
Anytime Safe Interval Path Planning for Dynamic Environments

Venkatraman Narayanan, Mike Phillips, and Maxim Likhachev
Robotics Institute, Carnegie Mellon University, Pittsburgh, PA 15213

Abstract— Path planning in dynamic environments is signif-
icantly more difficult than navigation in static spaces due to
the increased dimensionality of the problem, as well as the
importance of returning good paths under time constraints.
Anytime planners are ideal for these types of problems as
they find an initial solution quickly and then improve it as
time allows. In this paper, we develop an anytime planner that
builds off of Safe Interval Path Planning (SIPP), which is a fast
A*-variant for planning in dynamic environments that uses
intervals instead of timesteps to represent the time dimension
of the problem. In addition, we introduce an optional time-
horizon after which the planner drops time as a dimension.
On the theoretical side, we show that in the absence of time-
horizon our planner can provide guarantees on completeness
as well as bounds on the sub-optimality of the solution with
respect to the original space-time graph. We also provide
simulation experiments for planning for a UAV among 50
dynamic obstacles, where we can provide safe paths for the
next 15 seconds of execution within 0.05 seconds. Our results
provide a strong evidence for our planner working under real-
time constraints.

I. INTRODUCTION

Whether it be autonomously driving a vehicle or flying a
UAV, almost all robots assume the ability to safely navigate
from place to place in the presence of moving objects such
as people, pets, cars, etc. In order to accomplish this, robots
need to be able to generate short collision-free paths with
respect to where dynamic obstacles will be in the near future.
Robots also need to be able to plan these paths very quickly,
since predictions for dynamic obstacle trajectories constantly
change. Providing good paths under hard time constraints is
critical in dynamic environments.

Dynamic environments pose real time constraints on plan-
ning times. If a planner takes too long to return a new
path, then a collision can occur with a moving obstacle.
Anytime planners find an initial solution quickly and improve
the solution as time allows. This type of planner is ideal
for dynamic environments and this paper presents such an
approach. Our anytime planner builds off of SIPP (Safe
Interval Path Planning) which is a fast, optimal, A*-variant
for planning in dynamic environments [10]. Planning with
time as an explicit dimension in the state space is slow
since there are an unbounded number of timesteps for each
spatial location. SIPP compresses timesteps into indices of
contiguous safe time intervals and therefore only has a single
state for each safe time interval, for each spatial location.
For example, if only one dynamic obstacle passes through
a particular location, then there are only two safe intervals
(before and after the obstacle passes) and therefore, only two

Fig. 1: An example scenario showing a quadrotor running
Anytime SIPP to reach the other end of the corridor. Left to
right, top to bottom: For a time horizon of 5s, the quadrotor
initially sees only the ground robot in the adjacent corridor
as a potential threat and plans a path (shown in red) around
it. As the quadrotor executes its plan, the trajectory of the
ground robot at the far end appears within the time horizon,
and a new path is generated that accounts for both the
dynamic obstacles.

states for that location. SIPP runs faster by having almost as
few states as planning in a static environment.

In this paper, we extend SIPP to anytime search by
combining ARA* (an anytime A* planner) and the ability
to run weighted A* search with SIPP [7], [9]. On top of the
anytime SIPP planner, we leverage the time horizon from the
Time-Bounded Lattice idea [5]. According to it, the planner
only plans with the time dimension for states whose time
value is earlier than the time horizon, whereas states after
the time horizon are planned for only with their spatial
coordinates. Planning in this representation is significantly
faster in large scale environments since the time dimension
only exists near the robot temporally. However, it can only
guarantee safety during execution up until the time horizon.
In practice, this is reasonable since trajectory predictions tend
to be less accurate the farther out they go anyway. Figure 1
illustrates the use of the time horizon.

In addition to presenting an anytime planner, we provide
theoretical guarantees on completeness as well as a bound

2012 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 7-12, 2012. Vilamoura, Algarve, Portugal

U.S. Government work not protected by U.S.
copyright

4708

Goal	

Robot	
(b)	

Wait	

Goal	

Robot	
(a)	

Fig. 2: (a) Treating the dynamic obstacle as a static one
results in no solution, (b) Planning with time finds a solution
by waiting for the obstacle to pass and then proceeding

on the sub-optimality of the solution cost. Experimentally,
we demonstrate the real-time capabilities of the planner in a
UAV domain. We plan time parameterized (x, y, z, θ) paths
on large maps with 50 dynamic obstacles. We show that we
can get initial solutions up to the time horizon in as little
as 0.05s and given more time we are able to improve the
solution toward optimal cost.

