to the medic agent asking it to perform assist_human(X, Y). When
the medic receives a perform instruction it converts it into a perform goal and
if it has a goal to assist a human it moves to their square and assists them.

You can run this program using simple_mas.ail. It uses a new environment
SearchAndRescueMASEnv. java which is similar to SearchAndRescueEnv. java.

Syntax

A send action starts with the constant .send. It then has three arguments:
1. The first is the name of the agent to whom the message is to be sent,
2. the second is a performative, and
3. the last is a logical term.

The performative can be one of :tell, :perform or :achieve. GWENDOLEN
attaches no particular meaning to these performatives but they are often used
to tell an agent to believe something, ask an agent to adopt a perform goal or
ask an agent to adopt an achieve goal.

When a message is received GWENDOLEN turns it into an event:
.received(P, F) were P is the performative and F is the logical term. Since
many GWENDOLEN programs interpret :tell, :perform and :achieve as de-
scribed above, they often include the following three plans

114 CHAPTER 6. THE GWENDOLEN PROGRAMMING LANGUAGE

Example 20
GWENDOLEN 1
2
:name: lifter 3
4
:Initial Beliefs: 5
6
:Initial Goals: 7
8
goto55 [perform] 9
10
:Plans: 11
12
+!goto55 [perform] : {True} < move_to(5, 5); 13
14
+rubble(5, 5): {True} < lift_rubble; 15
16
+human(X, Y): {True} « .send(medic, :perform, assist_human(X, Y))I7
18
:name: medic 19
20
:lnitial Beliefs: 21
22
:Initial Goals: 23
24
:Plans: 25
26
+.received (: perform, G): {True} « +!G [perform]; 27
28
+lassist_human (X, Y) [perform] : {True} « 29
move_to (X, Y), 30
assist ; 31

+.received(:tell, B): {True} <- +B;
+.received(:perform, G): {True} <- +!G [perform];
+.received(:achieve, G): {True} <- +!G [achieve];

which embody that interpretation. However many programs instead choose only
to handle certain performatives (e.g., only :tell messages) or only certain mes-
sage contents, (e.g., .received(:perform, assist_human(X, Y)) only han-
dles messages asking the agent to perform assist_human(X, Y) for some X and
Y).

Exercise

Amend the simple mas program so that, instead of sending a perform message,
the lifter agent sends a tell message and the medic reacts to the new belief,

6.8. TUTORIAL 8 — MULTI-AGENT SYSTEMS AND COMMUNICATION115

instead of the new goal.

NB. It is important, for using the SearchAndRescueMASEnv. java environ-
ment that the lifting agent be called 1ifter and the medic agent be called
medic.

As usual sample solutions to all the exercises can be found in the answers
directory for tutorial8.

6.8.2 Recording and Replaying AIL Programs

Now there is more than one agent in the system, you will observe that there are
several paths through the program. These depend upon which agent acts when.
Sometimes the lifter agent will go first (moving to (5, 5)) and sometimes the
medic agent will go first (sleeping).

When debugging a multi-agent program you sometimes want to replay the
exact sequence of events that occurred in the problem run. To do this you first
need to record the sequence. You can get an AIL program to record its sequence
of choices (in this case choices about which agent goes first) by adding the line

ajpf.record = true

To the program’s AIL configuration file. By default this records the current
path through the program in a file called record.txt in the directory, records
of the MCAPL distribution. You can change the file using ajpf.replay.file
=. There is an example of this in the configuration file simple mas record.ail
in the tutorial directory.

When you want to play back a record then include

ajpf.replay = true

In the program’s AIL configuration file. Again, by default, this will replay
the sequence from record. txt, but will use a different file if ajpf.replay.file
= is set. The configuration file simple mas_replay.ail is set up to replay runs
generated by simple mas_record.ail

6.8.3 Two Ways to Create a Multi-Agent System

In the previous example we put all the agents in a multi-agent system in one
file. However you often want to separate out your agents into different files,
one for each agent. This is easy to do in the AIL. You write each agent as
you normally would in a separate file. Then in the .ail file for running the
system instead of using mas.file you use mas.agent.1.file (for the file con-
taining agent one), mas.agent.2.file etc. Similarly instead of using a MAS
builder you link to individual agent builders. GWENDOLEN’s agent builder is
gwendolen.GwendolenAgentBuilder — so you use

mas.agent.l.builder = gwendolen.GwendolenAgentBuilder
etc., for each agent rather than

mas.builder = gwendolen.GwendolenMASBuilder.

116 CHAPTER 6. THE GWENDOLEN PROGRAMMING LANGUAGE

Exercise

Convert simple mas.gwen into a system consisting of two agents in different
files. NB. You will need to make sure both agent files start with the declaration
GWENDOLEN for the language the agent is programmed in.

6.8.4 Duplicating an Agent

Sometimes you want to create a multi-agent system in which all agents behave
identically. Ideally you would like to use the same agent code file for all these
agents and just give them different names in the multi-agent system.

You can do this using files and builders, as above, with the addition of a
name setting. So, for instance, mas.agent.3.name = nurse sets the name of
agent 3 to nurse instead of whatever is given in the agent file.

Exercise

Adapt the system from exercise 2 by creating a new lifter agent that visits
first square (5, 5) and summons the medic to assist the human there and, after
that, visits square (3, 4) and summons a nurse to assist the human there. The
medic and the nurse should both use the medic agent code file you developed
for exercise 2. Give one of these agent’s the name nurse in the .ail file.

6.9 Tutorial 9 — Default built-in actions: Strings
and Arithmetic

This is the ninth in a series of tutorials on the use of the GWENDOLEN program-
ming language. This tutorial covers a few final elements of GWENDOLEN and
the actions that come with the Default Environment. It is important to note
that if a GWENDOLEN agent isn’t operating in some environment sub-classed
from DefaultEnvironment then there is no guarantee that these actions will be
available.

Files for this tutorial can be found in the mcapl distribution in the directory

src/examples/gwendolen/tutorials/tutorial9.

6.9.1 String Handling

In the tutorial directory you will find a program called strings.gwen. It’s
contents should look like Example 21

Example 21

6.9. TUTORIAL 9— DEFAULT BUILT-IN ACTIONS: STRINGS AND ARITHMETIC117

:name: strings 1
2

:Initial Beliefs: 3
4

stringl (" hello") 5
string2 (" ") 6
string3 (" world") 7
8

:Initial Goals: 9
10

print_string [perform] 11
12

:Plans: 13
14

+! print_string [perform] : {True} <« 15
print(” hello world”); 16

If you run this program you will see that it prints out hello world. Here
“print” is an action which is implemented in DefaultEnvironment

Built-in String Actions

If you look at strings.ail you will see that you are using AIL’s DefaultEnvironment
class. Most GWENDOLEN environments are based on the default environment

and this means they all support a set of standard actions that come with the
Default Environment. The built-in actions for strings are:

toString(T, S) This will take any term, T, that you are passing around your
program and unify the variable, S, to that term.

append(S1, S2, S3) This takes two strings, S1 and S2 and unifies, S3, to the
concatenation of those two strings. So, for instance, append(*‘gwen”,*'dolen”,S)
will unify S to gwendolen.

Exercise

You will notice that strings.gwen contains three beliefs about strings. Adapt
the program so that instead of printing out hello world directly, it instead
uses append to join the three strings together to print out the message.

Hint. You will need to use append twice.
As usual you can find sample solutions in the answers directory.

6.9.2 Arithmetic

GWENDOLEN can use numbers as terms but it is both fiddly and inefficient
to program up arithmetic operations using Reasoning Rules. As a result the
Default environment has four simple actions for manipulating numbers.

118 CHAPTER 6. THE GWENDOLEN PROGRAMMING LANGUAGE

sum(X, Y, Z) This unifies Z to the sum of X and Y.
minus(X, Y, Z) This takes Y away from X and unifies Z to the result.
div(X, Y, Z) This divides X by Y and unifies Z to the result.

times(X, Y, Z) This multiplies X by Y and unifies Z to the result.

Exercise

In the tutorial directory you will find a partial program,
arithmetic_shell.gwen. This is shown in Example 22

Example 22
GWENDOLEN 1
2
:name: arithmetic 3
4
:Initial Beliefs: 5
6
:Initial Goals: 7
8
do_maths [perform] 9
10
:Plans: 11
12
+! do_maths[perform] : {True} <« 13
+! do_sum [perform], 14
+! do_minus [perform], 15
+! do_div [perform], 16
+! do_mult [perform]; 17

Implement the four missing plans so that

e do_sum adds two numbers and prints out the result as, for instance, The
Sum of 1 and 5 is 6. You will need to use toString and append to
generate the string you want.

e do_minus subtracts two numbers and prints out the result as, for instance,
5.5. take 3.2. 1is 2.3.

e do_div divides one number by another and prints out the result as, for
instance, 7 divided by 2 is 3.5

e do_mult multiplies two numbers and prints out the result as, for instance,
100 times 2.5 is 250.

6.9. TUTORIAL 9— DEFAULT BUILT-IN ACTIONS: STRINGS AND ARITHMETIC119

6.9.3 Using Equations in Plan Guards

Once you are using numbers in your program you quickly get to situations
where you want to use equations in plan guards. GWENDOLEN has some limited
support for this. It can’t perform arithmetic in the guards of plans, but it can
compare numbers using < (less than) and == (equals).

Exercise

In the tutorial directory you will find a partial program, equation_shell.gwen.
This is shown in Example 23

Example 23
GWENDOLEN 1
2
:name: equation 3
4
:Initial Beliefs: 5
6
numberl (3) 7
number2 (5) 8
number3 (4.8) 9
number4 (3) 10
11
:Initial Goals: 12
13
compare_numbers [perform] 14
15
:Plans: 16
17
+! compare_numbers [perform] : {B numberl(N1), B number2(N2), 18
B number3(N3), B number4(N4)} «+ 19
+!compare (N1, N2) [perform], 20
+!compare (N1, N3) [perform], 21
+!compare (N1, N4) [perform], 22
+!compare(N2, N3) [perform], 23
+!compare (N2, N4) [perform], 24
+!compare(N3, N4) [perform]; 25

Complete this program by implementing plans for the goal, compare(N1, N2),
so that the program prints out the following output.

is less than 5
is less than 4.8
is equal to 3
.8 is less than 5
is less than 5
is less than 4.8

W wdh www

120 CHAPTER 6. THE GWENDOLEN PROGRAMMING LANGUAGE

6.9.4 Print Actions

GWENDOLEN’s default environment has three print actions.

print(X) you have already encountered and prints out the term, X.
printagentstate prints the current state of the agent to standard error.
printstate prints the current state of the agent to standard out.

Clearly printagentstate and printstate are virtually identical. They are mostly
of use when debugging and generally either can be used, but in certain situations
you may have a preference about which output channel you want to use.

Exercise

Experiment inserting printagentstate and printstate into one of your existing
programs.

6.10 The Property Specification Language and
its Relation to GWENDOLEN Programs

6.10.1 Implementation of BDI Modalities in GWENDOLEN

In GWENDOLEN the BDI modalities of the AJPF property specification language
are implemented as follows.

e Buy f. An agent, ag, believes the formula, f, if f appears in its belief base
or is deducible from its goal base using its reasoning rules.

e Guof. An agent, ag, has a goal f, if f is a goal that appears in the agent’s
goal base.

o Z,5f. An agent, ag, has an intention f, if f is a goal in the goal base a
plan has been selected to achieve or perform the goal.

e 1D,y f. An agent, ag, intends to do f, if f is an action that appears in
the deed stack of some intention.
Intending to Send a Message

GWENDOLEN uses a special syntax for send actions (.send(ag, :tell, c))
which is not recognised by the property specification language. If you want to
check that a GWENDOLEN agent intends to send a messsage then you need to
use the syntax send(agname, number, c) where agname is the name of the
recipient, number is

1 For :tell,

2 For :perform,

6.10. THE PROPERTY SPECIFICATION LANGUAGE AND ITS RELATION TO GWENDOLEN PROGRAMS]

3 For :achieve

and c is the content of the message.

122 CHAPTER 6. THE GWENDOLEN PROGRAMMING LANGUAGE

Chapter 7

Gwendolen Semantics

This chapter duplicates the operational semantics for GWENDOLEN presented
in [Dennis, 2017].

7.1 Intentions

Intentions are crucial to understanding GWENDOLEN. BDI languages use inten-
tions to store the intended means for achieving goals — this is generally repre-
sented as some from of deed stack (deeds include actions, belief updates, and
the commitment to goals). Intention structures also maintain information about
the (sub-)goal they are intended to achieve or the event that triggered them.
GWENDOLEN aggregates this information: an intention becomes a stack of tu-
ples of an event, a deed, and a unifier. This tuple is most simply viewed as
a matrix structure consisting of three columns in which we record events (new
perceptions, goals committed to and so forth), deeds (a plan of future actions,
belief updates, goal commitments, etc.), and unifiers. These columns form an
event stack, a deed stack, and a unifier stack. Rows associate a particular deed
with the event that has caused the deed to be placed on the intention, and a
unifier. New events are associated with an empty deed, e.

Example The following shows the full structure for a single intention to clean
a room. We use a standard BDI syntax: !g to indicate the goal g, and +!g to
indicate the commitment to achieve that goal (i.e., a new goal that g becomes
true is adopted). Constants are shown starting with lower case letters, and
variables with upper case letters.

event [deed [unifier

+!clean() +!goto(Room) Room = rooml
+!clean() +!vacuum (Room) Room = rooml

This intention has been triggered by a goal to clean — the commitment to the
goal clean() is the trigger event for both rows in the intention. An intention

123

124 CHAPTER 7. GWENDOLEN SEMANTICS

is processed from top to bottom so we see here that the agent first intends to
commit to the goal goto(Room), where Room is to be unified with room1. Once
it has committed to that goal it then commits to the goal vacuum(Room). In
GWENDOLEN the process of committing to a goal causes an expansion of the
intention stack, pushing more deeds on it to be processed. So goto(Room)
is expanded before the agent commits to vacuuming the room and the above
intention becomes

event [deed [unifier

+!goto(Room) | +!planRoute(Room, Route) | Room = rooml
+!goto(Room) +!follow(Route) Room = rooml
+!1goto(Room) +!enter (Room) Room = rooml
+!clean() +!vacuum(Room) Room = rooml

At any moment, we assume there is a current intention which is the one being
processed at that time. The stacks that form the intention are further paired
with two booleans, suspended, and locked which indicate the intention’s status.
A suspended intention is, by default, not selected at the intention selection phase
of the agent’s reasoning. Typically an intention will remain suspended until
some belief condition occurs, normally that a belief is acquired via perception
or from the receipt of a message. If an intention is locked, conversely, then it
must be selected at the intention selection phase.

7.2 Plans, Applicable Plans and Intentions

A GWENDOLEN agent also has a plan library which is an ordered list of plans.
Plans are matched against intentions and manipulate them. There are three
main components to a plan,

1. A trigger event which may match the top event of an intention.

2. A guard: the guard is checked against the agent’s state for plan applica-
bility.

3. A body which is the new deed stack that the plan proposes for execution.

We use the syntax trigger : {guard} < body to represent plans.

