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developing ways of detecting changes in rock str
using this information to control equipment and
support selection. One system being developed{monitors
the drilling operation and uses pattern recognition and
analytical formulas to evaluate geologic information so
that an expert system can make decisions on support
selection. Eventually this information will be used for
equipment ¢ontrol, support selection, and input to long-—
term mine designs.

Introduction

Before any mine opening is made, the rock is in
equilibrium. Once an opening is created, however, the
roek in the vicinity of the opening is no longer in
equilibrium and -tends to relieve stress by deforming
into the opening. The first step in solving this ground
control problem (ground control is a term used to de-
scribe the process of supporting or stabilizing the
roof, floor, or wall of a mine) is to determine whether
ground support is needed, and, if so, what is the best
support method. Factors to be considered are safety,
economy, and how well the method chosen can be inte-
grated with other mining activities.

Early mining systems used wooden posts to support
the roof, but during the past 40 years, roof bolting has
become the favored method. Roof bolting offers superior
support and reduces congestion in the work area, None-
theless, while today's roof bolting practices represent
a significant improvement over previous methods, place-—
ment of ground support is still an arduous and hazardous
task.

Installing ground support is dangerous and costly,
and disrupts the mining cycle. Today's continuous min-—
ing machines (continuous miners) can only advance a
short distance before they must be removed to make room
for the bolting machine (bolter). Removing the bolter
operator from the area being bolted eliminates much of
the danger associated with the process but also elimi-
nates a source of information (the operator) about the
state of the mine roof, Ultimately, a system that re-
moves the bolter operator from the dangers of the imme-
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diate bolting area yet supplies vital information and
allows continuous mining of the coal is needed.

One way being considered to accomplish these tasks
is to combine a continuous miner and a roof bolter and
direct the resulting machine either by remote control or
by automated computer control. Because of the very lim-
ited space available in a mine entry, a premium will be
placed on the size and reliability of such equipment.

Currently, operators use their senses to control
equipment and evaluate geological conditions. If the
operator is removed from the immediate bolting area,
most of the operator's,senspry Jnput will be lost.

/L‘DTO prevent a significant decrease in productivity,
three problems must be solved. First, we need to de-
velop systems and subsystems that will work in.a limited
space, Second, we must develop remote or automated con-—
trols for these systems. Third, we must find ways of
replacing (and even improving upon) the capabilities of
a human operator,

Figure 1. Roof bolt inserter for instal-
ling longer~than-seam-height bolts.

Early work by the U.S, Bureau of Mines [1] centered
on the development of a roof bolt inserter (RBI), flex-—
ible or longer—than-seam height (LTSH) drills, bolting
modules, and miner bolters. The RBI (Figure 1) takes a
bolt that is longer than the height of the cocal seam
being mined (or the available working height), bends
it approximately 90°, and then inserts the bolt into a
previously drilled hole. The flexible drills (Figure 2)
are able to drill holes up to 3.66 m long into the mine
roof from a working height of 90 ecm. Bolting modules
are of two different types. First developed were the
shorter-than-seam—height (STSH) modules (Figure 3) that



Figure 2. Longer—than—seam—height roof drill
during underground tests.

Figure 3. Artist's concept of shorter-than-seam-
height bolting module.

are capable of installing bolts shorter than the height
of the seam. Second are the LTSH modules that can in-
stall bolts that are higher than the mine opening. LTSH
modules merged the RBI and LTSH drills. The next devel-
opment was placing bolting modules on continuous miners,
making them into miner-bolters (Figure 4). This allowed
a continuous miner to advance without having to withdraw
to make room for a bolter.

Figure 4. Artist's concept of a miner bolter.

To varying degrees, each of the above systems is
successful. However, none of them were sufficiently de~
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veloped to be used commercially. Other problems, such
as vehicle navigation, control of individual components,
and integrated system control, needed to be solved.
With regard to the installation of ground support, spe-
cific processes needing improvement were drill control,
measuring bit sharpness, and the sensing of conditions
in the strata being drilled (geologic sensing).