II. RELATED WORK

Most of the approaches to dealing with dynamic obstacles
model them as static obstacles with a short window of high
cost around the beginning of their projected trajectories [6],
[13]. The approach is efficient since it doesn’t have to
consider the time dimension and it ensures that the plan
generated will not be allowed to collide with the dynamic
obstacles in the near future. However, this approach suffers
from sub-optimality in cases where the robot could have
crossed a trajectory without being hit, or just waited until
the obstacle passed and then crossed. Instead it takes a long
path around the trajectory of the obstacle. There are even
cases when this approach will fail to find a solution at all,
such as when a dynamic obstacle’s trajectory goes through
or crosses in front of a doorway that the robot must also
use in order to reach its goal, as shown in Figure 2(a). On
the other hand, Figure 2(b) shows that by considering the
time dimension, the goal can be reached by waiting for the
obstacle to pass.

Another common approach is to consider dynamic obsta-
cles (still treating them as static obstacles) only while exe-
cuting the path, using local obstacle avoidance methods [2].
This method can get stuck in local minima and is not globally
optimal. Another alternative is for the local planner to use
velocity obstacles, which determine the controls that lead

to collision with moving obstacles [17]. While this is more
accurate, it still can lead to local minima as it greedily
minimizes the difference between the desired control without
dynamic obstacles, and the set of feasible controls that are
not in velocity obstacles.

Some approaches plan in the full space-time search space
[14]. Silver’s HCA* algorithm is designed for planning for
multiple robots, but in the paper, he points out that it can be
applied to planning in dynamic environments. This approach
finds the optimal solution but even on problems with only
a few dynamic obstacles, it can take much longer than real-
time as shown in the experimental results of the SIPP paper.

The approach [16] is similar to SIPP in that it uses
time intervals instead of timesteps. However, SIPP has been
extended to weighted A* search which we will be exploiting
in our algorithm to make an anytime search [9].

Planning with time, required for dealing with dynamic
obstacles, is hard to perform on-line, since constant demand
for re-planning enforces tight constraints on execution cycle.
To address the real-time constraints, a number of approaches
have been proposed that sacrifice near-optimality guarantees
for the sake of efficiency [3], [15]. Our proposed approach
differs in that we aim for computing paths that have bounds
on the sub-optimality of the solution with respect to short-
est time. Some other approaches use RRT-variants to plan
quickly in higher-dimensional search spaces that can handle
the kinodynamic constraints of more complex robots [8], [1].
However, these sampling-based approaches cannot provide
the guarantees on optimality that we strive for. RRT* is a
recent anytime sampling-based approach, which finds the
optimal solution in the limit [4]. However, when the planning
time expires, this algorithm cannot provide any information
about how good its solution is. On the other hand, with each
solution our anytime search finds, it has a numerical upper
bound on how sub-optimal it is compared to the optimal
solution.

III. ALGORITHM

A. Dynamic Obstacle Representation

Our algorithm assumes that there is another system that
tracks dynamic obstacles in the environment, predicts their
future trajectories, and formats them into a general represen-
tation we define. We are given a list of dynamic obstacles,
where each obstacle, treated as a sphere, has a radius and a
trajectory. A trajectory is a list of points, where each point
has state variables, specifying its configuration and time. The
points in the trajectory list are ordered from earliest time to
latest time, so by reading the points in order, it can be seen
how the obstacle is predicted to move in the near future.

B. Notations and Assumptions

We will now introduce some notation used to explain
the algorithm. We assume that the planning problem is
represented with a graph. As such, each state s in the graph
is defined by two elements: a spatial configuration vector
of the robot denoted by x(s) (for example, (x, y, z, θ)) and
a scalar safe time interval index denoted by interval(s).

4709

Indices of contiguous safe time intervals represent the indices
of time intervals during which a particular location is free
of dynamic obstacles. For example, if only one dynamic
obstacle passes through a particular location x(s), then there
are only two safe intervals (before and after the obstacle
passes). This means that there are only two states that have
x(s), the state with interval(s) = 0 and the state with
interval(s) = 1. This is substantially less than having
as many copies of states for a given x(s) as there are
timesteps. The edges between the states are short motions
connecting the corresponding configurations. Depending on
the representation of the configuration space, these could
be kinodynamically-feasible motion primitives [11], [6] or
simple segments of curves with constant curvature.