Plans only match intentions which contain unplanned goals (i.e., those as-
sociated with the “no plan yet” deed, €). For instance after a commitment to
goto(Room) the above intention might appear as:

event [deed [unifier

+!goto(Room) | € Room = rooml
+!clean() +!goto (Room) Room = rooml
+1clean() +!vacuum (Room) Room = roomil

which would match the plan

+lgoto(Room) : {upstairs(Room)} < +!goto(stairs); +!goto(Room)
This plan says that in order to achieve the goal goto(Room) in the case where the
room is upstairs, (upstairs(Room)), first the goal goto(stairs) must be achieved
and then the goal goto(Room) achieved.

7.2. PLANS, APPLICABLE PLANS AND INTENTIONS 125

This would transform the intention to:

event [deed [unifier

+!goto(Room) +lgoto(stairs) Room = rooml
+!1goto(Room) +!1goto(Room) Room = roomil
+!clean() +1goto(Room) Room = rooml
+!clean() +!vacuum(Room) Room = roomil

7.2.1 Applicable Plans

Applicable plans are an interim data structure that describe how a plan from an
agent’s plan library changes the current intention. An applicable plan describes
the new rows that will replace the top row of the intention. The new rows are
generated from an event, a unifier and a stack of deeds. The new intention rows
are generated by creating a row for each deed and associating the event and
unifier with each of those rows (so the event and unifier are duplicated several
times).

Therefore, an applicable plan is a tuple, (pe,pds,Po), of an event p., a deed
stack pgs, and a unifier pg. The applicable plan in the example above would be

(+!goto(Room), [+!goto(stairs); +!goto(Room)], { Room = rooml1}) (7.1)

Applicable plans are used because GWENDOLEN first determines a list of appli-
cable plans and then picks one plan to be applied. The function Spjan is used
to select one applicable plan from a set. By default, this treats the set as a list
and picks the first plan, but it may be overridden by specific applications.

Applicable Plan Generation Method The function appPlans, generates
a set of applicable plans from the current intention, i, and an agent’s internal
state.

There are two cases. In the first case the top deed on the intention is not
€ (i.e., no planning is needed). In this case the set of applicable plans is for
continuing to process intention ¢ without any changes (i.e., it represents the top
row of the intention). So the set of applicable plans is the singleton:

{(nde(i),hdq(i),0™) | hda(i) # €} (7.2)

where hd.(4) is the top event in i, hdy(4) is the top deed, and 62(*) is the top
unifier.

In the case where the top deed on the intention is ¢, appPlans generates
the set

{(pevpdvehd(i) UG) ‘

Pe : {pgu} < pa € P A hd, ()64 = p,, 0" A ag = Pgut’, 0} (7.3)

where P is the agent’s library of plans. hd.(i) = pe,# means that the plan’s
trigger event follows from the top event on the current intention returning a
unifier, #’. This allows for Prolog-style reasoning on plan triggers.

126 CHAPTER 7. GWENDOLEN SEMANTICS

Notation Description

¢.do(a) Executes an action. Returns a unifier.

&.getmessages(ag) Returns a set of new messages for agent ag.

¢ Percepts(ag) Returns a set of new perceptions (logical formulae) for
agent, ag.

&.done True if the environment is incapable of

further independent action.

Table 7.1: Methods implemented by GWENDOLEN Environments

The notation ag = ¢,0 means that the guard, g, is satisfied by agent ag
given unifier #. Again this allows Prolog-style reasoning. Plan guards may refer
to the agent’s belief base, goal base or outbox. For instance Bb means some
belief, b should follow by logical inference from the agent’s belief base and Gg
means that some goal g should follows by logical inference from the goal base.

The notation t6 indicates the application of unifier # to term t¢. So, for
instance, hd, (i)§"4(*) is the result of applying the unifier 624 to the top event
on the intention.

7.3 The Environment

A feature of BDI agent programming languages is that BDI programs do not,
in general, stand alone but exist within a computational environment. GWEN-
DOLEN programs expect to interact with environments programmed in JAVAwhich
implement a specific interface. This means the semantics of some rules will de-
pend upon the environment used. Environments offer various functions — exe-
cuting agent actions, supplying sets of perceptions etc. The execution of these
functions may also induce a change in the environment itself according to its
own semantics.

We represent the environment as £. Table 7.1 summarises the functions that
all environments are required to offer by the GWENDOLEN semantics. Some en-
vironments only change when one of these functions is called but others may be
independently dynamic (e.g., because other agents, not programmed in GWEN-
DOLEN are acting in them). We therefore also allow a transition relation on
environments &: { —¢ & and represent the transitions caused by the functions

in table 7.1 as £ 229 ¢/ ¢ ¢ € and ¢ ¢ €. done does
not change the environment.

getmessages Percepts(ag)
—_—

7.4 Multi-Agent System Semantics, Scheduling,
Reasoning Cycle

A GWENDOLENagent is executed as part of a multi-agent system which includes
an environment and a scheduler. The scheduler is specific to the application and

7.4. MULTI-AGENT SYSTEM SEMANTICS, SCHEDULING, REASONING CYCLE127

so its policy for the order in which agents (and where relevant the environment)
are executed varies.

We represent the operational semantics of the multi-agent system a set of
transition rules. The first rules, —, operate on tuples of the environment, a set
of agents and the scheduler and represents how the scheduler chooses the next
agent for execution. The agent then transitions through stages in a reasoning
cycle (represented with —,). At each stage in the reasoning cycle specific rules
are selected which cause transitions on the agent (and sometimes also on the
environment).

We assume the existence of the following functions: next_job(s) returns a
tuple of an agent (or the environment) and an updated version of the scheduler
depending on the scheduler policy; sleeping(a, s) returns true if the scheduler
lists a as asleep; sleep(a) returns true if the agent’s status is that it has no
further reasoning at the moment and sleep(a, s) returns an updated scheduler
that lists a as sleeping. — represents the transitive closure of the semantics
on an agent’s reasoning cycle so (£, a, A) =% (¢, d’, F) represents the effect of a
run of the agent’s reasoning cycle (from stage A to F — see below) on both the
agent and the environment. & —¢ &’ represents an update of the environment
according to its own semantics (not considered here).

The following rules represent the operation of the scheduler.

—€.done mnext_job(a) = (€,s") & —¢ &

7.4
<53A75> s <£/3A78/> ()
Ja € A.—sleeping(a,s) next_job(s) = {(a,s’)
(6, A, s) =4 (¢, Ala\a'], &) '
Ja € A.—sleeping(a, A) next_job(s) = (a,s’)
(& a,A) = (¢,d,F) sleep(a) (76)

(&, A, 8) =5 (€, Ala\a'], sleep(a’, "))
It should be noted that, among other things, next_job(s) can change the internal
state of the scheduler, for instance altering the set of agents marked as sleeping
if, for instance, new perceptions are available in the environment that might
mean the agent now has something to do.
The GWENDOLEN reasoning cycle is a set consisting of size stages (A, B,
C, D, E, and F). Each stage is a list of rules which are discussed in section 7.5.
The agent reasoning cycle transitions, —,, by picking the first applicable rule,
r, from the list in the current reasoning stage, RS, transitioning the agent (and
in some cases environment) according to the rule —, and then moving the
reasoning cycle on according to the function next (see (7.9)).

Ir € rules(RS). (£, a) —, (£',a)
(&,a,RS) =, (¢, d,next(a’, RS))

—3r € rules(RS). (£,a) —, (£',a’)
(§,a, RS) —4 (£, a,next(a, RS))

(7.7)

(7.8)

128

CHAPTER 7. GWENDOLEN SEMANTICS

A GWENDOLEN agent is a tuple {ag,i,I, P, Pl, B, R, In, Out, S) of an iden-
tifier, current intention, intention set, plan library, applicable plan set, belief

base,

rule base, inbox, outbox and sleep flag (more in this in section 7.5). The

definition of next in (7.9) sometimes uses the current intention, i, and intention
set, I, to compute the next reasoning stage. In these cases we represent the
agent a as (...7...) or (...4,I...) as appropriate.

=

[AVi € I.is_suspended(i’)
i#[]v3i el —issuspended(i’)

i

os!

next(a,B) = (7.9)

next((...i...),C) =

next(a,D) =
next(a, E)
next(a,F) = A

|~ Q—/—
wllc!
N

where is_suspended(i) is true if the intention, ¢, is suspended.

7.5 Stage Rules: The Agent Reasoning Cycle

We represent an agent as a tuple (ag,i,I, P, Pl, B, R, In, Out, S) where:

ag is a unique identifier for the agent (it’s name);

i is the current intention (see section 7.1); Note that there can be no
current intention which we will indicate with the expression i = null.

I is a stack of intentions {4,7’,..};
P is an ordered list of the agent’s plans (see section 7.2);
Pl is a set of currently applicable plans (see section 7.2);

B is a set of the agent’s beliefs which are pairs of ground first-order for-
mulae and a string indicating the source of the belief. In GWENDOLEN all
beliefs are automatically assigned the source self unless they are acquired
by perception in which case they are assigned the source percept;

R is a set of Prolog-style rules used in reasoning;

In is the agent inbox. Elements of inbox have the form |*»* m where id
is the identifier of the sender, ilf is the illocutionary force of the message
and can be tell, perform, or achieve, and m is the message content, a
ground first-order formula.

Out is the agent outbox. Messages in this set have the format %% m
where id is the identifier of the recipient, ilf is the illocutionary force and
m is the message content, a ground first-order formula.

7.5. STAGE RULES: THE AGENT REASONING CYCLE 129

a An action.

b A belief.

+b A belief addition.

—b A Dbelief removal.

b{source} A belief, from source source.
Irg A goal of type 7.

+l.g A goal addition.

—l.g A goal drop.

xl.g A goal which can’t be planned.
lock An lock.

unlock An unlock.

1294 m A message m sent to ag.

199 m A message m received from ag.

T An structure who’s logical content is trivially true.

€ A special marker indicating that some event has no plan yet.

Table 7.2: Notations for deed type checks

e S is a boolean indicating whether the agent should be slept by the sched-
uler or not.

In its initial state the current intention is null, the intention set consists of
one intention for each of the initial goals provided by the programmer. These
intentions are of the form (start, +!,, g,0)) where start is a special event used
for intentions with no specific trigger. Its plan library is a set of plans provided
by a programmer. The applicable plans are empty. The belief base and rule
base are as defined by the programmer. The inbox and outbox are empty and
the sleep flag is false.

Many of the transition rules make a check on a deed to see what type it is
(e.g. the addition of a belief, the deletion of a goal). We represent these checks
implicitly using the notation shown in table 7.2. Many of the rules also check
intentions for various properties and manipulate them. Table 7.3 summarises
various operations on intentions that are used in the rules.

It is generally unwieldy to present the full agent tuple in the description of a
transition rule. As a result we restrict ourselves to presenting only those parts
of the intention that are changed by the rule as we did in (7.9).

We now discuss each stage of the reasoning cycle in turn.

7.5.1 Stage A

Stage A of the GWENDOLEN reasoning cycle consists of a list of three rules which
are focused around managing intention selection:

[select_intention, sleep,drop_intention]

130 CHAPTER 7. GWENDOLEN SEMANTICS

Notation Description

Ug Compose a unifier with the top unifier on the intention.
empty(4) The deed stack of the intention is empty.

events(i) The stack of events associated with intention .

hd. (7) The top event on the intention.

hd (i) The top deed on the intention.

ra(e) The top unifier on the intention.

e Add a new event, deed stack, and unifier

to the top of the intention.

ip Add a new event, deed, and unifier

as the top row of the intention.

t1;(2) Drop the top row of the intention.

dropg(e, i) Drop all rows in the intention above and including the
first appearance of e as a trigger.

lock(i) Mark the intention as locked.

locked(1) The intention is locked.

suspend (1) Mark the intention as suspended.

is_suspended (i) The intention is suspended.

unlock(4) Mark the intention as unlocked.

Table 7.3: Operations on Intentions

Select Intention (select_intention)

—empty(i) —locked(i) " € IU{i}. ~is_suspended(i”)
Sint(IU{i}) = (¢',1') hde(i") # —!r,g Vhda(i') # €

7.
<£7 < N i» I.. >> ~7select_intention <£» < N 7;,7 I.. >> (10)
—empty(i) locked(i) hd.(i)# —!r,gVhdg(i)# e
3i" € I U{i}. ~is_suspended(i”) (7.11)

<£a < - 7;7 I.. >> —7select_intention <§7 < .. i, I.. >>

where empty(7) is true if intention ¢ has an empty deed stack, Locked(i) is true
if intention ¢ is locked, and is_suspended (i) is true if intention 7 is suspended.
Table 7.3 summarises all the operations on intentions.

This rule has two cases, one for when the current intention isn’t locked
and one for when it is. When the intention isn’t locked the system uses the
application specific selection function Sy to pick a new current intention (by
default this treats the intention set I as a LIFO queue and selects the first
unsuspended intention from the queue). The rule is inapplicable if the current
intention is empty or the selected intention’s trigger is a drop goal event.

Sleep (sleep)

(i = null V empty(¢) V is_suspended(i)) Vi’ € I.is_suspended(i’)
(€ (. i, 1,...5)) =steep (&, (---v i, ,...T))

(7.12)

7.5. STAGE RULES: THE AGENT REASONING CYCLE 131

Table 7.3 summarises all the operations on intentions such as empty etc,.

This rule sets an agent’s sleep flag if all its intentions are empty or suspended.
The agent will then be marked as sleeping by the scheduler once the reasoning
cycle is concluded.

Drop Intention (drop_intention)

i #null empty(i) I#0 Snl= (1)
<§7 < c Z'7 I.. >> _>drop,intention <§, < .. Z'/, 1. >>

Table 7.3 summarises all the operations on intentions such as empty etc,.

This rule drops the intention ¢ if it is empty and selects a new current
intention from the intention set. The additional i # null is necessary since a
few rules can leave the agent state with no current intention.

(7.13)

7.5.2 Stage B

Stage B of the GWENDOLEN reasoning cycle consists of a list of two rules based
on generating a set of applicable plans: [generate_plan,no_plan]

Generate Plan (generate_plan)

appPlans(i) # ()

. . - 7.14
(&, (... 4, Pl...)) —generateplan (&, (... 1, appPlans(i)...)) ()
appPlans is as described in section 7.2.
No Applicable Plans (no_plan)
appPlans(:) =0 hd.(i) = +!g (7.15)
(€,(... 4, Pl...)) =popran (&, (... 4, [(x!rg, [e], 002D)]) '
appPlans(i) =0 —hd.(i) = +l.¢ (7.16)

(& (-1, PL...)) —nopran (& (- -4, [(hde (i), [1,0)] . ..))

appPlans(i) is empty if there is no plan applicable to the current inten-
tion. This rule differentiates between whether the intention trigger is a goal
commitment (in which case the rule creates an applicable plans consisting of an
unplanned “problem goal” event (x!,¢) (which might, for instance, be responded
to by suspending the intention until the agent’s beliefs have changed and some
plan does become applicable). Otherwise it generates an applicable plan with
an empty deed stack. This will have the effect of removing the top row of the
intention and replacing it by nothing — i.e., it ignores the event that had no
applicable plan for handling it. The reasoning behind this is that such events
(notifications of beliefs acquired or dropped generally only require a planning
response in special cases and can normally be ignored).

132 CHAPTER 7. GWENDOLEN SEMANTICS

7.5.3 Stage C

Stage C of the GWENDOLEN reasoning cycle consists of a list of a single rule for
modifying the current intention according to the applicable plan: [apply_plan]

Apply Plan (apply_plan)

(e, Ds, 0) = Spian(Pl)
(& (.ci...PL..YY = (& (... (e,Ds,0) @tl;(i)...0...))

where t1;(7) represents intention, ¢, with its top row removed and (e, Ds,0) e
t1;(i) represents the applicable plan (e, Ds, 8) expanded and added to the top
of the intention, i in place of its top row as described in section 7.2. Table 7.3
summarises all the operations on intentions such as empty etc,.