Geologic sensing is considered here to be the de-
tection of the physical characteristics of a rock mass.
Using geologic sensing to obtain information about mine
strata will be very useful in two ways. First, thig in-
formation will be used in controlling the drill, and
secondly, it will be used in determining optimum roof
bolt length and type. Questions such as whether the
roof bolt needs to be longer for proper anchorage,
whether it should be grouted, and how much the roof bolt
should be tensioned are critical for safe and efficient
automated placement of ground support.

To effectively utilize geosensing in drilling sys-—
tems, the Bureau is pursuing two approaches. The first
is to develop tools and techniques to collect and dis—
play the factors affecting rock and roof stability,
e.g., the engineering properties of rock, in situ field
stresses, and geological discontinuities, in real time.
Given this information, it is possible for geotechnical
engineers to formulate hypothesgses concerning ground
stability.

The second is to increase understanding of the
critical precursors to rock mass failure as derived from
engineering data collected through geosensing. Several
techniques exist to determine these precursors and the
quality of the geologic environment surrounding a mine
opening. One technique is to transmit a source signal
nonintrusively through the rock mass; such a signal is
reflected back when it encounters geologic anomalies.
Intrusive techniques include collecting core samples and
interpreting changes in drilling parameters, which vary
with rock type and competency.

Using such techniques, the Bureau has completed a
series of field trials that suggest that significant
geologic information can be derived from the physical
responses of a roof drill during the installation of
roof-bolt-type supports. Such information is collected
in near real time; rapid data interpretation is possible
through the application of rather simple artificisal in-
telligence (AIL) software.

Advances in geosensing will greatly improve a
miner's ability to gather information on geological
parameters rapidly. With the aid of AI, it will be pos-
sible to make near real-time interpretationsg and related
decisions.

Smart Drill

Decisions affecting ground control design require
detailed knowledge of roof rock geology. This is espe-
cially true when weak rock and geologic anomalies are
encountered in the roof, and, if not properly supported,
can result in roof falls. Roof bolts are placed in un-—
derground mine roofs to prevent layers within the rock
from separating and falling. The process of roof bolt-—
ing involves drilling holes into the roof strata amd
inserting mechanical or resin-grouted roof bolts, An
experienced roof bolter operator can often tell by the
"sound and feel" of the drill and by observing the rock
response to drilling whether layers, fractures, and
voids are present, as well as the hardness and type of
material being drilled.

To improve worker health and safety, the Bureau is
developing a remote—controlled, automated roof~bolting
machine that will allow an operator to direct the opera-~



tions of the machine from a safe area, even when he or
she cannot observe the machine itself. By placing moni-
toring instruments on the drill of a roof-bolting ma-
chine, these "senses" can be regained and even enhanced
to collect more precise information about conditions in
the immediate roof strata. This machine is referred to
as the "smart drill." An artist's concept of a roof
bolter with a smart drill system installed is shown in
Figure 5,

Figure 5. Artist's concept of roof bolter
with smart drill system.

The instrumentation system on the roof bolter drill
consists of three components. A diagram of this sys-—
tem is shown in Figure 6., The first component, a PC,
is used for program development and data retrieval and
analyses. The PC is located outside the mine and isg not
subjected to the adverse conditions underground.
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Figure 6. Diagram of roof bolter
instrumentation system.

The second component consists of an explosion-proof
box that houses the measurement and control systems and
other signal-conditioming circuits. All lines running
into and out of this box are encased in flexible hose
conduit and are protected by barriers to limit the
transfer of energy to the transducers of the control
panef. The measurement and control section is mounted
on the left rear side of the drill in an area previously
occupied by the dust collection system, which is not
needed because drilling dust is controlled by water
flushing.

The third component is a display panel that in-
cludes all the external transducer circuite and a data
transfer device (DTD). The display panel is mounted on
the front of the drilling machine next to the manual
control levers, which are used during the drilling and
bolting sequence. This location is best to provide max-~
imum visibility and access for the drill operator. The
DTD is connected through a short cable to the display
panel.
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When mounted on the drilling machine, this system
provides an operator with near real—time displays of the
changes in specific energy of drilling and drill bit
position. A microcomputer interprets and analyzes these
data, making it possible to identify hazardous roof con-
ditions such as voide, inclusions, and/or changes in
strata. ©Such information can also be downloaded to the
DTD and transferred to the surface, where it can be ac-
cessed directly with a PC for further analysis.