During the search, each state s has a variable, g(s), which
is the cost of the best known path from the start state to s.
The heuristic function h(s) is an estimate of the cost from
s to the goal state. We will be assuming that the heuristic
function is consistent, meaning that it never overestimates the
cost to the goal and it satisfies the triangle inequality. The
cost of a transition or edge from s to one of its successors
s′ is defined by c(s, s′).

Our algorithm makes the same assumptions as SIPP:
• c(s, s′) = time to execute the action from s to s′. In

other words, the goal of the planner is to find a time-
minimal trajectory.

• The robot is capable of waiting in place (this assumption
would not be true of a motorcycle for example).

• Inertial constraints (acceleration/deceleration) are negli-
gible. The planner assumes that the robot can stop and
accelerate instantaneously.

C. Anytime SIPP

Our algorithm extends SIPP to anytime planning by
combining it with ARA* (Anytime Repairing A*). ARA*
performs anytime planning by running a series of weighted
A* searches with decreasing values of ε [7]. Weighted A*
works by inflating the heuristic by ε > 1. This causes the
search to be more goal focused and in practice, it finds
solutions significantly faster than A* [12]. Weighted A* no
longer guarantees the optimal solution, but it has been shown
that even without re-expanding states, the found solution has
a cost no greater than ε times the optimal solution [7]. ARA*
starts by running a weighted A* search with a high ε in order
to find an initial solution very quickly. As time allows, ARA*
then decreases the value of ε and re-runs weighted A* while
reusing computation from previous searches. Given enough
time, ARA* will reach ε = 1 and return the optimal solution.

Unfortunately, SIPP in its original form only works as
an optimal planner. If ε > 1 there is no guaranteed sub-
optimality bound and in fact it can be shown that it is
not even complete. This is because SIPP works under the
assumption that states are expanded at the earliest possible
timestep for each location and each time interval in order to
guarantee the maximum set of successors for the state. The
sub-optimality of weighted search breaks this assumption.
In order to overcome this, we leverage CFDA-A* (Cost

Function Dependent Action A*), an extension to SIPP which
introduces two instances of each state (an optimal and
sub-optimal version) [9]. sub-optimal states are used when
possible to produce the fast planning times expected of
weighted A*, while just enough optimal states are expanded
in order to maintain guarantees on completeness and bounds
on the sub-optimality of the solution.

Now that SIPP has the guarantees on completeness and
sub-optimality bounds, we can apply ARA* directly in order
to get an anytime planner in dynamic environments using
safe intervals.

The Main function (Algorithm 1) shows the main loop
of ARA*. The lines 1-7 show how it runs the first search
(ImprovePath) with the initial ε provided by the user. The
loop from lines 8-16 decreases the value of ε (where the
decrement can be chosen by the user) and reruns the search
until the optimal solution is reached (ε = 1). During each
search, the INCONS list is filled with states that a cheaper
path was found for, but they had already been closed and
therefore were not re-expanded. These states are inconsistent
because the improvement in cost to these nodes have not been
propagated to their successors and therefore, they need to be
re-expanded in the next search iteration. Line 10 shows how
these states are put into the OPEN list to have the chance
to be expanded in the next search iteration. At lines 6,14 we
compute ε′ which gives us a sub-optimality bound on the
currently found solution.

Algorithm 1
Main()

1: g(sgoal) =∞
2: g(sstart) = 0
3: OPEN = CLOSED = INCONS = ∅
4: insert sstart into OPEN with ε ∗ h(sstart)
5: ImprovePath()
6: ε′ = min(ε,
g(sgoal)/mins∈OPEN∪INCONS(g(s) + h(s)))

7: publish current ε′-sub-optimal solution
8: while ε′ > 1 do
9: decrease ε

10: Move states from INCONS into OPEN
11: Update the priorities for all s ∈ OPEN according to

f(s)
12: CLOSED = ∅
13: ImprovePath()
14: ε′ = min(ε,

g(sgoal)/mins∈OPEN∪INCONS(g(s) + h(s)))
15: publish current ε′-sub-optimal solution
16: end while