This rule selects a plan from the agent’s applicable plans as determined by
the application specific Spian (by default this is the first applicable plan found
in the plan library and, where a unifier is required, this is the first returned by
checking against the agents internal state (this lists beliefs and goals, etc., in
alphabetical order)). The plan is represented as a tuple of the trigger event, the
plan’s deed stack and unifier. The top row of the current intention is dropped
and the applicable plan is “glued” in its place.

(7.17)

7.5.4 Stage D

Stage D of the GWENDOLEN reasoning cycle consists of a list of rules for pro-
cessing the top deed on the current intention:
[empty, add_achieve_goal, add_perform goal,drop_goal,add belief,
drop_belief,lock_unlock,wait_for,problem_goal,action, send,
null]

Handle Empty Deed Stack (empty)

empty (i)
(€, (i) Zempry (6, (v t..0))

Table 7.3 summarises all the operations on intentions such as empty etc,.

This rule does nothing if the current intention’s deed stack is empty (which
can occur if there is no plan for handling the intention’s trigger event). This
leaves the intention unchanged and it will be removed during the select intention
phase (Stage A).

(7.18)

Handle Add Achieve Goal (add_achieve_goal)

hd,(i)0™® = 1,9 B,Rkg,0,
(€(..i..B,R..))

_>add,achieve,goa1

(€,(...t1;(3)Ug b,...B,R...))

(7.19)

7.5. STAGE RULES: THE AGENT REASONING CYCLE 133

hdy(i)0™) = +l,9 B,R-g
€(i BR.)

—>add,achieve,goal

(€ (Hag,6,6™0); i . B,R...))

(7.20)

where B, R = g,0, means that the formula ¢ (which is the goal with the top
unifier from the intention applied to it) follows using Prolog-style reasoning
from the agent’s belief base when the additional unifier 8, is applied. t1,(i)Up6,
indicates the union of unifier 8, with the unifier on the top of the intention t1;(¢).
(e,d,0);,i represents the addition of a row (e, d,) to the top of an intention i.
Table 7.3 summarises all the operations on intentions such as empty etc,.
GWENDOLEN recognises two types of goal, achieve goals and perform goals
(goal types a and p respectively). This rule handles the commitment to an
achieve goal. An achieve goal is one that triggers a plan if it not already believed
but does no more than set a unifier if it is. If it is to trigger a plan, then we
register the commitment to planning the goal as an event on the top of the
intention stack. In this case the top row of the intention is not dropped so the
deed intending a commitment to the goal remains. This means that if, after
execution of the plan, the goal is not achieved then it will be replanned.

Handle Add Perform Goal (add_perform goal)

hd (4)6P40) = 41,9

€ i)

_>add,perf orm_goal

(€ (- (H1pg,€,020)); (nd, (3), null, 6240)); 215(3) ..)

(7.21)

where (e, d, 0);,i represents the addition of a row (e, d,f) to the top of an in-
tention i. Table 7.3 summarises all the operations on intentions such as (%)
etc,.

Perform goals always trigger planning but are not replanned if they fail to
achieve some state of the world. This being the case we replace the top deed
(the request to commit to the goal) on the intention with null so that this is
automatically processed once the system reaches that row of the intention. We
then add a new top row with the trigger event of the new goal and a no plan
yet deed.

Handle Drop Goal (drop_goal)

hdy(i)6™) = —1. g e € events(i).unify(e, +!,,)
(€, (.. ...)) —dropgoa1 (&, (... t1li(dropg(e,i))...))
where unify(e;, e2) indicates that two events can be unified. dropg(e,i) is a

function that recurses through an intention dropping every row after the first
occurrence of e — i.e. it prunes the intention back to the point where the event

(7.22)

134 CHAPTER 7. GWENDOLEN SEMANTICS

first occurred. Table 7.3 summarises all the operations on intentions such as
events etc,.

This rule searches the current intention for the most earliest add goal event
that unifies with the goal to be dropped and then deletes all rows on the intention
above that. It then deletes the new top row which will be he one that contains
the instruction to commit to the goal (if an achieve goal) or null (if a perform
goal).

Handle Add Belief (add_belief)

hd 4 (4)6P4) = +b
(€, .. ,i’ I,B...)) = addaveliet
(€,(...t1;(i) Up 62() unsuspend(], b) Unew(+b, e, (),

BU{b},...))

where unsuspend(7, b) unsuspends all suspended intentions in I that are wait-
ing for b to become true. new(e, d,f) creates a new intention from an event,
deed and unifier. Table 7.3 summarises all the operations on intentions such as
0P etc,.

This rule adds new belief to the belief base and a new intention noting the
appearance of the new belief. At the same time it unsuspends all intentions
which are waiting for b to be achieved as part of their suspend condition.

(7.23)

Handle Drop Belief (drop_belief)

hdg ()64 = —p B! = {b'|b' € B Aunify(b’,b)}

<§7 < < i7 I7 B.. >> Hdrop,belief
(€, (... t1;(i) Up 6™0) T Unew(—b,¢,0), B\B',...))

(7.24)

where unify(b’, b) means that b’ and b unify with each other. new(e, d,) creates
a new intention from an event, deed and unifier. Table 7.3 summarises all the
operations on intentions such as #74(9) etc,.

This rule drops a belief from the belief base. At the same time it generates
a new intention containing the event that the belief has been dropped. Appro-
priate handling of this event can allow the agent to form plans in reaction to
it.

Handle Lock and Unlock (lock_unlock)

hdy(i)0"() = 1ock
(€, (... 0. ..)) = 1ockumtock (&, (.., Lock(t1;(i) Up 6rd(D)) .. .))

(7.25)

hdg(i)6*4(") = unlock
(€,(-. 0. .2)) —1ockuntock (€, (- .. unlock(tl;(i)Uphnd(D) .)

(7.26)

Table 7.3 summarises all the operations on intentions such as #*4(*) etc,.

7.5. STAGE RULES: THE AGENT REASONING CYCLE 135

This allows an intention to be “locked” as the current intention, for instance
to allow a complete sequence of belief changes be processed before any other
reasoning takes place. Once finished the intention has to be unlocked.

Handle Wait For
hdd(i)ehd(i) =x...0 B,R |= b, 0y

7.27
<§,<ZB,R>> —wait_for ()

(6,(...t1;(i) Up (™D UG,) ... B, R...)))

hdg(i)0" () =x... b B,RFb,0, 3i' el. —is_suspended(i
(7.28)
<§7 <ZaIaBaR>> _>wait,for .
(¢',(...suspend(i6"()) I B R...))

hd,(i)0™0) =x...b B,R b,0, Vi’ € I.is.suspended(i’) (7.29)

<€7<~~~i,IvB~'~In'~~S>>v_>waitior
(€', (...null, I U{suspend(i¢"4())} B, R...T))

where B, R | b, 0, means that the formula b follows using Prolog-style reasoning
from the agent’s belief base and Prolog rule-base when the additional unifier 6,
is applied. t1;(4) Uy (#%4(*) U 6,) indicates the union of unifier (#*4() U 6;) with
the unifier on the top of the intention t1;(7). suspend() suspends an intention.
Table 7.3 summarises all the operations on intentions such as #*4(% etc,.

If an intention is waiting for some belief, b, to become true then if that
belief is now true the intention continues processing. Otherwise the intention is
suspended. If all intentions are suspended then the agent is told to sleep at the
next opportunity.

Ignore Unplanned Problem Goal (problem goal)
hd.(i) = x!-,g hdg(i) =€
<€7 < el >> _>prob1em,goal <§7 < . >>

Table 7.3 summarises all the operations on intentions such as #2349 etc,.

This rule ignores an unplanned problem goal. It simply does nothing but
allows the reasoning cycle of the agent to continue processing on the assumption
that planning of the goal may become possible later.

(7.30)

Handle General Action (action)

hdg ()00 = ¢ £ 22 ¢ ¢do(a) =0, a#£19W m

(€,(.0..)) —acvion (&, (. t13(7) Ug (624D UH,) .. .)) (7.31)
hdd(z‘)ghd(i) =a ¢ do_m)> & =¢do(a) hd.(i)= +!qu
ag,ilf :
AT m (7.32)

(€, (. i) —action (€ (- (X7, 9,608 U)5 0. ..))

136 CHAPTER 7. GWENDOLEN SEMANTICS

hd, ()00 = o ¢ 22 ¢ e do(a) hd,(i) £+, g
a 7& Tag,ilf m

(€ (i)Y —racvton (€, (-~ t1:(1) Up O8I0 __Y)

where ¢.do(af™()) = 0, means that the environment successfully executes a
returning unifier 6,. t1;(¢)Up 6, indicates the union of unifier 6, with the unifier
on the top of the intention t1;(7). (e,d, 9);pi represents the addition of a row
(e,d,0) to the top of an intention i. Table 7.3 summarises all the operations on
intentions such as 0749 etc,.

In this rule, the agent attempts the action (unless it is a send action —
194 m). If the action succeeds it returns a unifier and the environment up-
dates. Otherwise, if the trigger event at the top of the intention is a goal then
this is generates a problem goal event for handling by some plan.

(7.33)

Handle Send Action (send)
do(t ¥ m,) , . . o
¢ P ¢ nag ()00 =199 - £.do(t W m,,) = b,
(& (ag,i,I...Out...)) —sena
(€, (ag,t1;(i) Up (04D UB,), I U {new(+19" ¥ m, e 0)},
L Out U {19974))

(7.34)

do(1*" " m,,)
_
hdg(7)6P4() = 409"l ¢ do(1e Ma,) hde(i) =+l g
(¢, {ag,i,T...0ut...)) —sena
(€, (ag, (x!7,g,6,6™O U eAD): i T Out...))

(7.35)

do(1" m,)
{—¢
hdg (i) = 199" —£.do(199 Y m,,) —hd.(i) = +1r,g
(&, {ag,i,I...0ut...)) —>sena
(¢, {ag,t1;iUg 680D T ... Out...))

(7.36)

where ¢.do(149" M) is the environment executing the sending of a message,
m, from ag to ag’ with illocutionary force ilf. new(e, d,) creates a new intention
from an event, deed and unifier (in this case the event is the sending of a message
to ag’). t1;(i) Ug 6, indicates the union of unifier §, with the unifier on the top
of the intention t1;(7). Table 7.3 summarises all the operations on intentions
such as 649 etc,.

This rule behaves much as the rule for handling general actions with the
exception that when a send action succeeds a new intention is generated regis-
tering the event that a message was sent and the message itself is added to the
agent’s outbox.

7.5. STAGE RULES: THE AGENT REASONING CYCLE 137

Handle Null (null)

hd g (7)6P4) = null
(€, (o)) =nan (€, (. t14(3) Up 646)

where t1;(%) Ug 6, indicates the union of unifier §, with the unifier on the top
of the intention t1;(7). Table 7.3 summarises all the operations on intentions
such as ") etc,.

The null action is used as a place holder to note, when a perform goal has
been committed to, a record of the relevant trigger event in an intention stack.
This rule simply ignores the null action when it is encountered and deletes that
row from the intention.

(7.37)

7.5.5 Stage E

Stage E of the GWENDOLEN reasoning cycle consists of a list of a single rule for
handling perception: [perceive]

Perceive

Percepts(ag getmessages(ag)
_—

3) e & e
P = ¢.Percepts(ag)
OP = {b| b € B\P A source_of (b) = percept}
P\BUOP U ¢&.getmessages(ag) # 0

(€. (... 1,B...In...S)) —rperceive

€, (...
I U {new(start,+b,0) | b € P\B} U {new(start,—b,0) | b € OP},
B...InU¢&.getmessages(ag) ... T))

(7.38)

€ Percepts(ag)) 51 fl) fl
P = ¢.Percepts(ag)

OP = {b| b e B\P A source_of (b) = percept}

P\BUOP U¢.getmessages(ag) = 0

€ LB.. . In..)) —percerve (&: (.. I,B.. . In..))

getmessages(ag)

(7.39)

where . Percepts(ag) returns a set of new beliefs to the agent which are all
annotated as coming from the source percept. source_of (b) returns the source
of a belief b. &.getmessages(ag) returns a set of new messages to the agent.
new(e, d,) creates a new intention from an event, deed and unifier. In this case
the event is a special distinguished event start which is used to indicate an
intention with no trigger.

This rule adds all messages to the inbox. It also creates new intentions, each
triggered by the event of acquiring or losing a percept. A key part of the working
of the rule depends on AIL’s annotation of all beliefs in the belief base with a
source and its use of a special annotation for beliefs whose source is perception.
If some change is bought about either to the agent’s inbox or to its intentions

138 CHAPTER 7. GWENDOLEN SEMANTICS

then the agent’s sleep flag is set to true (i.e., the agent will not sleep at the end
of this reasoning cycle).

Note that in the EASS variant of GWENDOLEN the perception rule also
updates the belief base directly, unlike this rule which creates intentions to
update the belief base and leaves these to later reasoning cycles for execution.

7.5.6 Stage F

Stage F of the GWENDOLEN reasoning cycle consists of a list of a single rule for
processing messages in the inbox: [messages]

Handle Messages (messages)

(&, (...1...In...)) —nessages
(&, (... T U{neu(+received(ag, ilf,m),e,0) | 129 m € In}...[]...))

(7.40)

where new(e, d,0) creates a new intention from an event, deed and unifier. In

this case the event is a belief that the agent has received message m from

agent, ag with illocutionary force, if. It is up to the programmer to decide

how messages should be handled, there is no default mechanism for handling

messages of any particular illocutionary force (unlike many BDI languages which

give a specific semantics to such constructs).

This rule does not poll the environment for messages. It takes all messages
currently in an agent’s inbox and converts them to intentions (triggered by
a perception that the message has been received), emptying the inbox in the
process. It should be noted that it does not store the message anywhere once
the inbox is emptied. It assumes that some plan will act appropriately to the
message received event. If this does not happen then the message content may
be lost.

Chapter 8

The EASS Variant of the
GWENDOLEN Programming
Language

This chapter contains a set of tutorials on the EASS variant of the GWENDOLEN
programming language which is intended for programming agent-based hybrid
autonomous systems.

8.1 Tutorial 1 — The EASS variant of Gwendolen

This is the first in a series of tutorials on the use of the EASS variant of
the GWENDOLEN language that was first developed as part of the Engineering
Autonomous Space Software project. The EASS variant is adapted for use
with physical systems and simulations, such as mobile robots, satellites and
unmanned aircraft. This tutorial covers the basic concepts behind the EASS
variant and its differences to the GWENDOLEN language.

Files for this tutorial can be found in the mcapl distribution in the directory

src/examples/eass/tutorials/tutoriall.

The tutorial assumes familiarity with the GWENDOLEN programming lan-
guage.

8.1.1 Abstraction and Reasoning Engines

Figure 8.1 shows the typical architecture of an EASS Agent. The agent is actu-
ally a pair of agents, the reasoning engine which is responsible for complicated
reasoning tasks, and the abstraction engine which is responsible for processing
and filtering incoming perceptions so only those actually needed for reasoning
are passed on to the reasoning engine itself.

