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Abstract—If cluster C1 consists of computers with a
faster mean speed than the computers in cluster C2, does
this imply that cluster C1 is more productive than cluster
C2? What if the computers in cluster C1 have the same
mean speed as the computers in cluster C2: is the one
with computers that have a higher variance in speed
more productive? Simulation experiments are performed to
explore the above questions within a formal framework for
measuring the performance of a cluster. Simulation results
show that both mean speed and variance in speed (when
mean speeds are equal) are typically correlated with the
performance of a cluster, but not always; these statements
are quantified statistically for our simulation environments.
In addition, simulation results also show that: (1) If the
mean speed of computers in cluster C1 is faster by at least
a threshold amount than the mean speed of computers in
cluster C2, then C1 is more productive than C2. (2) If the
computers in clusters C1 and C2 have the same mean speed,
then C1 is more productive than C2 when the variance in
speed of computers in cluster C1 is higher by at least a
threshold amount than the variance in speed of computers
in cluster C2.

Keywords-cluster computing, heterogeneous computing,
scheduling.

I. INTRODUCTION

A heterogeneous multicomputer platform comprises
computers that may differ in computing power and that
are capable of communicating with one another [3], [4],
[13]. Heterogeneity pervades almost all modern comput-
ing systems such as: Grid computing [10], [15], [16],
global computing [12], volunteer computing [17], cloud
computing [11], and clusters [5], [19]. The difficulty
of scheduling complex computations on heterogeneous
platforms greatly complicates the challenge of high
performance computing.

There are many studies relating to important schedul-
ing issues associated with heterogeneous platforms (e.g.,
[1], [2], [6], [7], [8], [14], [20]). The results from [1]
propose an environment that exhibits the property where

node-heterogeneity among the computers in a cluster
is the only factor that influences the performance of a
cluster. This current work uses that environment and
performs simulations to compare the performance of
sample clusters that have different mean speeds, and
clusters that have the same mean speed, but different
variances in speed among their computers. We say that
cluster C1 outperforms cluster C2 if cluster C1 completes
more work than cluster C2 with the same amount of
time within the framework of a scheduling problem for
clusters called the cluster-exploitation problem.

Our results further extend the work in [21] with
respect to understanding the role of statistical moments
as predictors of computational power, and answer the
following questions about heterogeneity:

• If cluster C1 consists of computers with a faster
mean speed than the computers in cluster C2, does
this imply that cluster C1 is more productive than
cluster C2?

• If the computers in cluster C1 have the same mean
speed as the computers in cluster C2, is the one
with computers that have a higher variance in speed
more productive?

From our simulation studies, both mean speed and
variance in speed (when mean speeds are equal) are
typically correlated with the performance of a cluster, but
not always; these statements are quantified statistically.
Simulation results also show that: (1) If the mean speed
of computers in cluster C1 is faster by at least a threshold
amount than the mean speed of computers in cluster
C2, then C1 completes more work than C2 in the same
amount of time. (2) If the computers in clusters C1 and
C2 have the same mean speed, then C1 is more productive
than C2 when the variance in speed of computers in
cluster C1 is higher by at least a threshold amount than
the variance in speed of computers in cluster C2.
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In the next section, we introduce the technical back-
ground. Section III describes the simulation procedure
and results. Section IV is the conclusion.

II. TECHNICAL BACKGROUND

A. The Architectural Model

This work is based on the architectural model from
[13]. Let a cluster C have n computers C1, . . . , Cn,
where each Ci completes one unit of work in ρi time
units. That is, faster computers have smaller ρ-values.
We call the vector 〈ρ1, . . . , ρn〉 C’s heterogeneity profile.
A server C0 has W units of work consisting of mutually
independent tasks of equal sizes and complexities.1 In
addition, C0 has access to the cluster C, and distributes
wi units of work to each Ci ∈ C in a single message,
where W = Σni=1wi. In our simulation, we normalize ρ-
values so that the ρ-value of the slowest computer over
all clusters that are being considered is 1.0. We assume
each unit of work produces δ units of results. Each Ci
has to return the results, in a single message, to C0.
Fig. 1 provides an overview of this environment.

Fig. 1: This graph shows an architectural overview of the CEP.