The ImprovePath (Algorithm 2) function shows how an
individual weighted A* search is done with SIPP. As usual
in weighted A*, the state in the OPEN list with the minimum
f -value is expanded until the goal has the cheapest f -value
among the states in OPEN. The f -value of a state s is
a function of g(s) and h(s) that serves as a priority for
expanding s, when s is in the OPEN list. A state expansion

4710

starts on line 4, where it iterates over the possible motion
primitives (actions) that can be applied without collision
with the static environment. The variable x′ is the spatial
configuration the robot ends up at after applying the motion
m to the spatial configuration of state s, x(s). Lines 6-8 then
create the minimum and maximum times the robot could
arrive in x′ based only on the earliest and latest times it can
leave the safe interval of s. On lines 9-16, the algorithm tries
to put one successor at the earliest possible time in each of
the safe intervals at location x′ between tstart and tend. It
does this by applying a wait operation and then the motion
m (the wait time can be 0 so that it applies the motion
immediately).

Figure 3 demonstrates how this works. Suppose the search
is currently expanding state s1. If g(s1) is less than 4 as
it is in Figure 3(b) then two safe intervals can be reached
with the action that takes the robot to location x′. The first
can be reached by applying the motion immediately, which
results in state s2. To reach the second interval, a wait is
applied such that after applying the motion, s3 is reached at
time 6. Therefore, only one state is put in each safe interval
and they are generated with the earliest possible time. An
implementation detail: if the motion m is large enough that it
passes through several configurations, it may not be possible
to arrive at some intervals at their earliest timestep if one
of the states it passes through has dynamic obstacles as
well. In these cases, the planner tries all waiting timesteps
in increasing order until it finds the earliest that is collision
free.

In order to guarantee completeness and the sub-optimality
bound when ε > 1, the algorithm uses two versions of each
state, optimal and sub-optimal. If the expanded state is of
type optimal, then it generates two identical versions of each
successor (s′ and s′′) except that one has the optimal variable
O(s′) set to true, while the other has O(s′′) set to false. If
the expanded state is sub-optimal, then it can only generate
more sub-optimal states. The sub-optimal states are put into
the OPEN list with the usual f(s′) = g(s′) + ε ∗ h(s′).
Optimal states are put into the OPEN list with f(s′) =
ε ∗ (g(s′) + h(s′)) which preserves the optimal expansion
order among the optimal states (since f is just multiplied
by a scalar) but tends to put optimal states later in the
OPEN list relative to sub-optimal states since both terms
are inflated instead of just one. This means that most of the
time, only sub-optimal states are expanded. It turns out that
just enough optimal states are expanded in order to preserve
the theoretical guarantees (completeness and bounds on sub-
optimality) expected of weighted A* search.

Note that lines 7 and 27 stress the assumption that the cost
function being minimized for SIPP is time. Therefore, g(s)
can be treated as the time value for state s. Finally, notice
that if a state is in the CLOSED list, it has already been
expanded (line 3) and if a cheaper path is found to such a
state (line 27-29), the g-value is updated, but it is put into
the INCONS list instead of OPEN. This ensures that each
state is only expanded once, but the search keeps track of
the states that need to propagate their cheaper costs in the

(a)

x x’ x’’

Exists if
g(s1) < 4

s1
(x,i=0)

s3
(x’,i=1)

s2
(x’,i=0)

s4
(x’’,i=0)

(c)

(b)

s1 s2

s3

x x’ x’’

s4
t=4

t=6

Fig. 3: (a) A scenario with three locations (x, x′, x′′) and
a train which arrives at x′ at time 4 and leaves at time 6.
(b) The intervals shown for the three locations. Since x and
x′′ are free for all time, they each have only one interval
(therefore one state). Location x′ has a safe interval before
the trains passes (t < 4) and after (t > 6), resulting in two
states for this location (s2, s3). (c) The intervals converted
into a graph with one motion that depends on the g-value
(time) of state s1. The edge (s1, s2) only exists if g(s1) < 4.
The edge going to s3 always exists due to the robot’s ability
to wait in place before executing an action.

next search iterations of ARA*.

D. Theoretical Analysis

Here we sketch the proofs for completeness and optimality
of our algorithm.

Theorem 1: Anytime SIPP is complete. The algorithm
terminates, and when it does, it returns a safe path to the
goal with respect to static and dynamic obstacles, provided
such a path exists for the given graph representation of the
planning problem.