139

140CHAPTER 8. THE EASS VARIANT OF THE GWENDOLEN PROGRAMMING LANGUAGE

Physical Environment or Simulation

JAVA EASS Environment
4 7
Abstraction Engine
- J
4 N
Reasoning Engine
- J
\, /

Figure 8.1: The Architecture of an EASS Agent

The reasons for this separation are primarily driven by the observation that
BDI agents are unable to process incoming perceptions from real or simulated
sources fast enough and so they get “clogged” by an ever increasing number of
intentions to do with perception processing.

The theoretical underpinnings of this architecture are described
in [Dennis et al., 2010, Dennis et al., 2016]. The key points are that the
reasoning engine does not interact with the physical world (or a simulation)
at all. It gains perceptions via shared beliefs which are communicated with
the abstraction engine via the Java EASS environment. Similarly most of
its actions (ideally all) are communicated to the abstraction engine which
then reifies them (e.g., adding more low level detail that may be required by
the physical system or simulation to actually enact the action). As a rule
of thumb while perceptions and actions, as used by the physical system or
simulation generally involve numeric values, reasoning generally uses logical
(“yes/no”) information and outputs simple non-numeric commands. Therefore
the abstraction engine should be responsible for converting numeric data
(“distance = 5.4m”) into logical statements (“too close”) and converting simple
commands (“slow down”) into numerical instructions (“apply a deceleration of
—1m/s%"). This is only a rule of thumb and the reality is that a certain amount
of experimentation is often required to balance a system appropriately so that
reasoning happens fast enough to adequately control the physical system.

In order for this to work GWENDOLEN’s reasoning cycle was adapted slightly,
a set of dedicated actions were introduced for handling shared beliefs and dele-
gated actions, and some new constructs were added to the language.

8.1. TUTORIAL 1 - THE EASS VARIANT OF GWENDOLEN 141

8.1.2 Key Differences
Perception Processing

In the GWENDOLEN language incoming perceptions are converted into intentions
which contain a deed to add the perception to the belief base. In theory this
gives the agent more control over the contents of its beliefs (although in practice
no use has ever been made of this). However a side effect is that it takes the
agent two turns of the reasoning cycle to convert a perception into a belief and
this slowed down the processing of perceptions.

In the EASS variant, therefore, new perceptions are placed directly into the
agent’s belief base during the perception stage of the reasoning cycle.

Identifying Abstraction and Reasoning Engines

Since each agent is, in fact, a pair of agents, it is necessary to identify and link
the abstraction and reasoning engines. This is done by starting the abstraction
engine with the line

:abstraction: agentname
instead of
‘name: agentname

which is reserved as the start of the reasoning engine code. So long as the two
agents have the same name then the environment will link them.

Shared Beliefs

The reasoning engine does not receive percepts from the outside world but only
via a shared belief set. An abstraction engine may get perceptions both form
the outside world and from the shared beliefs.

EASS environments support this communication via support for two ded-
icated actions, assert_shared (B) and remove_shared(B) which can be used to
assert and remove the shared belief, B.

Both the abstraction and reasoning engine may use these commands.

Perf

The reasoning engine may also request the abstraction engine to reify an action
to be sent to some external system. It does this via the dedicated actions, perf.
This sends a message to the abstraction engine asking it to adopt a perform
goal.

This means that abstraction engines need to implement plans for handling
perform messages.

142CHAPTER 8. THE EASS VARIANT OF THE GWENDOLEN PROGRAMMING LANGUAGE

8.1.3 Example

Example 24 shows a simple EASS program to control a car by making it accel-
erate up to the speed limit and then maintain that speed. Lines 3-28 are the
abstraction engine, and lines 30-46 are the reasoning engine.

As an initial belief the abstraction engine has that the speed limit on the
road is 5. Every time the perception, yspeed(X) comes in (lines 20-23) the
abstraction compares this to the speed limit and, if appropriate asserts a shared
belief (NB., we are using +x(B) as shorthand for assert_shared (B) and —x(B)
as shorthand for remove_shared(B)).

Lines 13-15 are the standard plans for handling messages. It is important
that the abstraction engine has these to it correctly handles perf requests from
the reasoning engine.

If the reasoning engine has a goal to reach the speed limit (lines 41-43) then
it requests the abstraction engine to perform accelerate. This is passed on
directly to the environment (line 25). Once the reasoning engine believes the
speed limit is reached (lines 45 and 46) then it requests the abstraction engine
to perform maintain_speed.

Lastly, in order to allow time for the simulation to start, a perception, started
is used. When the abstraction engine perceives this (lines 17 and 18) it asserts
the shared belief start which causes the reasoning engine to adopt the goal of
reaching the speed limit (lines 38 and 39).

The environment passes on requests for acceleration etc., to the simulator
and reports on the simulated speed and position using perceptions.

Running the Example

The example uses MotorwayMain which you can find in the directory
src/examples/eass/tutorials/motorwaysim. This must be run as a sepa-
rate java program and must be started before the EASS program is run. When
it starts you should see message:

Motorway Sim waiting Socket Connection

Now run the EASS program as normal for AIL programs. You will find
the AIL configuration file in the tutorial directory. You should see the window
shown in figure 8.2 (NB. You may need to move other windows out of the way
to find it!). Click on start and you should see the car accelerate up to a speed
of 5.

8.1.4 Exercise

eass.tutorials.tutoriall.CarOnMotorwayEnvironment provides four actions
to the abstraction engine.

accelerate Accelerates the car.

decelerate Decelerates the car (if the car reaches a speed of 0 it stops).

8.1. TUTORIAL 1 - THE EASS VARIANT OF GWENDOLEN 143
Example 24

EASS 1

2

tabstraction: car 3

4

:Initial Beliefs: 5

6

speed_limit (5) 7

8

:Initial Goals: 9

10

:Plans: 11

/+ Default plans for handling messages %/ 12

+.received (: tell , B): {True} « 4B; 13

+.received (: perform, G): {True} « +!G [perform]; 14

+.received (:achieve , G): {True} + +!G [achieve]; 15

16

+started : {True} « 17

+x(start); 18

19

+yspeed (X) : {B speed_limit(SL), SL < X} « 20

+x(at-speed_limit); 21

+yspeed (X) : {B speed_limit(SL), X < SL} <« 22

—x(at-speed_limit); 23

24

+! accelerate [perform] : {B yspeed(X)} < accelerate; 25

+! accelerate [perform] : {"B yspeed(X)} « 26

print (" Waiting for Simulator to Start”); 27

+! maintain_speed [perform] : {True} < maintain_speed; 28

29

:name: car 30

31

:Initial Beliefs: 32

33

:Initial Goals: 34

35

:Plans: 36

37

+start: {True} <+ 38

+lat_speed_limit[achieve]; 39

40

+! at_speed_limit [achieve] : {True} «+ 41

perf(accelerate), 42

*at_speed_limit; 43

44

+at_speed_limit: {True} «+ 45

perf(maintain_speed); 46

144CHAPTER 8. THE EASS VARIANT OF THE GWENDOLEN PROGRAMMING LANGUAGE

®@ 00 Motorway
U Speed: 0

Distance: 0

| Start |

Figure 8.2: The Motorway Simulator

8.2. TUTORIAL 2-ENVIRONMENTS FOR THE EASS VARIANT OF GWENDOLEN145

maintain_speed Maintains the speed of the car.

calculate_totaldistance(D) unifies D with the total distance the car has trav-
elled.

The perceptions it sends to the abstraction engine are:

xpos(X) X is the x position of the car.

ypos(X) X is the y position of the car.

xspeed(X) X is the speed of the car in the x direction.
yspeed(X) X is the speed of the car in the x direction.
started The simulation has started.

The x and y positions of the car reset to 0 each time the car loops around the
simulator window.

Exercise 1

Adapt car.eass so that the reasoning engine prints out the total distance trav-
elled when it reaches the speed limit.

Exercise 2

Extend car.eass so that it accelerates to the speed limit, then continues until
it has reached a total distance of 600 metres and then decelerates.

Hint. The solution does this by having the reasoning engine request an alert
at 600 units. The abstraction engine then calculates the total distance each
time ypos updates until this is reached at which point it alerts the reasoning
engine. There are lots of other ways to do this but this solution maintains
the idea that the reasoning engine makes decisions while the abstraction engine
processes data.

Sample answers for the exercises can be found in
eass/examples/tutorials/tutoriall/answers.

8.2 Tutorial 2 — Environments for the EASS vari-
ant of Gwendolen

This is the second in a series of tutorials on the use of the EASS variant of the
GWENDOLEN language. This tutorial covers creating environments for agent
programs by extending the eass.mas.DefaultEASSEnvironment class.

Files for this tutorial can be found in the mcapl distribution in the directory

src/examples/eass/tutorials/tutorial?2.

The tutorial assumes a good working knowledge of Java programming, and
some basic understanding of sockets. It also assumes the reader is familiar with
the creation of AIL environments (see section 4.2).

146CHAPTER 8. THE EASS VARIANT OF THE GWENDOLEN PROGRAMMING LANGUAGE

8.2.1 The Default EASS Environment and the EASSEnv
Interface

All environments for use with EASS must implement a java interface
eass.mas.EASSEnv. This extends ail.mas.AILEnv (discussed in section 4.2)
and ajpf.MCALJobber which specifies the functionality required for AJPF to
include the environment in the scheduler. One of the key features of EASS
environments is that they are dynamic — that is things may occur in the en-
vironment which are not caused by the agents. The AJPF framework uses a
scheduler to switch between agents and any other jobbers known to the sched-
uler. When a dynamic environment is used the scheduler switches between
agents and the environment. In fact there are a number of schedulers that can
be used. These are discussed in section 4.3. As well as the functionality required
by the two interfaces it extends, eass.mas.EASSEnv requires some extra func-
tionality to support the EASS GWENDOLEN variant, particularly managing the
links between abstraction and reasoning engines and shared beliefs.

eass.mas.DefaultEASSEnvironment provides a basic level implementation
of all these methods, so any environment that extends it only has to worry
about those aspects particular to that environment. Typically this is just the
way that actions performed by the agents are to be handled and the way percep-
tions may change in between agent actions. ail.mas.DefaultEASSEnvironment
also provides a set of useful methods for handling changing the perceptions
available to the agent that can then be used to program these action results.
eass.mas.DefaultEASSEnvironment extends ail.mas.DefaultEnvironment
(see section 4.2) so all the methods available in that class are also available
to classes that subclass eass.mas.DefaultEASSEnvironment.

8.2.2 A Survey of some of Default EASS Environment’s
Methods

We note here some of the more useful methods made available by the Default
Environment before we talk about implementing the outcomes of agent actions
and getting new perceptions.

public static void scheduler_setup(EASSEnv env, MCAPLScheduler s)
This takes an environment (typically one sub-classing
eass.mas.DefaultEASSEnvironment) and a scheduler and sets the
environment and scheduler up appropriately. In general an EASS
environment will want to use ail.mas.NActionScheduler — this is a
scheduler which can switch between agents and the environment every
time an agent takes an action but will also switch every N reasoning
cycles in to force checking of changes in the environment. A good value
to start N at is 100 though this will vary by application. A typical
constructor for an environment may look something like Example 25.

8.2. TUTORIAL 2—- ENVIRONMENTS FOR THE EASS VARIANT OF GWENDOLEN147

Example 25
public MyEnvironment () { 1
super (); 2

super.scheduler_setup (this, new NActionScheduler(1003);
4

public void addUniquePercept(String s, Predicate per) It is fairly typ-
ical in the kinds of applications the EASS is used for that incoming
perceptions indicate the current value of some measure — e.g. the cur-
rent distance to the car in front. This gets converted into a predi-
cate such as distance(5.5) however the application only wants to have
one such percept available. addUniquePercept avoids the need to use
removeUnifiesPercept followed by addPercept each time the value
changes. Instead addUniquePercept takes a unique reference string, s
(normally the functor of the predicate — e.g., distance) and then removes
the old percept and adds the new one.

public void addUniquePercept(String agName, String s, Literal pred)
As above but the percept is perceivable only by the agent called agName.

8.2.3 Default Actions

Just as ail.mas.DefaultEnvironment provides a set of built-in actions, so does
eass.mas.DefaultEASSEnvironment. These critically support some aspects of
the EASS language:

assert_shared(B) This puts B in the shared belief set.
remove_shared(B) This removes B from the shared belief set.

remove_shared_unifies(B) This removes all beliefs that unify with B from
the shared belief set. This is useful when you do not necessarily know the
current value of one of a shared belief’s parameters.

perf(G) This send a message to the abstraction engine requesting it adopt G
as a perform goal.

append_string_pred(S, T, V) This is occasionally useful for converting be-
tween values treated as parameters by the agent, but which need to be
translated to unique actions for the application (e.g., converting from
thruster(2) to “thruster_2”. It takes a string as its first argument, a
term, T, as its second argument. It converts 7" to a string and then unifies
the concatenation of the first string and the new string with V.

148CHAPTER 8. THE EASS VARIANT OF THE GWENDOLEN PROGRAMMING LANGUAGE

8.2.4 Adding Additional Actions

Adding additional actions can be done in the same way as for environments that
subclass ail.mas.DefaultEnvironment (see section 4.2).

8.2.5 Adding Dynamic Behaviour

Dynamic behaviour can be added by overriding the method do_job(). This
method is called each time the scheduler executes the environment. Overrides
of this method can be used simply to change the set of percepts (possibly at
random) or to read data from sockets or other communications mechanisms.

Once an environment is dynamic and is included in the scheduler it some-
times becomes important to know when the multi-agent system has finished
running. This is not always the case, sometimes you want it to keep running
indefinitely and just kill it manually when you are done, but if you want the
system to shut down neatly then the scheduler needs to be able to detect when
the environment has finished. To do this it calls the methods public boolean
done () which should return true if the environment has finished running and
false otherwise.

8.2.6 Example

You can find an example EASS environment, CarOnMotorwayEnvironment, for
connecting to the Motorway Simulator over a socket in the tutorial directory.
We will examine this section by section !.

Example 26

public class CarOnMotorwayEnvironment extends DefaultEASSEnvironmdnt {

2

String logname = 3
"eass.tutorials.tutorial2.CarOnMotorwayEnvironment” ; 4

5

VZZ 6
* Socket that connects to the Simulator. 7
*/ 8
protected AlLSocketClient socket; 9
10

J* % 11
* Has the environment concluded? 12
*/ 13
private boolean finished = false; 14

LIEASS comes with a dedicated class eass.mas.socket.EASSSocketClientEnvironment for
environments that communicate with simulators via sockets. We discuss an environment
implementation that does not use this class for tutorial purposes, but many applications may
wish to use it.

8.2. TUTORIAL 2-ENVIRONMENTS FOR THE EASS VARIANT OF GWENDOLEN149

Example 26 shows initialisation of the class. It sub-classes
DefaultEASSEnvironment, sets up a name for logging and and a
socket. The AIL comes with some support for socket programming.

ail.util.AILSocketClient is a class for sockets which are clients of
some server (as required by the Motorway simulator). Lastly the environment
sets up a boolean to track whether it has finished executing.

Example 27

public CarOnMotorwayEnvironment () {
super ();
super.scheduler_setup (this, new NActionScheduler(100));
AJPFLogger.info (logname, "Waiting Connection”);
socket = new AlLSocketClient ();
AJPFLogger.info (logname, "Connected to Socket”);

N O Ut WN

Example 27 shows the class constructor. We've set the environment up with
an NActionScheduler — this scheduler switches between jobbers every time an
agent takes and action, but also, every n turns of a reasoning cycle. In this case
n is set to 100. This means that the environment keeps up to date processing
input from the simulator even while agent deliberation is going on. We then
create the socket. We don’t supply a port number for the socket. The AIL
socket classes have a default port number they use and the Motorway simulator
uses this port so we don’t need to specify it. We are using the AJPFLogger
class to provide output. We will cover this in future tutorials. In this instance
printing messages to System Error or System out would work as well.