Research [2] has indicated that there is a corre-
spondence between the specific energy of drilling as a
function of torque, thrust, penetration rate, rotation
rate, the area of the hole, and the unconfined compres-—
sive strength of the drilling medium. To calculate the
specific energy of drilling, the following formula is
used:

e = F/A + 2aNT/Au,
where e = specific energy of drilling,
F = thrust (N),
A = area of hole (m?),
N = rotation rate (rpm),
T = torque (J),
and u = penetration rate (m/min).

The specific energy of drilling is defined as the
work required to drill through a unit volume of rock.
Hence, units are in joules per cubic meter (J/m3) or
newtonmeter per cubic meter (Nm/m3). This is equivalent
to units of unconfined compressive strength defined as
Pascals N/m2.

Calibration and testing of the smart drill were
conducted at the Bureau's Spokane Research Center (SRC).
Sandstone test blocks constructed of alternating layers
of hard and soft "rock" were cast with voids at specific
levels. Cores were taken at the time the blocks were
poured to check system calibration. The blocks were
used to determine the accuracy of the calculations and
the precision with which the specific energy of drilling
and bit position could be measured.

Following extensive calibration, initial tests of
the drill monitoring and display system showed a defi-
nite relationship between the specific energy of drill-
ing and the compressive strength of the medium being
drilled.

Field trials were conducted in an underground mine
in Utah in two test areas, one in which the predominant
roof rock is sandstone and the other in which the rock
is mudstone. Figure 7 is a picture of the roof bolter
and the smart drill operating in one of the test areas.
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Figure 7. Drilling to obtain information on
specific energy of drilling.



A pattern of four core holes, each approximately
1.5 m long, was drilled in five locations. Five spe-
cific—energy test holes were drilled around each core
hole using a template that spaced each test hole 35.6 cm
from the core hole. One-hundred specific~energy test
holes were drilled in both the sandstone and the mud-
stone areas (200 holes total), and specimens from 20
core holes were collected from each area (40 cores
total) [3].

One~hundred-twenty data records per drill hole
were examined, and values were obtained for torque,
thrust, rotation rate, penetration rate, position of
the drill, and specific energy of drilling. Laboratory
tests were conducted to determine the unconfined com—
pressive strengths of the cores. Preliminary results
indicated that although average compressive strengths
of the sandstone and mudstone were similar, the mud-
stone showed a greater range of variability than did
the sandstone.

Interpretation of Data

Several parallel but independent approaches are
being used to analyze and interpret the laboratory and
field smart drill test data, The common objective is
to correlate the drilling parameter data with actual
rock characteristics and rock structure at a specific
location., These approaches include use of neural net-—
works and empirical methods to recognize patterns in
the data that correlate to rock strength, type, tex-—
ture, voids, and joints,.

The problem with relying only on the specific
energy of drilling to identify significant geological
features is that data are reduced to a single number.
Vital information is lost that might be helpful for de~
tecting geologic features accurately. Therefore, two
neural networks were developed that use torque, thrust,
revolutions per minute, and penetration rate as input
parameters; geological classification is the output.
The networks can operate in real time; results from the
sandstone section of the mine indicate that drilling
data can be correlated with actual rock core samples.

Neural networks and their learning paradigms are
modeled dfter biological:nervous systems, These net—
works form a system of many simple processing elements
operating in parallel. The network response is deter—
mined by network structure, connection strengths, and
the activation function of the processing  element,
There are many different types of neural networks, and
they are used for different purposes. In this work, two
types of neural networks were used: a self-organizing
or unsupervised learning network and a supervised learn-—
ing network,

Unsupervised learning refers to the clustering of
patterns in feature space. Similar patterns are grouped
together, and when a new pattern is introduced, it is
compared to the centroid of all the existing clusters to
determine the best fit., If the pattern falls outside
the bounds of all the cluster spaces, a new cluster is
created. - The creation and scope of these clusters are
governed by a. distance function that is measured from
the cluster centroid. During this project, several
distance functions were evaluated, including Euclidean
distance, Minkowski distance, Hamming distance, and
Mahalanobis distance. Unsupervised learning is often
used when there is inadequate information to create a
training set for a supervised learning network, and it
is up to the user to determine the relationship of the
clusters to the problem.