The first iteration of Anytime SIPP is just a weighted
A* search with SIPP as shown in CFDA-A*. Therefore,
since CFDA-A* is complete, the first solution will be valid
with respect to the given dynamic obstacle trajectories. Any
improvements to the path that ARA* makes as time allows
do not harm the correctness of the solution.

Theorem 2: When the planning time expires, the solution
returned by Anytime SIPP has a cost no greater than ε′ times
the cost of the optimal solution.

When running weighted A* with SIPP (as done in CFDA-
A*), the solution is guaranteed to be no greater than ε′

times the optimal solution. Since weighted SIPP satisfies this
requirement, applying ARA* provides this bound.

4711

Algorithm 2
ImprovePath()

1: while f(sgoal) > mins∈OPEN(f(s)) do
2: remove s with the smallest f(s) from OPEN
3: CLOSED = CLOSED ∪ {s}
4: for all motion m ∈M(s) do
5: x′ = configuration of m applied to x(s)
6: tm = time to execute m
7: tstart = g(s) + tm
8: tend = endT ime(interval(s)) + tm
9: for all safe interval i ∈ x′ do

10: if startT ime(i) > tend or endT ime(i) < tstart
then

11: continue
12: end if
13: t = earliest arrival time at x′ in interval i with

no collisions
14: if t does not exist then
15: continue
16: end if
17: if O(s) = true then
18: Opt = {true, false}
19: else
20: Opt = {false}
21: end if
22: for all o ∈ Opt do
23: s′ = {x′, i, o}
24: if s′ was not visited before then
25: f(s′) = g(s′) =∞
26: end if
27: if g(s′) > t then
28: g(s′) = t
29: if s′ /∈ CLOSED then
30: if O(s′) then
31: f(s′) = ε ∗ (g(s′) + h(s′))
32: else
33: f(s′) = g(s′) + ε ∗ h(s′)
34: end if
35: insert s′ into OPEN with f(s′)
36: else
37: insert s′ into INCONS
38: end if
39: end if
40: end for
41: end for
42: end for
43: end while

E. Time-bounded Graph Representation

When planning in dynamic and uncertain environments, it
often does not make sense to rely on the predicted obstacle
behavior too far into the future. The long-term prediction is
likely to be incorrect as it is nearly impossible to predict the
precise long-term behavior of dynamic obstacles. Based on
this observation, the time-bounded lattice representation [5]
exploits this observation and constructs a graph that consists
of two types of states: the states defined by both configuration
and timestep (higher-dimensional states) and states defined
purely by spatial configuration (lower-dimensional states).
The former states appear near the robot. These are all and
only states reachable from the robot state within the given
time horizon. In the time-bounded lattice graph, the states
whose timestep is equal to the time horizon have transitions
to states that do not include time (lower-dimensional states).
Thus, once the timestep reaches the given time horizon, the
states become “timeless”.

It is even more trivial to incorporate the time-bounded
representation into the safe interval-based graph represen-
tation within SIPP and Anytime SIPP. Limiting the time
horizon in SIPP corresponds to truncating the duration of
predicted trajectories of dynamic obstacles to be no more
than the time horizon. (In fact, a different time horizon
can be applied to different dynamic obstacles depending
on certainty in prediction.) Since SIPP already compresses
timesteps into safe intervals, the states whose g-value (time
value) is larger than the given time horizon will all have the
same safe interval, namely the last safe interval (the interval
that goes into infinity). Thus, with SIPP and Anytime SIPP,
the implementation of finite time horizon is done purely
by truncating the durations of the predicted trajectories of
dynamic obstacles. Note that using the time horizon might
make the solution incomplete with respect to the full dynamic
obstacle trajectories that are given.

IV. EXPERIMENTAL RESULTS

To demonstrate the advantages of our anytime algorithm,
we ran simulations on randomly generated environments, for
several planner configurations. In addition, we provide some
guidelines for choosing planner parameters, based on our
observations.