Example 28 shows the code that gets executed each time the environment
is scheduled to run. In this case we want to get up-to-date values from the
simulator by reading them off the socket. The simulator posts output in sets of
four doubles and then an integer representing the x position, y position, x speed,
y speed of the car and finally the integer represents whether the simulation has
started or not. The code in lines 17-21 reads off these values. This particular
application isn’t interested in the x and y position, so these are ignored but
the speeds and starting information are saved as variables. Note that different
methods are used to read doubles and integers, it is important to use the right
methods otherwise simulator and agent environment can get out of sync since
different datatypes use up different numbers of bytes on the socket. Lines 23-
33 then repeat this process on a loop. socket.pendingInput() returns true
if there is any data left to be read off the socket. Since the environment and
simulator probably won’t be entirely running in sync this loop is used to read
all available data off the socket. The final assignment of values to variables will
represent the most recent state of the simulation and so is probably the best
data to pass on to the agent. Lines 35-44 show the environment turning the

150CHAPTER 8. THE EASS VARIANT OF THE GWENDOLEN PROGRAMMING LANGUAGE

Example 28

public void do_job () { 1

if (socket.allok()) { 2

readPredicatesfromSocket (); 3

} else { 4

System . err.println (”"something wrong with socket”); 5

} 6

} 7

8

VAT 9
* Reading the values from the sockets and turning them into percdftions.

*/ 11

public void readPredicatesfromSocket () { 12

socket.readDouble (); 13

socket.readDouble (); 14

double xdot = socket.readDouble (); 15

double ydot = socket.readDouble (); 16

int started = socket.readlnt (); 17

18

try { 19

while (socket.pendinglnput()) { 20

socket.readDouble (); 21

socket.readDouble (); 22

xdot = socket.readDouble (); 23

ydot = socket.readDouble (); 24

started = socket.readlnt (); 25

26

} catch (Exception e) { 27

AJPFLogger.warning (logname, e.getMessage()); 28

} 29

30

Literal xspeed = new Literal (" xspeed”); 31

xspeed .addTerm(new NumberTermlmpl(xdot)); 32

33

Literal yspeed = new Literal ("yspeed”); 34

yspeed.addTerm(new NumberTermlmpl(ydot)); 35

36

if (started > 0) { 37

addPercept(new Literal(”"started”)); 38

} 39

40

addUniquePercept(” xspeed” , xspeed); 41

addUniquePercept(” yspeed”, yspeed); 42

} 43

8.2. TUTORIAL 2-ENVIRONMENTS FOR THE EASS VARIANT OF GWENDOLEN151

numbers read from the socket into literals for use by the agent (see discussion in
section 4.2). Finally addUniquePercept is used to add the percepts for xspeed
and yspeed to the environment. We only want one value for each of these to
be available to the agent so we use the special method to remove the old value
and add the new one.

Example 29

public Unifier executeAction(String agName, Action act) throws Alllexception {

(V)

if (act.getFunctor().equals(”accelerate”)) { 3
socket.writeDouble (0.0); 4
socket.writeDouble (0.01); 5

} else if (act.getFunctor().equals(”decelerate”)) { 6
socket.writeDouble (0.0); 7
socket.writeDouble (—0.1); 8

} else if (act.getFunctor().equals(”"maintain_speed”)) { 9

socket.writeDouble (0.0); 10
socket.writeDouble (0.0); 11

} else if (act.getFunctor().equals(”finished”)) { 12
finished = true; 13

} 14
15

return super.executeAction (agName, act); 16
} 17

Example 29 shows the executeAction method which was discussed in sec-
tion 4.2. Here, as well as the actions, such as assert_shared , remove_shared and
perf provided by DefaultEASSEnvironment the environment offers accelerate,
decelerate, maintain_speed and finished. The Motorway simulator regularly
checks the socket and expects to find pairs of doubles on it giving the acceler-
ation in the x and y directions respectively. The environment treats requests
for acceleration and deceleration from the agent as requests to speed up or slow
down in the y direction, but since the simulator expects a pair of values it has
to write the x acceleration to the socket as well. finished is treated as a request
to stop the environment and the boolean finished is set to true.

Example 30 shows the code used when to notify the system that the en-
vironment is finished (by overriding done) and an over-ride of the cleanup()
method which is called before the system shuts down. This is used to close the
socket.

Executing the Example

The example is a variation on the one used in section 8.1 and can be executed
in the same way by first starting up MotorwayMain and then running AIL on
car.ail. The main difference is that the agent in this program executes the

152CHAPTER 8. THE EASS VARIANT OF THE GWENDOLEN PROGRAMMING LANGUAGE

Example 30
public void cleanup() { 1
socket.close (); 2
} 3
4
/* 5
* (non—Javadoc) 6
* @see ail.others.DefaultEnvironment#done () 7
*/ 8
public boolean done() { 9
if (finished) { 10
return true; 11
} 12
return false; 13
1 14

finished action once the car has reached the speed limit. This results in the
multi-agent system shutting down and the socket being closed. These actions
don’t terminate the simulation which will continue executing, but you will be
able to see error messages of the form WARNING: Broken pipe being generated
by its attempts to read data from the socket.

8.2.7 Sending Messages

The executeAction method in the default environment simply places messages
directly into the intended recipient’s inbox. Obviously there will be situations,
particularly if the multi-agent system needs to send messages over a socket or
similar, where this will not suffice.

In fact executeAction calls a method, executeSendAction: public void
executeSendAction(String agName, SendAction act) so the simplest way
to alter an environment’s message sending behaviour is to override this method.

The SendAction class has several useful methods such as:

Message getMessage(String agName) which returns the Message object
assocated with the action and takes the name of the sender as an argument.

Term getReciever() returns the name of the intended receiver of the message
as a Term.

Message objects are described in section 4.2.

8.3. TUTORIAL 3 — VERIFYING REASONING ENGINES 153

8.2.8 Exercises
Changing Lane

In the tutorial directory you will find an EASS program, car_exercises.eass.
This contains a car control program that attempts to change lane (action
change_lane) once the car has reached the speed limit. It then checks a per-
ception, xpos(X) for the x position of the car until it believes it is in the next
lane at which point it instructs the environment to stay in that lane (action
stay_in_lane).

Extend and adapt CarOnMotorwayEnvironment . java to act as a suitable en-
vironment for this program. As normal answers (including an AIL configuration
file) can be found in the answers directory for the tutorial.

Changing the Simulator Behaviour

It is possible to change the behaviour of the Motorway Simulator by providing
it with a config file. A sample one is provided in the tutorial directory. This
new configuration gets the simulator to write 7 values to the socket rather than
five. These are, in order, the total distance travelled in the x direction, the total
distance travelled in the y direction, the x coordinate of the car in the interface,
the y coordinate of the car in the interface, the speed in the x direction, the
speed in the y direction and whether the simulator has started now.

The simulator can be started in this configuration by supplying
"/src/examples/eass/tutorials/tutorial2/config.txt" as an argument
to MotorwayMain (If you are using Eclipse you can add arguments to Run Con-
figurations in a tab). Adapt the environment to run car_exercises.eass in
this environment. As normal answers (including an AIL configuration file) can
be found in the answers directory for the tutorial.

8.3 Tutorial 3 — Verifying Reasoning Engines

This is the third in a series of tutorials on the use of the EASS variant of the
GWENDOLEN language. This tutorial covers verifying EASS reasoning engines
as described in [Dennis et al., 2014, Fisher et al., 2013].

Files for this tutorial can be found in the mcapl distribution in the directory

src/examples/eass/tutorials/tutorial3.

The tutorial assumes a good working knowledge of Java programming. It
also assumes the reader is familiar with the basics of using AJPF to verify
programs (see section 5.1 and section 5.2).

8.3.1 Overview

The process for verifying an EASS reasoning engine is to first analyse the agent
program in order to identify all the shared beliefs that are sent from the abstrac-
tion engine to the reasoning engine. In multi-agent systems it is also necessary

154CHAPTER 8. THE EASS VARIANT OF THE GWENDOLEN PROGRAMMING LANGUAGE

to identify all messages that the reasoning engine may receive from other agents
in the environment. This is discussed in some detail in [Dennis et al., 2014].
Once a list of shared beliefs and messages has been identified, an environment
is constructed for the reasoning engine alone in such a way that every time the
agent takes an action the set of perceptions and messages available to it are cre-
ated at random. When model checking the random selection causes the search
tree to branch and the model checker to explore all possibilities.

8.3.2 Example

As an example we will consider the accelerating car controller we looked at in
section 8.1. The full code for this is show in Example 31 and from this we can
see there are two shared beliefs used by the program, start and at_speed_limit .

For verification purposes, we are only interested in the reasoning engine so
we create a file containing just the reasoning engine. This is car_re.eass in
the tutorial directory. You will also find an AIL configuration file car.ail, a
JPF configuration file, car. jpf and a property specification file, car.psl in the
tutorial directory.

The environment for verifying the car reason-
ing engine is shown in example 32. This subclasses
eass.mas.verification.EASSVerificationEnvironment which sets up
a basic environment for handling verification of single reasoning en-
gines. In order to use this environment you have to implement two
methods, generate_sharedbeliefs(String AgName, Action act) and
generate messages (String AgName, Action act). It is assumed that these
methods will randomly generate the shared beliefs and messages of interest to
your application. EASSVerificationEnvironment handles the calling of these
methods each time the reasoning engine takes an action. It should be noted
that EASSVerificationEnvironment ignores assert_shared and remove_shared
actions, assuming these take negligible time to execute — this is largely in
order to keep search spaces as small as possible. generate_sharedbeliefs and
generate messages both take the agent’s name and the last performed action
as arguments. These are used if creating structured environments which are
not discussed here.

In the example verification environment, generate messages returns an
empty set of messages because we didn’t identify any messages in the program.
generate_sharedbeliefs is responsible for asserting at_speed_limit and
start. EASSVerificationEnvironment provides random bool_generator
which is a member of the ajpf.util.choice.UniformBoolChoice
class and random_int_generator which is a member of the
ajpf.util.choice.UniformIntChoice class. These can be used to generate
random boolean and integer values. In this case random_bool_generator is be-
ing used to generate two booleans, assert_at_speed_limit and assert_start.
If these booleans are true then the relevant predicate is added to the set
returned by the method while, if it is false, nothing is added to the set. An
AJPFLogger is used to print out whether the shared belief was generated or not

8.3. TUTORIAL 3 — VERIFYING REASONING ENGINES 155
Example 31
EASS 1
2
rabstraction: car 3
4
:Initial Beliefs: 5
6
speed_limit (5) 7
8
:Initial Goals: 9
10
11
:Plans: 12
/+x Default plans for handling messages %/ 13
+.received (: tell , B): {True} «+ +B; 14
+.received (: perform, G): {True} + +!G [perform]; 15
+.received (:achieve, G): {True} + +!G [achieve]; 16
17
+started : {True} « 18
+x(start); 19
20
+yspeed (X) : {B speed_limit(SL), SL < X} <« 21
+x(at_speed_limit); 22
+yspeed (X) : {B speed_limit(SL), X < SL} <« 23
—s(at_speed_limit); 24
25
+! accelerate [perform] : {B yspeed(X)} < accelerate; 26
+! accelerate [perform] : {"B yspeed(X)} «+ 27
print (" Waiting for Simulator to Start”);
+! maintain_speed [perform] : {True} < maintain_speed; 28
29
:name: car 30
31
:Initial Beliefs: 32
33
:Initial Goals: 34
35
:Plans: 36
37
+start: {True} <« 38
+lat_speed_limit [achieve]; 39
40
+! at_speed_limit [achieve] : {True} <« 41
perf(accelerate), 42
*at_speed_limit; 43
44
+at_speed_limit: {True} <« 45
perf(maintain_speed); 46

156CHAPTER 8. THE EASS VARIANT OF THE GWENDOLEN PROGRAMMING LANGUAGE

Example 32
J** 1
* An environment for verifying a simple car reasoning engine. 2
* Qauthor louiseadennis 3
* 4
*/ 5
public class VerificationEnvironment extends 6
EASSVerificationEnvironment { 7
8
public String logname = "eass.tutorials.tutorial3.VerificationEn9ironment”;
10
public Set<Predicate> generate_sharedbeliefs(String AgName, Actibln act) {
TreeSet<Predicate> percepts = new TreeSet<Predicate >(); 12
boolean assert_at_speed_limit = random_bool_generator.nextBoolkkan ();
if (assert_at_speed_limit) { 14
percepts.add(new Predicate(” at_speed_limit”)); 15
AJPFLogger.info (logname, "At the Speed Limit"); 16
} else { 17
AJPFLogger.info (logname, "Not At Speed Limit”); 18
} 19
20
boolean assert_start = random_bool_generator.nextBoolean(); 21
if (assert_start) { 22
percepts.add(new Predicate(”start”)); 23
AJPFLogger.info (logname, " Asserting start”); 24
} else { 25
AJPFLogger.info (logname, "Not asserting start”); 26
} 27
return percepts; 28
} 29
30
public Set<Message> generate_messages () { 31
TreeSet<Message> messages = new TreeSet<Message >(); 32
return messages; 33
}s 34

} 35

8.3. TUTORIAL 3 — VERIFYING REASONING ENGINES 157

— this can be useful when debugging failed model checking runs.
There are four properties in the property specification file:

1 O-B..r crash — The car never believes it has crashed. We know this to be
impossible — no such belief is ever asserted — but it can be useful to have a
simple property like this in a file in order to check the basics of the model
checking is working.

2 O(Acarperf(accelerate) = (0 Acarperf (maintain_speed)VO—B.., at_speed_limit))
— If the car ever accelerates then either eventually it maintains its speed,
or it never believes it has reached the speed limit.

3 O(Bear at-_speed_limit) = oAcarperf (maintain_speed) — If the car believes it
is at the speed limit then eventually it maintains its speed. Properties
of this form are often not true because A,qya only applies to the last
action performed and beliefs are often more persistent than that so the
agent acquires the belief, b, does action a, and then does something else.
At this point it still believes b but unless it does a again the property
will be false in LTL. In this case, however, the property is true because
perf(maintain_speed) is the last action performed by the agent.

4 OBy start = O-Acay perf (accelerate) — If the car never believes the sim-
ulation has started then it never accelerates.

The JPF configuration file in the tutorial directory is set to check property
3. It is mostly a standard configuration, as discussed in section 5.2. However it
is worth looking at the list of classes passed to log.info. These are:

ail.mas.DefaultEnvironment As discussed in section 5.2, this prints out the
actions that an agent has performed and is useful for debugging.

eass.mas.verification.EASSVerificationEnvironment This prints out
when an agent is just about to perform an action, before all the random
shared beliefs and messages are generated. If both this class and
ail.mas.DefaultEnvironment are passed to log.info then you will
see a message before the agent does an action, then the search space
branching as the random shared beliefs and messages are generated and
then a message when the action completes. You may prefer to have only
one of these print out.

eass.tutorials.tutorial3.VerificationEnvironment As can be seen in exam-
ple 32 this will cause information about the random branching to get
printed.

ajpf.product.Product As discussed in section 5.2, this prints out the current
path through the AJPF search space.