Supervised learning derives its name from the fact
that training data are presented on an input layer and
an associated response is presented on an output layer.

In brief, the network uses the back propagation of an
error—learning algorithm to adjust the weights of the
interconnections to "learn" the correct response to a
given input vector. After the network is trained, when
an unknown input vector is entered, the output vector
represents the network's classification. This clasa—~
ification is a function of how well the training set
describes the problem space and the degree of error
convergence during the training process.

Neural networks can be used to identify changes in
rock features by looking at changes in drill operation
as the drill is moved from one location to another.
There are several advantages in this type of system. A
neural network can be trained to recognize geologic
features that are unique to a geographical location. A
neural network can process information fast enough to
operate in real time with a data acquisition system
(DAS). It can. identify when the drill is going from
one medium to another and detect significant geological
features, By storing only these changes of state, the
amount of stored datd -is reduced considerably, which
helps to provide "instant™ processing of information,

The data used to develop neural networks for this
project were from the field test site., Only a core log
for a hole drilled in the vicinity of the roof bolt
hole was available for classifying and interpreting the
drilling data. Geological variations made it diffi-
cult to correlate drill parameters to the roof geology
directly. It was decided that an unsupervised neural
network would be appropriate to pre—process the data to
create a labeled dataset for use in training a super-
vised network.

After several trials, 617 data sets, representing
torque, thrust, rpm, and penetration rate for each data
collection point along each drill hole, from the sand-
stone test site were grouped into 6, 9, and 16 different
clusters using the Euclidian distance metric (Tables 1

and 2). The number of clusters was determined by the
Table 1. Nine-cluster set.
Cluster Penetra~ Thrust, Drill Torque, Specific
No. tion rate, N speed, J energy
m/min ) rpm . MPa
Ovivnnne 0.161 1250.4 24,28 3.788 4,72
) ©.865 3775.7 82,85 20.527 15.21
AR 1,114 9790.5 426.5 49.148 93,56
3ieinnnn .842 4741.8  402.7 55.738 114,86
beveiennn .571 2334.4 . 428.2 37.868 116.78
Seensens 1.092 11876.8  428,9 76.061 141.31
Beiernns .857 7655.4  498.3 62.313 158,10
Teveeane .318 548.9 416.6 36.444 189,77
Beverenn .948  13522.6 439.7 95.192 201,02
Table 2. Sixteen-cluster set.
Cluster  Penetra~ Thrust, Drill Torque, = Specific
No. tion rate, N speed, J energy
m/min rpm MPa
Ovienne 0.153 1878.9 1,241 0.461 3.72
...... .170 622.8 47.32 7.12 9.06
2000, . . 865 3776.5 82.85 20.77 15.30
A . 814 5088.8 171.3 27.93 33.23
oo, 1.118 9230.1 434,2 46.26 8%9.15
S5ec... . 1,131 10537.8  438.3 54.46 104.11
6.0uun . .921 4924.2 395.2 57.00 106.25
Toviaas .555 2602.2 438.1 33.60 109.83
Bueviens 1.174 11649.9 434.8 69,57 124,66
Feivnnn .651 39350.7 447.6 45.39 130.52
10...... .767 6556.7 407 .4 56.56 131.55
1l...... .839 7757.7 394.8 63.36 132,93
12...... .529 1443.0 409,5 43.77 136.52
13...... .947 12646.3 425,7 92.52 189.05
lhoo... . .287 2958.11 414.5 34,52 197.26
15...... .912 14016.3 436.3 91.83 201.05




size of the distance metric. These clusters represented
features in the roof such as strata changes, cracks,
carbonaceous lenses, etc. However, the network of six
clusters did not adequately represent the geology be-
cause it failed to properly classify bad or unrealistie
data, which can result when the drill is spinning with-
out drilling, when drilling the hole is begun, or when
there are voltage spikes. Therefore, comparisons were
only made for the 9- and 16-set clusters.