A. Planner Implementation

Our test domain is planning for a UAV in the (x, y, z, θ, t)
5D space. The actions used to get successors for states are
a set of “motion primitives,” which are short kinematically
feasible motions sequences [6] used in a lattice-type planner
shown in Figure 4. For our A* heuristic, we project the
environment to a 2D plane, where a cell (xi, yi) is marked
as an obstacle iff (xi, yi, z) is occupied for all z. We then
run a 16-connected 2D Dijkstra search from the goal to all
the (x, y) cells in this projection, assuming that the robot is
circular, with a radius equal to the actual robot’s inscribed
sphere. Since our lattice planner also has its orientation
dimension discretized into 16 directions, the heuristic value
in each cell under-estimates the cost to the goal. This stems

4712

Fig. 4: An example of a lattice type graph

Fig. 5: Left: Aerial view of an example environment used
in our experiments. Right: Close up of the environment
showing the quadrotor (in green) that we are planning for,
and dynamic obstacles that include other quadrotors and
ground robots.

from the fact that the 2D search essentially assumes that the
robot can turn in place at no cost and its 2D collision model
is a circle inscribed into the projected footprint of the UAV.
This heuristic is computed quickly, relative to our search,
because it has much lower (2D) dimensionality. However, it
is also much more informative than the common Euclidean
distance heuristic, since it takes static obstacle information
into account. This heuristic is especially useful in indoor
environments since walls that occupy entire z columns would
be projected down to the 2D heuristic grid.

B. Experiment Design

We performed experiments to demonstrate that our al-
gorithm can be used in real-time on large environments
with many dynamic obstacles and investigated the trade off
between planning times and the sub-optimality bound, as
well as the effect of the time horizon. We tested our algorithm
on 40 randomly generated experiments to simulate indoor
type environments, where all environments were 300 by 300
by 10 cells, with θ being discretized into 16 directions.
The time dimension had a resolution of 0.1s. The robot’s
start and goal were chosen randomly for each map. For
each environment, 50 dynamic obstacles were generated,

Fig. 6: An instance of the experiment, showing the paths of
all dynamic obstacles (in white) and the path of the robot (in
red) returned by the planner. Top: Perspective view. Bottom:
Overhead view

where each dynamic obstacle was either a smaller UAV,
which could be avoided by going under or above it, or
a larger ground robot, that had to be circumvented. Each
dynamic obstacle was started at a random configuration in
the environment, and to generate a trajectory for a dynamic
obstacle, random goals were chosen and A* was used to find
a path to follow between the terminal points (2D for ground
robots and 3D for UAVs). The environments (Figure 5) are
composed of a series of randomly placed narrow hallways
and rooms. Figure 6, based on the accompanying video,
shows an instance of the experiment, with the paths of all
dynamic obstacles and the path of the robot returned by the
planner superimposed on the environment. All experiments
were run on a PC with a 3.4 GHz Intel Core i7-2600QC
processor with 8 GB of RAM.

C. Results

An important characteristic of an anytime planner is its
ability to get a first solution very fast. Figure 7 shows the
amount of time it takes for our algorithm to get a first
solution as we vary the initial ε and the time horizon. The
results are averaged over 40 trials. In these experiments the
trajectory of any dynamic obstacle is at most 35s long and
therefore, the plots would stay constant after a time horizon
of 35s. The plot indicates that in under 0.05s, the planner
can find a solution with a sub-optimality bound of 3, that
doesn’t collide with any dynamic obstacles for the next 10s.
If only a 5s horizon is needed, then the planning times would

4713

0 5 10 15 20 25 30

0.05

0.1

0.15

0.2

0.25

Time Horizon (s)

P
la

n
n
in

g
 T

im
e
 (

s
)

Average Plan Time vs Time Horizon for ε ∈ {3, 5, 10}

ε = 3

ε = 5

ε = 10

Fig. 7: Average planning time to find the first solution as a
function of time horizon. The plot for ε = 1 is not pictured,
but it ranged from 5 to 8 seconds, which is far too high for
real-time scenarios.

TABLE I: Planning time distributions for SIPP and Anytime
SIPP (ASIPP)

Plan time to first solution SIPP ASIPP
ε = 3 ε = 5 ε = 10

<20 ms 0% 60.92% 66.57% 68.07%
20-40 ms 0% 10.71% 10.28% 8%
40-60 ms 0% 5.07% 4.28% 6.35%
60-80 ms 0% 2.35% 1.71% 2.71%

80-100 ms 0% 4.35% 0.78% 1.78%
0.1-1 s 7.42% 13.57% 14.14% 12.14%
1-3 s 23.35% 2.35% 2.21% 0.92%
3-5 s 22.64% 0.64% 0% 0%
5-7 s 8.42% 0% 0% 0%
7-9 s 11.42% 0% 0% 0%
>9 s 26.71% 0% 0% 0%

be closer to 0.01s. These results indicate that the planner is
capable of returning some solution almost right away. Table I
puts these numbers into perspective by comparing them with
the time required to get a first solution from optimal (ε = 1)
SIPP. The entries in the table are distributions of planning
times for SIPP and Anytime SIPP (ASIPP) for 4 different
time horizons, computed over 40 experiments. It is evident
from the table that Anytime SIPP provides a planning time
that is at least two orders of magnitude less than optimal
SIPP. These results indicate that a weighted search is needed
to get some solution quickly. While left out, the number of
state expansions is reflective of planning times (just off by
a scalar multiple).