158CHAPTER 8. THE EASS VARIANT OF THE GWENDOLEN PROGRAMMING LANGUAGE

8.3.3 Messages

Normally there is no need to construct messages in environments since this is
handled by the way ail.mas.DefaultEnvironment handles send actions. How-
ever for EASS verification environments, where messages must be constructed
at random, it is necessary to do this in the environment.

The important class is ail.syntax.Message and the main constructor of
interest is public Message(int ilf, String s, String r, Term c). The
four parameters are

ilf This is the illocutionary force or the performative. For EASS agents this
should be 1, for a tell message, 2 for a perform message and 3 for an
achieve message. If in doubt you can use the static fields EASSAgent . TELL,
EASSAgent .PERFORM and EASSAgent . ACHIEVE..

s This is a string which is the name of the sender of the message.
r This is a string which is the name of the receiver of the message.

¢ This is a term for the content of the message and should be created using the
AIL classes for Predicates etc.

Where messages are to be randomly generated a list of them should be
created in generate messages.

8.3.4 Exercises
Exercise 1

Take the sample answer for exercise 2 in section 8.1, and verify that if the car
never gets an alert then it never stops. As usual you can find a sample answer
in the answers sub-directory.

Exercise 2

In the tutorial directory you will find a reasoning engine, car_re messages.eass.
This is identical to car_re.eass apart from the fact that it can process tell mes-
sages. Provide a verification environment where instead of start being asserted
as a shared belief, the agent receives it as a tell message from the simulator.
Check you can verify the same properties of the agent. As usual you can find a
sample answer in the answers sub-directory.

Chapter 9

Executing and Verifying
GOAL agents in the AIL
and AJPF

The implementation of GOAL in the AIL for use with AJPF is based upon
the 2014 version of GOAL. Documentation for this version can be found in the
version of Programming Cognitive Agents in GOAL included with the AJPF
distribution in the doc/goal directory. These notes are intended to be used
alongside the Programming Guide which explains how to program in GOAL.

While every effort has been made to keep the syntax and format of the GOAL
program files in line with this document. The usage and format of configuration
files differs. These differences are outlined in this document.

Many examples from Programming Cognitive Agents in GOAL can be found
in the mcapl distribution in the directory

src/examples/goal/programming_guide.

9.1 AIL Configuration Files

You will find an AIL configuration file in the chapter 1 directory called
hello_world.ail. Its contents is shown below.

env = goal.mas.GoalEnvironment

mas.file = /src/examples/goal/programming_guide/chapterl/hello_world.gl
mas.builder = goal.GOALMASBuilder

This is a very simple configuration consisting of three items only.

mas.file gives the path to the GOAL program to be run.

159

160CHAPTER 9. EXECUTING AND VERIFYING GOAL AGENTS IN THE AIL AND AJPF

mas.builder gives a java class for building the file. In this case
goal.GOALMASBuilder parses a file containing a GOAL agent and com-
piles it into a multi-agent system.

env provides an environment for the agent to run in. In this case we use a
default GOAL environment provided by the AIL.

The GOAL program file, hello_world.gl is also in the chapter directory.

9.1.1 Running the Program

To run the program you need to run the JAVA program ail .mas.AIL and supply
it with a the configuration file as an argument. You can do this either from
the command line or using the IntelliJ or Eclipse run-AIL configuration (with
hello_world.ail selected in the Project Files/Package Explorer window) as
detailed in chapter 3.

9.1.2 Configuration Files

Configuration files all contain a list of items of the form key=value. Particular
agent programming languages, and even specific applications may have their
own specialised keys that can be placed in this file. However the keys that are
supported by all agent programs are as follows:

env This is the Java class that represents the environment of the multi-
agent system. The wvalue should be a java class name - e.g.,
goal .mas.GoalEnvironment.

mas.file This is the name of a file (including the path from the MCAPL home
directory) which describes all the agents needed for a multi-agent system
in some agent programming language.

mas.builder This is the Java class that builds a multi-agent system in some
language. For GOAL this is goal.GOALMASBuilder. To find the builders
for other languages consult the language documentation.

mas.agent.N.file This is the name of a file (including the path from the
MCAPL home directory) which describes the Nth agent to be used by
some multi-agent system. This allows individual agent code to be kept in
separate files and allows agents to be re-used for different applications. It
also allows a multi-agent system to be built using agents programmed in
several different agent programming languages. You can see an example
of the use of this in section 9.6.2.

mas.agent. N.builder This is the Java class that is to be used to build the
Nth agent in the system. In the case of GOAL individual agents are built
using goal.GOALAgentBuilder. You can see an example of the use of this
in section 9.6.2.

9.2. NOTES ON CHAPTER 1 161

mas.agent. N.name All agent files contain a default name for the agent but
this can be changed by the configuration (e.g., if you want several agents
which are identical except for the name — this way they can all refer to
the same code file but the system will consider them to be different agents
because they have different names). You can see an example of the use of
this in section 9.6.2.

log.severe, log.warning, log.info, log.fine, log.finer, log.finest These all
set the logging level for Java classes in the system. log.finest prints out
the most information and log.severe prints out the least. By default
most classes are set to log.warning but sometimes, especially when de-
bugging, you may want to specify a particular logging level for a particular
class.

log.format This lets you change the format of the log output from Java’s
default. At the moment the only value for this is brief.

ajpf.transition_every_reasoning_cycle This can be true or false (by de-
fault it is true). It is used during model checking with AJPF to determine
whether a new model state should be generated for every state in the
agent’s reasoning cycle. This means that model checking is more thor-
ough, but at the expense of generating a lot more states.

ajpf.record This can be true or false (by default it is false). If it is
set to true then the program will record its sequence of choices (all
choices made by the scheduler and any choices made by the special
ajpf.util.choice.Choice class). By default (unless ajpf.replay.file
is set) these choices are stored in a file called record.txt in the records
directory of the MCAPL distribution.

ajpf.replay This can be set to true or false (by default it is false). If it is
set to true then the system will execute the program using a set of sched-
uler and other choices from a file. By default (unless ajpf.replay.file
is set) this file is record.txt in the records directory of the MCAPL
distribution.

ajpf.replay.file This allows you to set the file used by either ajpf.record or
ajpf.replay.

More information on the use of AIL configuration files can be found in sec-
tion 4.1.

9.2 Notes on Chapter 1

AIL versions of all the examples that appear in chapter 1 of Programming Cog-
nitive Agents in GOAL can be found in

src/examples/goal/programming guide/chapterl.

162CHAPTER 9. EXECUTING AND VERIFYING GOAL AGENTS IN THE AIL AND AJPF

In section 1.1. of Programming Cognitive Agents in GOAL, a MAS file is
presented for a Hello World agent containing agentfiles and a launchpolicy.
Instead of using a MAS file, users of the AIL version of GOAL should use an
AIL configuration file as discussed in section 9.1.

Section 1.5 discusses using an environment HelloWorldEnvironment. jar.
The MCAPL distribution instead supplies HellowWorldEnvironment. java in
the chapter directory which can be included in an AIL configuration file as:

env = goal.programming _guide.chapterl.HelloWorldEnvironment

9.3 Model Checking GOAL Programs

GOAL programs can be model-checked in the same way that GWENDOLEN and
other programs in the AIL framework can be checked. This involves creating
a JPF configuration file and setting the program’s AIL configuration file, a
property specification file, and a property key as the target.args for a target
of ail.util.AJPF_w_AIL. This process is outlined in more detail in section 5.1
and in section 5.2.

We outline the basics of this here.

9.3.1 Setting up Agent Java Pathfinder

Before you can run AJPF it is necessary to set up your computer to use Java
Pathfinder. There are instructions for doing this in the MCAPL manual (which
you can find in the doc directory of the distribution).

Just as you run multi-agent systems in the AIL by passing an AIL configura-
tion file as an argument to ail.mas.AIL, you model-check a multi-agent system
by passing a JPF configuration file as an argument to ajpf.util.AJPF w_ATL.

9.3.2 Example

Figure 9.1 shows a JPF configuration file of the hello_world.gl example from
chapter 1 of Programming Cognitive Agents in GOAL .
We explain each line of this below.

@using = mcapl Means that the proof is using the home directory for mcapl.
This should be be set up in .jpf/site.properties (See the MCAPL
manual).

target = ail.util. AJPF_w_AIL This is the Java file containing the main
method for the program to be model checked. By default when
model checking a program implemented using the AIL, you should use
ail.util.AJPF _w_AIL as the target. For those who are familiar with run-
ning programs in the AIL, this class is very similar to ail.mas.AIL but
with a few tweaks to set up and optimise model checking.

9.3. MODEL CHECKING GOAL PROGRAMS 163

Qusing = mcapl

target = ail.util.AJPF_w_AIL
target.args = ${mcapl}/src/examples/goal/programming_guide/chapterl/hello_world.ail, ${mcapl}/src/examples/g

log.info = ajpf.MCAPLAgent,ail.mas.DefaultEnvironment,ajpf.product.Product
listener+=,.listener.ExecTracker

et.print_insn=false
et.show_shared=false

Figure 9.1: Hello World Configuration File

target.args =... This sets wup the arguments to be passed to
ail.util.AJPF_w_AIL. ail.util.AJPF_w_AIL takes three arguments. In
the configuration file these all have to appear on one line, separated by
commas (but no spaces). This means you can not see them all in the file
print out above. In order the arguments are:

1. The first is an AIL configuration file. In this example the file is
${mcapl}/src/examples/goal/programming guide/chapteri/hello world.ail
which is a configuration file for a simple Hello World program.

2. The second argument is a file containing a list of properties in AJPF’s
property specification language that can be checked. In this example
this file is simple.psl in the directory chapter 1 of the programming
guide.

3. The last argument is the name of the property to be checked, 1 in
this case.

log.info =... JPF suppresses the logging configuration you have in your AIL
configuration files so you need to add any logging configurations you want
to the JPF configuration file. Useful classes when debugging a model
checking run are

ail.mas.DefaultEnvironment At the info level this prints out any ac-
tions the agent performs. Since the scheduler normally only switches
between agents when one sleeps or performs an action this can be
useful for tracking progress on this model checking branch.

ajpf. MCAPLAgent At the info level this prints information when an
agent sleeps or wakes. Again this can be useful for seeing what has
triggered a scheduler switch. It can also be useful for tracking which
agents are awake and so deducing which one is being picked.

ajpf.product.Product At the info level this prints out the current path
through the search tree being explored by the agent. This can be

164CHAPTER 9. EXECUTING AND VERIFYING GOAL AGENTS IN THE AIL AND AJPF

useful just to get a feel for the system’s progress through the search
space. It can also be useful, when an error is thrown and in conjunc-
tion with some combination of logging actions, sleeping and waking
behaviour and (if necessary) internal agent states, to work out why
a property has failed to hold.

It also prints the message Always True from Now On when explo-
ration of a branch of the search tree is halted because the system
deduces that the property will be true for the rest of that branch.
This typically occurs when the property is something like ¢ (i.e., ¢
will eventually occur) and the search space is pruned once ¢ becomes
true.

ajpf.psl.buchi.BuchiAutomaton At the info level this prints out the
Biichi Automaton that has been generated from the the property
that is to be proved. Again this is useful, when model checking fails,
for working out what property was expected to hold in that state.

ail.semantics. AILAgent At the fine level this prints out the internal
agent state once every reasoning cycle. Be warned that this produces
a lot of output in the course of a model checking run.

listener+=,.listener.ExecTracker Adding 1listener.ExecTracker to
JPF’s listeners means that it collects more information about progress as
it goes and then prints this information out. The next two lines suppress
some of this information which is usually less useful.

9.3.3 Property Specification

The file simple.psl specifies two Linear Temporal Logic (LTL) properties for
checking. Given the Hello World programs are so simple these properties are
very basic.

1: [1("B(goal_agent,bad))

2: <>(B(goal_agent, nrOfPrintedLines(10)))

The first of these is equivalent to the LTL statement “it is always the case
that goal_agent doesn’t believe bad” [1=Bgoa1 agent bad. The second is equiv-
alent to the LTL statement “eventually goal_agent believes the number of
printed lines is 10” ©Bgoa1 agent nrOfPrintedLines(10).

You can find more detail on property specification in section 5.1.

9.3.4 Running AJPF

To run AJPF you need to run the program gov. jpf.tool.RunJPF which is con-
tained in 1ib/3rdparty/RunJPF. jar in the MCAPL distribution. Alternatively
you can use the run-JPF (MCAPL) Run Configuration in Eclipse.

You need to supply the JPF Configuration file as an argument.

9.4. NOTES ON CHAPTERS 3 & 4 165

9.4 Notes on Chapters 3 & 4

Chapters 3 and 4 build up to executable programs that are used in Chapters 5
and 6. As such we discuss the details in the notes on those chapters. In partic-
ular the notes on chapter 6 discuss the use of the Blocks World environment.

It should be noted that actual GOAL program code in AIL is identical to that
presented in Programming Cognitive Agents in GOAL, it is only configuration
files and sometimes environments that differ.

9.5 Notes on Chapter 5

The goal programs in chapter 5 do not need to use sensing to gain information
from any external environment. As such they can be run successfully in the
Default GOAL environment goal.mas.GoalEnvironment

Both stack builder programs used in the chapter can be found in

src/examples/goal/programming guide/chapter>5.

together with AIL configuration files allowing them to be run and AJPF config-
uration files allowing the system to check properties of them. It should be noted
that the random version of the stack builder program takes considerably longer
to model-check because of the increase in search space caused by the random
evaluation of rules.

9.6 Notes on Chapter 6

All the programs discussed in the chapter 6 of Programming Cognitive Agents
in GOAL can be found in

src/examples/goal/programming guide/chapter6.

9.6.1 Section 6.1

Like GOAL, the AIL supports the Environment Interface Standard (EIS). How-
ever a little more effort is required to use this than in GOAL itself where it can
all be managed via a configuration file.

In the AIL a mediating environment is needed between an environment that
supports the EIS and the system itself. There are two of these in

src/examples/goal/programming _guide/chapter6.

one for the Blocks World and one for the Tower World. These mediating envi-
ronments extend GOALEISEnvironment (which is an AIL style environment for
GOAL that supports the EIS) and provide some simple configuration methods.

Table 6.1 in the programming guide shows a MAS file for use with the Blocks
World environment. In the AIL version of goal this becomes the combination

166CHAPTER 9. EXECUTING AND VERIFYING GOAL AGENTS IN THE AIL AND AJPF

of the table6_1.ail configuration file and the BlocksWorldEnvironment. java
mediating environment. We will discuss these in turn.

env = goal.programming_guide.chapter6.BlocksWorldEnvironment
goal.env.init.start = bwconfigEx1l.txt
goal.env.init.gui = true

mas.file = /src/examples/goal/programming_guide/chapter5/stackBuilder.gl
mas.builder = goal.GOALMASBuilder

goal.launchpolicy.entity.launch = goal_agent

Here instead of providing a jar file for the environment we supply the me-
diating environment to the env argument. However the other components of
the environment section of the GOAL MAS file are present. init = [start =
‘‘bwconfigEx1l.txt’’] becomes goal.env.init.start = bwconfigExl.txt.
We also add goal.env.init.gui = true since this displays a useful GUI in-
terface for the environment.

The agentfiles section of the MAS file has become mas.file and mas.builder
as described in the notes for Chapter 1.