Consider two computers Ci and Cj (where either Ci
or Cj is C0), which are a sender and a receiver respec-
tively. Before delivering the data through the network,
Ci has to package data into a single message at a rate of
πi time units per work unit. The network has a uniform
transmitting rate of τ time units per work unit. When Cj
receives the data, it has to unpackage the data at a rate of
πj time units per work unit.2 We assume all computers
in this model are architecturally balanced. That is, if Ci

1“Size” = specification length; “complexity” = computation time.
2We equalize packaging and unpackaging rates of the same com-

puter, which reflects the case in most actual architectures.

is faster than Cj , then all subsystems on Ci are also
proportionally faster than those on Cj . For our model, πi
is faster than πj by the factor of ρj/ρi. Table I presents
sample values of the architectural parameters that we
later use in simulations.

TABLE I: Sample values of architectural parameters.

Parameter Wall-Clock Time/Rate
transit rate: τ 1 µsec per work unit
(un)packaging rate: π0 10 µsec per work unit
computing rate: ρ0 1 sec per work unit

B. The Cluster-Exploitation Problem and
Worksharing Protocols

The Cluster-Exploitation Problem (CEP) is to derive
a schedule such that C0 completes as many units of work
as possible on cluster C within a given lifespan of L time
units.

We define a worksharing protocol as a schedule to
solve the CEP. A protocol proceeds as follows:

1) Transmit work: For a computer Ci ∈ C, C0

packages wi units of work into a single message,
and sends it to Ci. Once C0 completes sending
work to Ci, it starts to prepare and send work
to another computer immediately. The server C0

keeps transmitting work until all computers in C
have their own workloads.

2) Compute: After Ci receives its workload, it starts
immediately to unpack and process it.

3) Transmit results: Once Ci has the results of its
work assignment, it immediately packages the re-
sults into a single message and returns it to C0.

Fig. 2 demonstrates how C0 shares work with a three-
computer cluster. Below every action of a computer is the
required time of that action. Computer Ci is done only
when C0 receives the entire results of Ci’s work. For
example, C1 is the first computer to be done in this case.
Then, C2 is the second and C3 is the third. The order
of starting work is the same as the order of finishing
in this example; this is called the FIFO (First-In-First-
Out) worksharing protocol. This ordering is not true
in general for the worksharing protocols [1], however,
protocols with this FIFO property are very special within
the context of solving the CEP.

Theorem 1 ([1]). Over any sufficiently long lifespan
L, for any heterogeneous cluster C—no matter what its
heterogeneity profile:

1) FIFO worksharing protocols provide optimal so-
lutions to the CEP.
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C0 sends sends sends
work to C1 work to C2 work to C3

(π0 + τ)w1 (π0 + τ)w2 (π0 + τ)w3

C1 waits processes results
(π1 + ρ1)w1 (π1 + τ)δw1

C2 waits processes results
(π2 + ρ2)w2 (π2 + τ)δw2

C3 waits processes results
(π3 + ρ3)w3 (π3 + τ)δw3

Fig. 2: C0 shares work with a three-computer cluster.

2) C is equally productive under every FIFO protocol,
i.e., under all startup indexings.

Because we know the FIFO worksharing protocol is
optimal for any cluster and under all startup indexings,
the only factor affecting performance of a cluster with re-
spect to the CEP is its heterogeneity profile. We therefore
use the framework of [1] to study node-heterogeneity in
clusters.

C. Measuring a Cluster’s Performance

Within the context of the CEP, the direct method
to measure a cluster’s performance is to measure its
work production. Given a fixed lifespan L, the work
production of a heterogeneous cluster under the FIFO
worksharing protocol can be calculated asymptotically in
Theorem 2. To simplify the expressions in Theorem 2,
let A = π0 + τ and B = 1 + (1 + δ)π0.

Theorem 2 ([1]). Let C have profile P = 〈ρ1, . . . , ρn〉
and let

X(P) =
n∑
i=1

1
A+Bρi

·
i−1∏
j=1

Bρj + τ

A+Bρj
. (1)

If one uses the FIFO procedure to solve the CEP, then
the asymptotic work-production of C is:

W (L; P) =
1

τ + 1/X(P)
· L. (2)

X(P) is one of the components in calculating
W (L; P), and is composed of only fixed system parame-
ters and the heterogeneity profile. For a fixed lifespan L
and a fixed τ , W (L; P) is approximately proportional to
X(P). That is, X(P) can be used as a measure of work
production. Using X(P) as a performance measure is
better than using W (L; P) because it allows us to ignore
L in our computations.