If the planner is given more time than this though, our
approach will improve the solution quality using ARA*.
Figure 8 shows the quality of the solution obtained for differ-
ent planning times. For this experiment, the sub-optimality
bound ε was decremented by 0.2 between successive it-

2 4 6 8 10 12 14 16
1

1.5

2

2.5

3

3.5

4

4.5

5

Planning Time (s)

E
p

s
ilo

n
 (

ε
)

Epsilon vs Average Plan Time (ε) for T
h
 ∈ {5, 15, 25, 35}

T

h
 = 5 s

T
h
 = 15 s

T
h
 = 25 s

T
h
 = 35 s

Fig. 8: The average planning time required to reach sub-
optimality bound ε. The different lines show the results for
various time horizon values.

erations of ARA*. Once ε has reached 1, the solution is
provably optimal. The plot shows the results for a few values
of the time horizon and, as expected, the planning times
are higher when we have longer time horizons or when we
require close to optimal solutions. The fact that planning
times do not scale linearly with sub-optimality bounds is one
of the reasons behind Anytime SIPP’s marked improvement
over the optimal version. Moreover, in practice, the sub-
optimal solution costs are higher than the optimal costs by a
factor which is much less than the theoretical sub-optimality
bound. For instance, Figure 9 shows that the solution cost
for ε = 1.4 is greater than the optimal solution cost only
by 1.77s, for a time horizon of 15s. In theory, the upper
bound on this difference would be 11.124s, which is very
conservative.

V. DESIGN CONSIDERATIONS

The major parameters that our algorithm depends on are
the time horizon, the epsilon used to initialize the planner,
and the maximum time allocated to the planner. Values for
these parameters can be chosen based on the application at
hand. For instance, if we have a constraint on the maximum
time, Tplan, that the planner can take, and a requirement
that the path be safe for at least time Tsafe, we would
simply lookup Figure 7 and choose an ε that minimizes
Tplan−time(Tsafe), subject to Tplan > time(Tsafe). On the
other hand, if our application imposes a strong constraint on
the quality of the path returned (εdesired), we would refer
to Figure 8 and choose a time horizon Th that minimizes
εdesired − ε(Tplan), subject to εdesired > ε(Tplan). Here,
time(t) is the average planning time for time horizon t
and ε(t) is the epsilon that is typically reached by given
a planning time t.

4714

1 1.5 2 2.5 3 3.5 4 4.5 5

27

28

29

30

31

32

33

34

35

36

37

Epsilon (ε)

A
v
e
ra

g
e
 S

o
lu

ti
o
n
 C

o
s
t
(s

)

Average Solution Cost vs Epsilon (ε) for T
h
 ∈ {5, 15, 25, 35}

T
h
 = 5 s

T
h
 = 15 s

T
h
 = 25 s

T
h
 = 35 s

Fig. 9: The average solution cost as a function of sub-
optimality bounds (ε) used in the successive iterations of
ARA*. The different curves show the results for various time
horizon values.

As a general observation, shorter horizons are always
better as they result in quicker planning times for any ε.
But in practice, how small our horizon can be depends on
the environment, the number of dynamic obstacles, and their
velocities. In the experiments we ran, we observed that a time
horizon of 5s provides planning times on the order of 0.004
to 0.007s, whereas a time horizon of 15s provides planning
times on the order of 0.024 to 0.056s, for values of ε ranging
from 3 to 10. Smaller time horizons can be used at the cost of
increased sub-optimality for rapidly changing environments
such as crowded museums and shopping malls, where safety
of the people and robot are more important. However, for
environments such as a workplace, where dynamic obstacles
trajectories can be predicted with some confidence, we might
prefer to use longer time horizons for close to optimal paths.