Lastly the launchpolicy section says to launch the entity goal_agent which
is the default agent name given to GOAL agents in AIL. We will discuss renam-
ing agents when we examine the next example.

Example 33 shows the mediating environment. It is the constructor for this
environment that contains the jar file for the EIS environment blocks world. In
our case we are using blocksworld-1.1.0.jar which we've supplied with the
MCAPL distribution. The configure method is used to configure the environ-
ment initialisation using the Java methods addFileToInitMap, addToInitMap
which are supplied by the GOALEISEnvironment — these add tuples of a string
and an EIS parameter to an initialisation map which is eventually passed to
the EIS environment for initialisation. Since the initialisation parameters are
specific to the environment and may be filenames or other types of EIS param-
eters it is necessary to implement the configuration of these specifically for the
environment. The configure method then calls the method in the super class,
GOALEISEnvironment, which handles configuration of launch policies, etc.

Lastly the done () method in GOALEISEnvironment is overridden. By default
GOAL environments are assumed to change without an agent performing an
action (e.g., because of non software agents acting in them). This is not the
case with the Blocks World where things only move if the agent moves them.
This being the case the method done () should return true indicating that the
program can exit if the agent has finished executing (see the discussion of AIL
environments in the AIL tutorials).

9.6. NOTES ON CHAPTER 6 167

Example 33
package goal.programming_guide.chapter6; 1
2
import java.util.HashMap; 3
import java.util.Map; 4
5
import ail.util.AlLConfig; 6
import eis.EnvironmentlnterfaceStandard; 7
import eis.iilang.ldentifier; 8
import eis.iilang.Parameter; 9
import goal.mas. GOALEISEnvironment; 10
import goal.mas. GoalEnvironment; 11
import goal.util.LaunchPolicy; 12
13
public class BlocksWorldEnvironment extends GOALEISEnvironment { 14
15
public BlocksWorldEnvironment () { 16
super(”/lib/eis/blocksworld —1.1.0.jar"); 17
18
19
©Override 20
public void configure(AlLConfig config) { 21
if (config.containsKey(”goal.env.init.start”)) { 22
String filename = config.getProperty(” config_path”) + " /" +23
config.getProperty(” goal.env.init.start”); 24
addFileTolnitMap (" start”, filename); 25
} 26
27
if (config.containsKey(” goal.env.init.gui”)) { 28
Identifier value = new Identifier (" true”); 29
if (config.getProperty(”goal.env.init.gui”).equals(” false”))30{
value = new Identifier (" false”); 31
32
addTolnitMap (" gui”, value); 33
} 34
35
super.configure (config); 36
} 37
38
39
©@Override 40
public boolean done() { 41
return true; 42
} 43
44
45

168CHAPTER 9. EXECUTING AND VERIFYING GOAL AGENTS IN THE AIL AND AJPF

9.6.2 Section 6.2

Section 6.2 introduces the use of two agents with the Blocks World environ-
ment. These are the stackBuilder agent from chapter 5, and a tableAgent
introduced in chapter 6. The GOAL agent code in the AIL version is identical
to that in the GOAL manual however the configuration file (figure 6.1 in the
goal manual) is

env = goal.programming_guide.chapter6.BlocksWorldEnvironment
goal.env.init.start = bwconfigExl.txt
goal.env.init.gui = true

.file = /src/examples/goal/programming_guide/chapter6/stackBuilder.gl
.builder = goal.GOALAgentBuilder

mas.agent.1
mas.agent.1
mas.agent.l.name = stackbuilder
mas.agent.2.file = /src/examples/goal/programming_guide/chapter6/tableAgent.gl
mas.agent.2.builder = goal.GOALAgentBuilder

2

mas.agent.2.name = tableagent

goal.launchpolicy.entity.launch = stackbuilder,tableagent

This uses the mechanisms for naming individual agents from AIL discussed
in section 9.1.2

The configuration file can be found in the file two_agents.ail in the
chapter6 directly. Unfortunately when running this, events happen so fast
that it is difficult to see what is going on although a series of actions
taken by each agent will be printed to the console. To see the effect in
the environment you need to run the system using a Java debugger. We
would suggest with a breakpoint set in the executeAction method in the
ail.mas.eis.EISEnvironmentWrapper class. This will allow you to observe
the effect each time an agent executes an action in the environment.

9.6.3 Section 6.3 onwards

The remaining sections in chapter 6 refer to a “tower world” environment. Again
this is included in the AIL distribution. The link to the tower world environment
can be found in TowerWorldEnvironment. java in the chapter6 package and
the configuration file can be found in tower_agent.ail.

A further environment and configuration file
SimpleTowerWorldEnvironment.java and tower_agent_simple.ail can
be found in the directory. These were created to allow automated testing of the
GOAL implementation and provide an environment which is not interactive
and doesn’t use the EIS. You may wish to examine them if interested but this
isn’t necessary for learning GOAL from the programming guide.

9.7. CHAPTER 7 169

9.7 Chapter 7

Chapter 7 examines communicating agents via two examples: an Elevator exam-
ple and a Coffee Maker Example. The chapter7 package in the AIL distribution
contains only at the Coffee Maker example. This does not require a special en-
vironment and so used the default goal.mas.GoalEnvironment. It launches
the two agents maker and grinder as the tableagent and stackbuilder were
launched in our discussion of section 6.2.

170CHAPTER 9. EXECUTING AND VERIFYING GOAL AGENTS IN THE AIL AND AJPF

Bibliography

[Bremner et al., | Bremner, P., Dennis, L. A., Fisher, M., and d, A. F. W. On
proactive, transparent and verifiable ethical reasoning for robots. Proceedings
of the IEEFE special issue on Machine Ethics: The Design and Governance of
Ethical AI and Autonomous Systems.

[Courcoubetis et al., 1992] Courcoubetis, C., Vardi, M., Wolper, P., and Yan-
nakakis, M. (1992). Memory-efficient Algorithms for the Verification of Tem-
poral Properties. In Formal Methods in System Design, pages 275—288.

[Dennis et al., 2015a] Dennis, L., Fisher, M., Slavkovik, M., and Webster,
M. (2015a). Formal verification of ethical choices in autonomous systems.
Robotics and Autonomous Systems, pages —.

[Dennis et al., 2011] Dennis, L., Fisher, M., Webster, M., and Bordini, R.
(2011). Model checking agent programming languages. Automated Software
Engineering, pages 1-59. 10.1007/s10515-011-0088-x.

[Dennis, 2017] Dennis, L. A. (2017). Gwendolen semantics: 2017. Technical
Report ULCS-17-001, University of Liverpool, Department of Computer Sci-
ence.

[Dennis et al., 2016] Dennis, L. A., Aitken, J. M., Collenette, J., Cucco, E.,
Kamali, M., McAree, O., Shaukat, A., Atkinson, K., Gao, Y., Veres, S. M.,
and Fisher, M. (2016). Agent-based autonomous systems and abstraction
engines: Theory meets practice. In Alboul, L., Damian, D., and Aitken,
M. J., editors, Towards Autonomous Robotic Systems: 17th Annual Confer-
ence, TAROS 2016, Sheffield, UK, June 26—July 1, 2016, Proceedings, pages
75-86, Cham. Springer International Publishing.

[Dennis and Fisher, 2023] Dennis, L. A. and Fisher, M. (2023). Verifiable Au-
tonomous Systems:Using Rational Agents to Provide Assurance about Deci-
sions Made by Machines. Cambridge University Press.

[Dennis et al., 2010] Dennis, L. A., Fisher, M., Lincoln, N., Lisitsa, A., and
Veres, S. M. (2010). Declarative Abstractions for Agent Based Hybrid Control
Systems. In Proc. 8th Int. Workshop on Declarative Agent Languages and
Technologies (DALT), volume 6619 of LNCS, pages 96-111. Springer.

171

172 BIBLIOGRAPHY

[Dennis et al., 2014] Dennis, L. A., Fisher, M., Lincoln, N. K., Lisitsa, A., and
Veres, S. M. (2014). Practical verification of decision-making in agent-based
autonomous systems. Automated Software Engineering, pages 1-55.

[Dennis et al., 2015b] Dennis, L. A., Fisher, M., and Webster, M. (2015b). Two-
stage agent program verification. Journal of Logic and Computation.

[Dennis et al., 2012] Dennis, L. A., Fisher, M., Webster, M., and Bordini, R. H.
(2012). Model Checking Agent Programming Languages. Automated Software
Engineering, 19(1):5-63.

[Dennis et al., 2015¢] Dennis, L. A., Fisher, M., and Winfield, A. F. T. (2015c).
Towards verifiably ethical robot behaviour. In AAAI Workshop on Al and
FEthics (1st International Conference on AI and Ethics), Austin, TX.

[Emerson, 1990] Emerson, E. A. (1990). Temporal and Modal Logic. In van
Leeuwen, J., editor, Handbook of Theoretical Computer Science, pages 996—
1072. Elsevier.

[Ferrando et al., 2018] Ferrando, A., Dennis, L. A., Ancona, D., Fisher, M.,
and Mascardi, V. (2018). Verifying and validating autonomous systems: an
integrated approach. In 8th IEEE International Conference on Runtime Ver-
ification.

[Ferrando et al., 2021] Ferrando, A., Dennis, L. A., Cardoso, R. C., Fisher, M.,
Ancona, D.; and Mascardi, V. (2021). Toward a holistic approach to verifi-
cation and validation of autonomous cognitive systems. ACM Trans. Softw.
Eng. Methodol., 30(4).

[Fisher et al., 2013] Fisher, M., Dennis, L. A., and Webster, M. P. (2013). Ver-
ifying autonomous systems. Commun. ACM, 56(9):84-93.

[Gerth et al., 1996] Gerth, R., Peled, D., Vardi, M. Y., and Wolper, P. (1996).
Simple on-the-fly Automatic Verification of Linear Temporal Logic. In Proc.
15th IFIP W(G6.1 International Symposium on Protocol Specification, Testing
and Verification XV, pages 3-18, London, UK. Chapman & Hall, Ltd.

[Havelund et al., 2000] Havelund, K., Lowry, M., Park, S., Pecheur, C., Penix,
J., Visser, W., and White, J. L. (2000). Formal Analysis of the Remote
Agent Before and After Flight. In Proc. 5th NASA Langley Formal Methods
Workshop, Virginia, USA.

[Hindriks, 2014] Hindriks, K. V. (2014). Programming Cognitive Agents in
GOAL.

[Hindriks et al., 2001] Hindriks, K. V., de Boer, F. S., van der Hoek, W., and
Meyer, J.-J. (2001). Agent Programming with Declarative Goals. In Intelli-
gent Agents VII, volume 1986 of LNAI, pages 228-243. Springer.

BIBLIOGRAPHY 173

[Holzmann, 2004] Holzmann, G. (2004). The Spin Model Checker: Primer and
Reference Manual. Addison-Wesley.

[Kars, 1996] Kars, P. (1996). The Application of Promela and Spin in the
BOS Project (Abstract). http://spinroot.com/spin/ Workshops/ws96/Ka.pdf.
Accessed 2013-05-30.

[Kirsch et al., 2011] Kirsch, M. T., Regenie, V. A., Aguilar, M. L., Gonzalez,
0., Bay, M., Davis, M. L., Null, C. H., Scully, R. C., and Kichak, R. A.
(2011). Technical Support to the National Highway Traffic Safety Admin-
istration (NHTSA) on the Reported Toyota Motor Corporation (TMC) Un-
intended Acceleration (UA) Investigation. NASA Engineering and Safety
Center Technical Assessment Report.

[Kwiatkowska et al., 2011] Kwiatkowska, M., Norman, G., and Parker, D.
(2011). PRISM 4.0: Verification of Probabilistic Real-time Systems. In Proc.
28rd International Conference on Computer Aided Verification, volume 6806
of LNCS, pages 585-591. Springer.

[Lindner et al., 2017] Lindner, F., Bentzen, M., and Nebel, B. (2017). The
HERA Approach to Morally Competent Robots. In Proc. IEEE/RSJ Int.
Conf. Intelligent Robots and Systems (IROS).

[Rao and Georgeff, 1992] Rao, A. S. and Georgeff, M. P. (1992). An Abstract
Architecture for Rational Agents. In Proc. International Conference on
Knowledge Representation and Reasoning (KRER), pages 439-449. Morgan
Kaufmann.

[Visser et al., 2003] Visser, W., Havelund, K., Brat, G. P., Park, S., and Lerda,
F. (2003). Model Checking Programs. Automated Software Engineering,
10(2):203-232.

Index

€, 99, 123

A, 46-48

B, 46-48

g, 46-48

ID, 46-48, 58

7, 46-48

P, 4648

:achieve, 113, 114
:perform, 113, 114
;tell, 113, 114

abstraction engine, 139, 141
abstraction engine, 139-142, 145, 146,
153
accepting path, 55, 59
action, 26, 29, 30, 32-34, 51, 52, 69,
79-83, 85, 99, 102, 105, 113,
116-118, 120, 126, 135, 140,
147, 148, 154, 168
append, 117
arithmetic, 117, 118
assert_shared, 141, 142, 147, 151
div, 118
do_nothing, 92
driverless car example, 71
execution, 30
in DefaultEnvironment, 117, 118,
120
minus, 118
perf, 147, 151
print, 34, 79-83, 117, 120
whitespace, 81
printagentstate, 120
printstate, 120
remoev_shared_unifies, 147
remove_shared, 141, 142, 147, 151
send, 113

sum, 118
times, 118
toString, 117
verification environment, 74
with duration, 105
Action (class), 27, 29, 30
ActionScheduler, 68
ActionScheduler (class), 34, 35
agent
configuration, 31
gwendolen, 128
renaming, 23, 116
sleep, 131
agent programming, 68, 69
agent state, 52
AIL, 9, 17, 21, 80, 99, 101, 110, 142
configuration, 17, 18, 21-23, 31,
38, 40, 41, 51, 56, 58
exercises, 24
environment, 69, 71
scheduler, 68
AIL (class), 83
AIL (class), 17, 22, 45, 80, 93, 160, 162
ail.store_sent_mssages, 24
ATLAgent (class), 94, 104, 110
ATLAgent (class), 52, 96, 110, 164
reason, 110
AILConfig (class), 40, 41
AILEnv (interface), 26, 146
addPercept, 31
addPerceptListener, 35
cleanup, 31
configure, 41
executeAction, 30, 31, 34
init_after_adding_agents, 31
init_before_adding_agents, 31
removePercept, 31

174

INDEX

setMAS, 36

setScheduler, 35
AILSocketClient (class), 149

pendingInput, 149
AJPF, 9, 21, 39, 43

environment, 69, 71

logging, 39

relationship to AIL, 69
ajpf.model.location, 60, 61, 63, 64
ajpf.model.path, 61, 64
ajpf.model_only, 60, 63
ajpf.record, 24, 38, 56, 58, 112, 115,

161

ajpf.replay, 24, 38, 58, 112, 115, 161
ajpf.replay.file, 24, 38, 58, 115, 161
ajpf.target_modelchecker, 60, 63

175

reasoning about belief, 87

remove, 82, 83, 106

shared, 140-142, 146, 153, 154
beliefs

source, 137
BlocksWorldEnvironment (class), 166
BuchiAutomaton (class), 52, 55, 164