A related performance measurement called
homogeneous-equivalent computation rate (HECR)
[21] of a heterogeneous cluster C is the ρ-value of a
homogeneous cluster C(ρ) with profile 〈ρ, . . . , ρ〉, such
that C(ρ) and C produce the same amount of work in
the same amount of time. It is proved in [21] that C’s
HECR is

ρ =
π0

B −
(

1− π0X(P)
)1/n

B

− A

B
. (3)

A homogeneous cluster with faster ρ-values always
completes more work than another homogeneous cluster
with slower ρ-values in the same amount of time. We
use a cluster’s HECR as a measure of its performance
in our simulation study because it is a single number
that characterizes computing power of a cluster [21].

Both X(P) and the HECR are complicated functions
for measuring productivity of a cluster with respect to the
CEP. A result from [21] indicates that one can approxi-
mate productivity of a cluster by statistical measures of
a cluster’s heterogeneity profile. For example, if there is
only one computer in a cluster and cluster C1’s computer
is faster than cluster C2’s, then C1 completes more work
than C2 in the context of the CEP for the same amount
of time. But, when there is more than one computer in
a cluster, is cluster C1 still more productive than cluster
C2 when the computers in cluster C1 have a faster mean
speed than the computers in cluster C2? We explore this
question in our simulations.

Theorem 3 indicates that variance in speed is a
decisive factor in comparing the performance of two-
computer clusters that have the same mean speed.

Theorem 3 ([21]). Assume that cluster C1, with profile
P1, and cluster C2, with profile P2, share the same mean
speed. When C1 and C2 each has two computers, C1

outperforms C2 if and only if VAR(P1) > VAR(P2),
where VAR(P) is the variance of profile P.
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Although Theorem 3 shows that variance in speed
definitely determines which cluster completes more work
among two-computer clusters that have the same mean
speed, we want to know more about its accuracy in
predicting relative performance of large clusters with the
same mean speed. In other words, if the computers in
cluster C1 have the same mean speed as the computers in
cluster C2, is the one with computers that have a higher
variance in speed more productive? We also explore this
question via simulations.

III. PROCEDURE AND RESULTS

A. Simulation Procedure

We compare representative samples of profile pairs to
answer the questions in the previous section. In our first
phase of studies, we select a large number of samples
uniformly. That is, the sample profiles’ mean speeds
and variances in speed are equally distributed from the
smallest to the largest possible values.

For convenience, let 0.01 be the smallest granularity of
ρ-values. That is, the possible ρ-values in our simulations
are 0.01, 0.02, 0.03, . . . , 1.0. Let the value of d be the
factor to control the difference in variances in speed
among sample profiles with the same mean speed. In
our simulations, d = 100. We perform the procedure
in Fig. 3 to generate sample profiles for n-computer
clusters. By executing the generation procedure in Fig. 3,
we sample profiles with different mean speeds and
different variances in speed from the smallest to the
largest possible values.

We generate sample profiles for each cluster with 2x

computers, where x ∈ 1, . . . , 12. Because we generate
and compare sample profiles in a discrete fashion, we
use curve fitting methods to determine a mathematical
function to interpolate/extrapolate the results. We apply
tests recommended in [9], [18], the Wald-Wolfowitz runs
test and Akaike’s Information Criterion, to choose the
function with the best fit.

B. Results

1) Mean Speed as a Predictor of Performance: We
define cluster size as the number of computers in a
cluster. Assume that the computers in cluster C1 have a
faster mean speed than the computers in cluster C2. The
percentage of failed predictions when one predicts that
cluster C1 is more productive than cluster C2 is shown
in Fig. 4. The percentage of failed predictions is 11.68%
when there are two computers per cluster. Then, the per-
centage of failed predictions increases to approximately
15% when there are eight computers per cluster. For
cluster sizes greater than eight, the percentage of failed
predictions remains at approximately 15%.