VI. CONCLUSIONS

In this paper, we have developed an anytime planner for
planning in dynamic environments. We built off of Safe
Interval Path Planning which efficiently finds solutions to
this problem by representing time as safe intervals instead of
timesteps. We extended this to anytime search by combining
it with ARA*, an anytime planner which provides bounds
on the sub-optimality of the solution it returns. We further
accentuate the anytime nature of this planner by using a time
horizon after which the planner drops to the more efficient
planning on the static map.

Our experimental results on a simulated UAV show that
our approach is capable of running in real-time by providing
solutions up to a 15s time horizon in under 0.05s on large
environments with many dynamic obstacles. Additionally,

our approach provides theoretical guarantees on complete-
ness and solution quality.

In future work, we would like to have the algorithm
running on a physical robot. Also, an interesting direction for
future work would be to add an incremental component to
the algorithm, that can re-use data when navigating partially-
known environments or environments in which the predicted
trajectories of dynamic obstacles change frequently. In ad-
dition, we are interested in planning for situations where
dynamic obstacles have multiple possible future trajectories
and in generating efficient policies to handle this uncertainty.

VII. ACKNOWLEDGMENTS
This research was partially sponsored by the DARPA

Computer Science Study Group (CSSG) grant D11AP00275,
ONR DR-IRIS MURI grant N00014-09-1-1052, and
DARPA contract W31P4Q10C0202. We also thank Stefan
Kohlbrecher and Johannes Meyer for making their URDF
model of a quadrotor open-source and available for visual-
ization purposes.

REFERENCES

[1] K. Bekris and L. Kavraki. Greedy but safe replanning under kinody-
namic constraints. In IEEE International Conference on Robotics and
Automation, 2007.

[2] D. Fox, W. Burgard, and S. Thrun. The dynamic window approach to
collision avoidance. IEEE Robotics and Automation, 4(1), 1997.

[3] D. Hsu, R. Kindel, J.-C. Latombe, and S. Rock. Randomized
kinodynamic motion planning with moving obstacles. International
Journal of Robotics Research, 21:233–255, 2002.

[4] S. Karaman and E. Frazzoli. Incremental sampling-based algorithms
for optimal motion planning. CoRR, abs/1005.0416, 2010.

[5] A. Kushleyev and M. Likhachev. Time-bounded lattice for efficient
planning in dynamic environments. Proceedings of the IEEE Interna-
tional Conference on Robotics and Automation (ICRA), 2009.

[6] M. Likhachev and D. Ferguson. Planning long dynamically-feasible
maneuvers for autonomous vehicles. In Proceedings of Robotics:
Science and Systems (RSS), 2008.

[7] M. Likhachev, G. Gordon, and S. Thrun. ARA*: Anytime A* with
provable bounds on sub-optimality. In Advances in Neural Information
Processing Systems (NIPS) 16. Cambridge, MA: MIT Press, 2003.

[8] S. Petty and T. Fraichard. Safe motion planning in dynamic environ-
ments. In Proceedings of IEEE Int. Conf. on Intelligent Robots and
Systems (IROS), pages 3726–3731, 2005.

[9] M. Phillips and M. Likhachev. Planning in domains with cost function
dependent actions. In Proceedings of the National Conference on
Artificial Intelligence (AAAI), 2011.

[10] M. Phillips and M. Likhachev. Sipp: Safe interval path planning
for dynamic environments. In Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA), 2011.

[11] M. Pivtoraiko and A. Kelly. Generating near minimal spanning control
sets for constrained motion planning in discrete state spaces. In
Proceedings of the International Conference on Intelligent Robots and
Systems (IROS), 2005.

[12] I. Pohl. First results on the effect of error in heuristic search. Machine
Intelligence, 5:219–236, 1970.

[13] M. Rufli, D. Ferguson, and R. Siegwart. Smooth path planning
in constrained environments. In Proc. of The IEEE International
Conference on Robotics and Automation (ICRA), 2009.

[14] D. Silver. Collaborative pathfinding. In Proceedings of AIIDE, 2005.
[15] J. van den Berg, D. Ferguson, and J. Kuffner. Anytime path planning

and replanning in dynamic environments. In Proceedings of the IEEE
International Conference on Robotics and Automation (ICRA), pages
2366–2371, 2006.

[16] J. van den Berg and M. Overmars. Roadmap-based motion planning
in dynamic environments. IEEE Transactions on Robotics, 21(5):885–
897, 2005.

[17] D. Wilkie, J. van den Berg, and D. Manocha. Generalized velocity
obstacles. In IROS, pages 5573–5578, 2009.

4715