Choice (class), 24, 35-37, 58, 67, 161
addChoice, 37
get_choice, 37
choice generator, 51
ChoiceRecord (class), 56
communication, 27, 29, 30, 95, 109,
113, 138
thread, 29

ajpf.transition_every_reasoning_cycle, 24,configuration

58, 161

AJPF_HOME, 12, 18, 44, 93
AJPF_w_AIL (class), 17, 45, 162
AJPFLogger (class), 39, 149, 154

logging level, 39

ItFine, 39

ItFiner, 39

ItFinest, 39

ItInfo, 39
Always True from Now On, 52, 164
ApplyApplicablePlans, 132
arithmetic, 118
autonomous systems, 9, 139, 153

verification, 153, 154, 156158

Biichi Automaton, 47, 52, 55, 56, 59,
60
state, 55
backtracking, 51
BDI, 68
BDIPython, 9
belief, 81-87, 95, 97-102, 106, 141
add, 82, 83
addition, 134
change, 100
drop, 134
initial, 83, 84, 129
not believe, 85
reasoning about belief, 86

agent, 31
AIL, 17, 18, 38, 40, 41, 51, 56, 58
EIS, 166
environment, 31, 39
GOAL, 159, 160
gwendolen, 80, 83, 84, 92, 93
JPF, 17, 43-45, 48, 51, 54, 58, 60,
63, 162
model checking, 43
cruise control
example, 70-72
example verification, 74
verification environment, 71, 73
current intention, 125

debugging, 38, 51, 56, 91, 92, 99, 110,
120, 157

agent state, 120

could not find file, 92

exercises, 110

Gwendolen, 91, 92, 94, 96, 99
termination failure, 91

model checking, 157

model checking failed, 51, 56

multi-agent program, 115

program, 49, 120

properties, 55

random behaviour, 38

with a Java debugger, 108, 110

176

with a Java debugger, 110
Deed
Dnull, 137
deed, 99-101, 109, 123, 124
empty, 99
in gwendolen, 129
stack, 99, 123, 125, 132
top, 109
DefaultEASSEnvironment (class), 145—
147, 149
addUniquePercept, 147, 151
append_string_pred, 147
do_job, 148, 150
scheduler_setup, 146
DefaultEnvironment (class), 80
DefaultEnvironment (class), 17, 22, 23,
25, 26, 30, 34, 35, 40, 51, 52,
84, 116, 117, 120, 146-148,
151, 157, 163
addMessage, 27
addPercept, 26, 147
clearMessages, 27
clearPercepts, 26
executeAction, 152
executeSendAction, 152
exercises, 31
removePercept, 26
removeUnifiesPercept, 26, 34, 147
setup_scheduler, 35

DefaultEnvironmentwRandomness (class),

35-37
development branch, 12
driverless car
example, 70-72
example verification, 74
verification environment, 71, 73
DroplIntentionIfEmpty, 131

EASS, 9, 34, 139-142, 145-148, 153,
154, 158
exercises, 142, 153, 158
reasoning cycle, 140
EASSAgent (class), 158
ACHIEVE, 158
PERFORM, 158
TELL, 158

INDEX

EASSEnv (interface), 141

EASSEnv (interface), 146
done, 148

EASSSocketClientEnvironment (class),

148
EASSVerificationEnvironment (class),
154, 156, 157

generate_messages, 154, 158
generate_sharedbeliefs, 154
random_bool_generator, 154
random_int_generatpr, 154

Eclipse, 13, 17, 19, 44, 160

EIS, 165, 166, 168
configuration, 166

EISEnvironmentWrapper (class), 168
executeAction, 168

empty deed, 123

environment, 9, 10, 17, 21-23, 25, 26,
31-36, 39-41, 52, 65, 80, 82,
84, 113, 126, 138, 140-142,
145, 146, 148, 149, 154, 160

agent, 69

clean up, 31

configuration, 31, 3941

exercise, 42

connecting to external system, 34

default, 17, 80, 116

dynamic, 32, 33, 146, 148

for verifying autonomous systems,
154

initialisation, 31, 37

model-checking, 69, 74

random, 69, 73, 154

random features, 32, 35, 67

structured, 154

Environment Interface Standard, see EIS

et.print_insn, 50

et.show_shared, 50

ethical reasoning, 9

EvaluationAndRuleBaselterator (class),

97
event, 99-102, 123, 125
no plan, 103

start, 100-102
trigger, 124, 133
example, 13

INDEX

arithmetic, 118

Blocks World, 165-168

Coffee Maker, 169

environment configuration, 41

hello_world, 22, 79-81, 117

inequalities, 119

intention structure, 100

lifterandmedic, 44-47, 113, 115

logging, 52

low Earth orbit, 41

motorway, 142, 148-154, 156

pickupagent, 18, 19

pickuprubble, 67, 82-90, 94, 95,
97, 101, 103, 106, 107, 113

Prism, 63-65, 67

RandomRobotEnv (class), 35

RandomRobotEnv2 (class), 37

searcher, 40, 65

simple_mas, 24, 113, 115, 116

SPIN, 60, 61

Tower World, 165, 168

twopickupagents, 49, 50, 52, 54,
58, 60, 61, 63, 64

formal verification, 71

GenerateApplicablePlansEmptyProblemGoal,

131

GenerateApplicablePlansIfNonEmpty, 131

Git, 12

GOAL, 9, 10, 159-166, 168, 169
agentfiles, 166
configuration, 159, 160
executing, 160
launchpolicy, 162, 166
verification, 162-164

goal, 79, 81, 83-85, 87, 89, 90, 92, 95,

99-102, 108, 109, 142

achieve, 83-85, 87, 133
add, 83
commitment, 99-101, 123, 133
drop, 108, 133
goal deletion, 135
in plan guard, 89
in plan guard, 89
initial, 83, 95, 100, 129

177

no plan for goal, 90
perform, 79, 83-85, 87, 133, 141
problem, 95, 109, 135
reasoning about goals, 90
remove, 83
subgoal, 85, 90, 99
test, 133
goal type, 129
GOALAgentBuilder (class), 160
GOALEISEnvironment (class), 165, 166
addFileTolnitMap, 166
configure, 166
done, 166
GoalEnvironment (class), 160, 165, 169
GOALMASBuilder (class), 160
guard, 99, 100, 124, 126
Gwendolen, 9, 21, 79-99, 101-103, 105
110, 113, 115-120, 139-141
agent, 128
agent name, 83
configuration, 79, 80, 83, 84, 92,
93
debugging, 92, 99, 108, 110
exercises, 94, 96
exercise, 119
exercises, 81, 85, 89, 91, 103, 106,
108, 110, 114, 116-118, 120
forcing stop, 91
logging, 83, 94, 104
message handling, 114
parsing error, 93
reasoning cycle, 108, 127, 129
running programs, 79, 80, 83
semantics, 123, 126-129
variables, 85, 97
verification environment, 73
GwendolenAgentBuilder (class), 115
GwendolenMASBuilder (class), 80
GwendolenMASBuilder (class), 22, 115
GwendolenRC (class), 109

HandleAddAchieveTest GoalwEvent, 132
HandleAddBeliefwEvent, 134
HandleAddPerformGoal, 133
HandleDropBeliefwEvent, 134
HandleDropGeneralGoal, 133

178

HandleEmptyDeedStack, 132
HandleGeneralAction, 135
HandleLockUnlock, 134
HandleMessages, 138

HandleNull, 137
HandleSendAction, 136
HandleWaitFor, 135
HelloWorldEnvironment (class), 162

IgnoreUnplannedProblemGoal, 135
illocutionary force, see performative
inbox, 137, 138
inequalities, 119
in plan guard, 119
installation, 11
development branch, 12
Eclipse, 13
IntellijJ, 12
Unix, 11
IntChoiceFromSet (class), 51
IntelliJ, 12, 17
intention, 95, 99-106, 108, 109, 125,
140, 141
current, 100-102, 105, 108, 125,
129, 132
drop, 131
empty, 102, 108
execution, 109
execution order, 106
in gwendolen, 123, 124
locked, 130
locking, 103, 105, 106, 108, 124,
130, 134
resuming, 100
selection, 130
source, 101, 102
start, 95
suspension, 100, 103-105, 108, 124,
128, 135
too many, 140
top deed, 130
top event, 130
trigger, 100
intentions
changes in perception, 137

INDEX

Java, 39, 110
logging, 39
Java (class)path, 18
JPF, 9, 10, 39, 43, 45, 48
configuration, 17, 43-45, 48, 51,
54, 58, 60, 63, 162
listener, 50
listener, 50, 63, 67
probabilistic, 63, 67
logging, 39, 51
model state, 51
JUnit, 13

Linear Temporal Logic, 47
listener, 164
lists, 87
lock, 105, 106
locking, 135
log.format, 84, 161
logging, 22, 23, 39, 81, 83, 92, 94, 97,
99, 104, 157, 161, 164
exercise, 40
logging level, 39
logname, 39
Strings, 39
logical formulae, 27-29
numbers, 28
predicates, 27
unification, 29
variables, 28, 29

mas.agent.1.builder, 23, 115, 160
mas.agent.1.file, 23, 115, 160
mas.agent.l.name, 23, 116, 161
mas.builder, 22, 23, 80, 160, 166
mas.file, 22, 23, 80, 115, 159, 160, 166
MCAPL Framework, 73
MCAPLAgent (class), 51, 52, 163
MCAPLController (class), 36
MCAPLJobber (interface), 33, 34, 146

compareTo, 34

do_job, 33, 34

getName, 34
MCAPLPerceptListener (interface), 35
MCAPLProbListener (class), 63, 65, 67
MCAPLScheduler (interface), 35, 146

INDEX

message, 69, 73, 95, 100, 109, 113, 115,
126, 137, 141, 142, 152, 154,
158
converted to event, 113
converted to intention, 109
driverless car example, 72
in gwendolen, 138
logical content, 113, 158
performative, 113
recieved, 100
recipient, 113, 158
send, 136
sender, 158
sent, 95, 152
verification environment, 73, 74
Message (class), 29, 30, 152, 158
getIlForce, 30
getPropCont, 30
getReceiver, 30
getSender, 30
toTerm, 30
mismatched input, 93
mismatched input, 93
model, 55, 5861, 63—65
state, 55, 60, 65
generation, 51, 58
model checking, 22, 24, 36, 38, 44, 48,
51, 52, 54, 56, 58, 67, 68, 154,
157, 161, 162, 165
branch done, 51
depth, 51
failure, 54
log file, 54
model generation only, 5961, 63
exercise, 62, 67
probabilistic, 32, 36, 65
search space, 165
search tree, 51, 52, 54, 154, 164
current path, 52
speed, 54
model-checking, 68
AIL support, 69
example, 70
handling the environment, 69, 71,
74
motorway simulator, 68, 70, 71

179

MotorwayMain (class), 142, 151
multi-agent system, 80
multi-agent system, 9, 10, 17, 21-24,
31, 43, 113, 115, 148, 153
configuration, 31
execution, 22
model-checking, 68, 69

NActionScheduler, 68
NActionScheduler (class), 34, 146, 149
NewAgentProgramState, 58
no applicable plan, 91, 92, 94
no plan yet, 99, 101, 123, 125
null action, 137
NumberTerm (interface), 27, 28
solve, 28
NumberTermImpl (class), 27, 28

operationalrules (package), 109

PCTL, 63
Perceive, 137
percept listener, see MAPLPerceptLis-
tener (interface)35
perception, 26, 32-34, 69, 73, 99-102,
109, 126, 138-142, 146-148
in gwendolen, 137
operational rules for, 137
verification environment, 73, 74
Percieve (rule), 95
perf, 141, 142
performative, 29, 30, 113, 158
achieve, 30
perform, 30
tell, 30
PickUpAgent.psl, 62
plan, 80, 83, 85-87, 89, 90, 92, 97, 100-
102, 106, 108, 109, 113, 119,
138
applicable, 124, 125, 131, 132
body, 124
empty, 106
generation, 109
guard, 80, 85, 86, 89, 90, 97, 119
in gwendolen, 124
library, 124, 125, 129, 132

180

selection, 125, 132
trigger, 106
trigger event, 125
PLTL, 47
Predicate (class), 2629, 147, 158
addTerm, 27
getFunctor, 28
getTerm, 27
getTermsSize, 27
setTerm, 27
Pretty Printer, 97
Prism, 58-60, 62-65, 67
probabilisticChoice, 51
probability distribution, 36
initialisation, 37
Product (class), 51, 52, 157, 164
product automaton, 59
program automaton, 68
Prolog, 87
cut, 87
Promela, 59-61
Properties (class), 40
containsKey, 41
get, 41
property, 157, 164
about actions, 4648
about belief, 46-48
about goals, 46-48
about intending to do, 46-48
about intention, 47, 48
about intentions, 46
about perception, 47, 48
about percepts, 46
always, 47
and, 47
eventually, 47, 52
implication, 46
intending to do, 58
negated, 46
or, 47
release, 47
sending messages, 48
until, 47

INDEX

property specification language, 26, 43,
46, 47, 60, 61, 63, 67, 164
exercises, 47
semantics, 46
syntax, 46

Random (class), 35, 38, 58
random doubles, 36
random_booleans, 35
nextBoolean, 35
random_ints, 35
nextInt, 35
RandomRobotEnv (class), 36, 65
reasoning rules, 98
reasoning cycle, 108, 141
reasoning engine, 141
reasoning rules, 87
reasoning cycle, 52, 58, 95, 108-110,
140, 146, 149
reasoning engine, 139-142, 145, 146,
153, 154, 156158
reasoning rules, 86, 88-90, 97, 98
debugging, 97
record model checking, 24, 35, 38, 56,
57
record random execution, 38, 112, 115
replay execution, 38, 112, 115
replay model branch, 24, 35, 56, 57
RoundRobinScheduler, 68
RoundRobinScheduler (class), 35
run-AIL, 17-19, 22, 80, 83, 160
run-JPF, 1720, 44, 164
RunJPF (class), 17, 19, 44
runJPF (class), 164
runtime verification, 9

scheduler, 33-35, 51, 68, 115, 127, 131,
146, 148, 163

effect on model checking, 51, 63
not changing jobber, 34
perceptChanged, 34

search space, 38, 51, 52, 154, 161
branching, 51
pruning, 52

property automaton, see Biichi Automa- SearchAndRescueDynamicEnv (class),

ton

110

INDEX
SearchAndRescueEnv (class), 91 wait for, 135
SearchAndRescueEnv (class), 82 waitfor, 103-105
SearchAndRescueMASEnv (class), 113, Windows, 20
115
SelectIntentionNotUnplannedProblemGoal,
130
self, 101

SendAction (class), 27, 152
getMessage, 152
getReciever, 152

simulation, 69

SingleAgentScheduler (class), 35

site.properties, 43, 45

sleep, 131

SleepIfEmpty, 130

sleeping, 51, 52, 54, 108, 115, 163

sockets, 145, 148, 149, 151, 152

SPIN, 58-61

state space, 74

strings, 116, 117

target.args, 163
Term (interface), 27, 152
unifies, 29
test, 13
TowerWorldEnvironment (class), 168

Unifiable (interface), 29
apply, 29
unification, 97, 98, 100
unifier, 97-99, 123, 125
Unifier (class), 29
compose, 29
UniformBoolChoice (class), 154
UniformIntChoice (class), 154
Unix, 11, 18, 19
unlock, 105, 106
until statements, 55

variable cluster, 98
VarTerm (class), 27-29
verification, 43
agent program, 69
verification environment, 69, 71, 73, 74
Verificationof AutonomousSystemsEnvironment,
73, 74

181