From the results in Fig. 4, the mean speed is not
always correlated with performance, but the percentage
of failed predictions seems to converge in our simula-
tions. Assume that cluster C1 with profile P1 has a faster
mean speed ρ̄1 than cluster C2 with profile P2 and mean
speed ρ̄2. We want to find a threshold Tρ̄ such that if
ρ̄2 − ρ̄1 > Tρ̄, then C1 always outperforms C2.3 We
apply a binary search to find Tρ̄ with the results shown
in Fig. 5. Tρ̄ is 0.49 time units per work unit at two
computers per cluster, and increases to 0.8 time units
per work unit at eight computers per cluster. Then, Tρ̄
keeps steady around 0.8 time units per work unit when
there are more than eight computers in a cluster.

From these results, it appears that mean speed of a
cluster is typically a good predictor of performance,
i.e., about 85% of the time, however, there are cases
where a cluster with significantly lower mean speed
will outperform a faster cluster. For example, con-
sider eight-computer clusters C1 and C2 with pro-
files P1 = 〈0.01, 0.95, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0〉, and
P2 = 〈0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08〉 , re-
spectively. P1’s mean speed ρ̄1 is 0.87 time units per
work unit and P2’s mean speed ρ̄2 is 0.08 time units
per work unit. The difference between ρ̄1 and ρ̄2 is 0.79
time units per work unit. But, P1’s HECR of 0.075 time
units per work unit is better than P2’s HECR of 0.08
time units per work unit.4 In this case, the threshold Tρ̄
is 0.8 time units per work unit. In addition, P1 has the
maximum variance in speed among all profiles with the
mean speed ρ̄1, because any change of the ρ-values in
P1 only decreases its variance in speed if P1 still keeps
the same mean speed ρ̄1; P2 has the minimum variance
in speed among all profiles with the mean speed ρ̄2. This
leads to the topic of the next section.

2) Variance in Speed as a Predictor of Performance:
Although Theorem 3 indicates that variance in speed
definitely determines which cluster is more productive
among two-computer clusters, we know little from The-
orem 3 about the accuracy of variance in speed in
predicting the relative performance of large clusters. In
this section, we compare the performance of clusters
with heterogeneity profiles that have the same mean
speed but different variances in speed.

Assume that the computers in cluster C1 and cluster C2

share the same mean speed, but the computers in C1 have
a higher variance in speed than the computers in C2. The
percentage of failures when C2 is more productive than
C1 is shown in Fig. 6. If one predicts that the cluster with

3ρ̄1 is smaller than ρ̄2. See Section II-A.
4Recall that HECR is a measure of work production, not an encoding

of mean speed.

4



1) For the mean ρ̄ = 0.01 to 1.0 by 0.01 increment. (ρ0 = 1.0)
2) Given the mean ρ̄,

a) Generate profile P1 of cluster C1 with the maximum variance v1 at the mean ρ̄.
b) Generate profile P2 of cluster C2 with the minimum variance v2 at the mean ρ̄.

Let ∆ = (v1 − v2)/d.
3) If v1 = v2, then P1 is the same as P2, include P1 as one sample profile.
4) While v1 > v2,

a) Include C1’s profile P1 and C2’s profile P2 as two sample profiles.
b) To generate a new sample by reducing v1, first let v′1 = v1.
c) While v′1 − v1 < ∆,

i) Pick ρi and ρj from profile P1, where ρj − ρi > 0.01.
ii) Increase ρi and decrease ρj by 0.01.

iii) Calculate the new variance v1.
d) To generate a new sample by enlarging v2, first let v′2 = v2.
e) While v2 − v′2 < ∆,

i) Pick ρi and ρj from profile P2, where ρi > 0.01 and ρj < 1.0.
ii) Decrease ρi and increase ρj by 0.01.

iii) Calculate the new variance v2.

Fig. 3: Procedure for generating sample profiles is presented in pseudocode.

Fig. 4: This graph shows the percentage of failed predictions
when using mean speed as a predictor. The interpolation
function is f(x) = 0.0927 · (1− e−x) + 0.0582.

a higher variance is more productive, then the percentage
of failed predictions is 0% for two computers per cluster,
which has been shown in Theorem 3. However the
percentage quickly climbs up to around 23% at 128
computers per cluster, and keeps steady after that point
in our simulations.