The clusters were arranged into a relative strength
index based on the calculation of specific energy. The
values of specific energy for the l6-set cluster group
ranged from 3.72 to 201.1 MPa, while values for uncon-
fined compressive strength from the core samples varied
from 87.1 to 177.2 MPa (see Tables 1 and 2). The ex-
tremely low values could represent cracks, voids, or
weak material that were not possible to measure by core
testing.

These cluster groups were then used to train a
supervised neural network by associating a input drill
vector with a cluster number, The first network con-—
sisted of an input layer (torque, thrust, rpm, and
penetration rate), two hidden layers of 10 nodes each,
and a l6-vector output layer that represented the roof
feature space developed from the unsupervised neural
network, A logistic activation function was used on
both of the hidden layers, whereas linear learning was
used on the output layer. Also, the inputs were con-—
nected directly to the output layer, The second network
was similar to the first except that there was only one
hidden layer, nine nodes on the output layer, and no
connection between the inputs and outputs.

Figure 8 compares the output of both supervised
neural networks and the core log adjacent to the drill
holes in the sandstone test section. Directional geo-
logical features could not be determined because the
core logs were not oriented with respect to the drill
holes. The lé-vector output network appears to create
too many classes of rock units (overclassify) for the
geologic features as compared to the 9-~vector output
network, Data from the roof area, which is predomi-
nately siltstone, was presented to the network, and the
resultant classifications are shown in Figure 9. 1In
general, the network appears to have adequately repre-—
sented the roof; however, more test sites with differ-
ent geological conditions should be examined in future
evaluations. '
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Future Enhancements for Intelligent Drilling

Remote Drilling System

The smart drill concept was modified to include
automatic control. The drill consists of a standard-
sized roof drill mounted on a mast. It is powered by a
portable hydraulic power pack, and a hydraulic cylinder
applies thrust to the drill head. Directional and flow
control valves can be operated from a PC. The system
has manual override capabilities, so it can be shut down
in emergency situations. When completed, an operator
will be able to control the drill's torque, thrust, rev-
olutions per minute, and penetration rate remotely [4].
This capability is necessary to hold selected operating
parameters constant during drilling trials. In addi-
tion, AI control techniques will be used to ensure opti-
mum drilling efficiency in any type of roof strata.

Data Acquisition System

A recently acquired DAS consists of two modules: a
medium~speed module and a high-speed one (Figure 10).

Signal
conditioning

High speed
data

acquisition

Signals and
transducers

Analysis

and acquisition

Software o
@@ . Signals and

Subsyste
transducers ystem

16 channels

Figure 10. Data acquisition system
for model roof drill,

The high-speed module will provide the instantane-
ous, accurate, time— and phase-coherent, multichannel,
high-speed recording capabilities needed for geologic



sensing and subsequent correlation of the specific
energy of drilling, drill vibrations, and changes of
torque and thrust to rock type.

Traditionally, high-—speed digital systems involve
multiplex techniques in which several sensors are ser—
viced by one high-speed, analog-to-digital converter.
The multiplex approach has several significant dis-
advantages. It reduces system throughput, requires the
use of complex and unique high-speed communications
interfaces, and skews inherent interchannel time and
phase data. To overcome these problems, an accurate
amplifier~per~channel technique with a dedicated high—
speed, analog—to—digital converter for each channel has
been specified for data acquisition. A key aspect of
this system is that it has the capabilities for 16
channels, each with a sampling rate of 250,000 samples
per second, and 14-bit resolution for recording param-
eter changes instantaneously at high speeds.

The medium—speed module will monitor hydraulic
pressure, temperature, flow, bit position in the hole,
and drill penetration rate. These operatring variables
may have a significant influence on torque, thrust,
rpm, and vibration. The medium-speed DAS will provide
a means to increase economically the number of channels
needed to acquire these less dynamic parameters, redun-—
dancy for the high-speed channels, and the monitoring
and feedback signals needed for system comntrol. The
medium-speed system will be synchronized with the high-
speed system to assure that data are correlatable. The
system consists of drill-mounted transducers connected
to terminal blocks on a signal~conditioning unit. It
has cables leading to an EISA (extended industry stan-—
dard architecture) DAS board mounted in an EISA 80486/
50-MHz PC. The signal analysis software for both sys—
tems will be loaded on this computer. The high-speed
DAS will also be connected to the PC through an IEEE 488
bus to provide visual data updates to the DAS software
at selectable rates. Since the high-speed system has
internal data storage, downloading memory will occur
over the IEEE 488 bus to a mass memory storage unit
after each roof bolt hole has been drilled.

Vibration Analysis

Techniques for analyzing drill bit vibration are
being evaluated to determine if vibration analysis can
be used to identify the type of strata being drilled.
Methods of collecting high-speed vibration data (up to
a 250~kHz sampling rate per channel) from rotating
drill bits are currently being set up. Sensors will be
mounted on a drill steel to measure torque, thrust, and
drill vibration. Instantaneous changes in torque and
thrust will be measured using strain gauges mounted on
the drill steel itself. Vibration will be measured
using an accelerometer embedded in the clamp ring hous—
ing the transmitter on the drill steel (Figure 11).

Software and hardware modifications will be made so .

that four parallel high-speed inputs (torque, thrust,
rpm, and vibration) can be simultaneously sampled and
recorded.

Several data-gathering configurations will be din-
vestigated to determine which configurations are most
sensitive to changes in rock type. Sampling rate, am-—
plitude, £frequency content,  and antialiasing filter
settings will be determined from sensitivity analyses
of records collected during drilling test blocks of
concrete. Once all the recording parameters are deter—
mined, extensive laboratory investigations will be
undertaken to determine the validity of the technique.
Additionel blocks of concrete of varying compressive
strengths and textures will be drilled and results
~ analyzed. Optimal data representation schemes will be
investigated to maximize the cluster spread and reduce
the volume of the data.

acquisition
system W Antenna
receiver

Figure 11. Instrumented drill steel
on model drill with radio telemetry

to data acquisition system.

Neural Network Analysis

Several neural network architectures will be
examined. The architecture must be able to associate
drilling data to entry stability and support require—
ments. Both adaptive resonance theory (ART) and asso-~
ciative memory will be investigated.

ART networks and algorithms maintain the plasticity
required to learn new patterns while preventing the mod~
ification of patterns that have been learned previously.
Much of the emphasis at this stage of the research will
be to develop computer codes that will implement the ART
structure with the interface on a NEXT computer.

The other area of neural network development is
geologic trend prediction. Often ground control prob-—
lems are related to gradual geologic changes, such as
pinchout and rolls. - Associative-memory neural networks
could be used to look at a progression of drill holes.
The information from one drill hole can form one part of
a pattern of geologic changes for a set distance. The
associative-memory neural network can then categorize
the section of mine roof, relate this category to sup—
port requirements, and predict geologic changes in the
immediate mine roof. This system would give miners a
tool to "see" into the mine roof and select supports
more accurately.

The . existing neural network uses a low—speed DAS
and, because it is a prototype, all the processing has
been done off line. With an on-line, high-speed DAS,
the neural network could be moved to a hardware platform
rather than using software. This type of system uses a
processor chip for each of the neural network nodes.
Weight and bias vectors are encoded on the chip. The
advantage of this type of system is speed and a hardware
platform that can keep up with the high-speed DAS, de~
pending on the size of the dnput vector and the number
of hidden layers. This would yield finer resolution
and increase the effectiveness of detecting voids and
cracks.

Emerging and Prospective Applicatiomns
for Intelligent Drilling

In addition to applying intelligent drilling sys-
tems to installation of roof support by conventional
means, Bureau researchers are investigating the devel~-
opment of automated roof bolters., In this research,
drilling information will be analyzed by AI systems, and
decisions will be made automatically as to optimal roof
bolt lengths and spacings to match the supports with
varying roof geology. By using intelligent drilling and
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an automated roof bolting system, not only will roof
bolter operators be removed from the hazardous work
area, but also knowledge will be captured and made
available for decisions related to changing ground
conditions.

Intelligent drilling holds great promise for being
a low-cost gource of geological and rock mechanics data
for general use. It may serve as an economical substi-
tute for core drilling and could be widely applied to
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