Assume that cluster C1 with profile P1 has mean speed
ρ̄ and variance in speed v1, and cluster C2 with profile
P2 has the same mean speed ρ̄ but different variance

Fig. 5: This graph shows the minimum difference between
cluster mean speeds for the faster cluster to outperform the
slower cluster, as a function of cluster size. The interpolation
function is f(x) = 1.12 · (1− e−1.25·x)− 0.308.

in speed v2 < v1. Fig. 6 indicates that cluster C1 does
not always outperform cluster C2. We would like to find
a threshold Tvar such that if v1 − v2 > Tvar, then C1

always outperforms C2 for our environment. A plot of
Tvar, as a function of cluster size is shown in Fig. 7.
Tvar is 0 at two computers per cluster because C1 always
outperforms C2 in this case. The value of Tvar grows
rapidly but appears to reach an asymptotic value of 0.16
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Fig. 6: This graph shows the percentage of failed predictions
when using variance in speed as a predictor. The interpolation
function is f(x) = 0.424 · (1− e−0.495·x)− 0.185.

Fig. 7: This graph shows Tvar among different cluster sizes.
The interpolation function is f(x) = −0.167 ·x−1.77 + 0.167.

fairly quickly in our simulations.
We further analyze how often a larger variance fails

to predict better performance for different mean speeds.
Fig. 8 presents the percentage of failed predictions as a
function of mean speed for the case of 64 computers per
cluster. The percentage of failed predictions increases
rapidly, with a peak value near ρ̄ = 0.1, and then
decreases almost linearly to zero when ρ̄ = 1. This
pattern is similar for other cluster sizes. Fig. 9 and 10
are examples of 512 computers per cluster and 4096
computers per cluster.

Because the percentage of failed predictions changes
as ρ̄ grows, we therefore explore the relation between

Fig. 8: This graph shows the percentage of failed predictions
when using variance in speed as a predictor at different mean
speeds ρ̄ and 64 computers per cluster. The interpolation
function is f(x) = 0.00419 · log2(x)3 − 0.407 · x+ 0.45.

Fig. 9: This graph shows the percentage of failed predictions
when using variance in speed as a predictor at different mean
speeds ρ̄ and 512 computers per cluster.

Tvar and ρ̄. Fig. 11 shows Tvar at different mean speeds
ρ̄ in the 64 computers per cluster case. This pattern also
exists in cases of other cluster sizes. Fig. 12 and 13
are examples of 512 computers per cluster and 4096
computers per cluster.

IV. CONCLUSIONS

In this work, simulation experiments were performed
to generate sample clusters with different mean speeds
and different variances in speed, to compare the per-
formance of sample clusters within a formal framework
from [1] for measuring the performance of a cluster.
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Fig. 10: This graph shows the percentage of failed predictions
when using variance in speed as a predictor at different mean
speeds ρ̄ and 4096 computers per cluster.

Fig. 11: This graph shows Tvar at different mean speeds ρ̄
and 64 computers per cluster. The interpolation function is
f(x) = −0.6495 · x2 + 0.6238 · x+ 0.004724.

This work extends the result in [21] with respect to un-
derstanding the role of statistical moments as predictors
of computational performance, and provides simulation
results that indicate heterogeneity influences the perfor-
mance of a cluster.

Our simulation studies showed that both mean speed
and variance in speed (when mean speeds are equal) are
typically correlated with the performance of a cluster.
We quantify this statement as follows:

First, when using the mean speed of computers in a
cluster as a predictor of performance, the percentage of
failed predictions is 0% when there is only one computer
in a cluster. Then, the percentage of failed predictions

Fig. 12: This graph shows Tvar at different mean speeds ρ̄
and 512 computers per cluster.

Fig. 13: This graph shows Tvar at different mean speeds ρ̄
and 4096 computers per cluster.

increases as cluster size grows, and is bounded at 16%
in our simulations.

Second, let the computers in cluster C1 have the
same mean speed as the computers in cluster C2 and
the computers in cluster C1 have a higher variance in
speed than the computers in cluster C2. The percentage
of failed predictions is 0% when one predicts that C1

completes more work than C2 in the same amount of
time at two computers per cluster. Then, the percentage
of failed predictions increases as cluster size grows, and
is bounded at 24% in our simulations. In addition, given
a fixed cluster size, the percentage of failed predictions
changes as a function of the mean speed ρ̄. The percent-
age of failed predictions increases rapidly, with a peak
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value near ρ̄ = 0.1, and then decreases almost linearly
to zero when ρ̄ = 1.

Further study in developing a metric that gives
distances between real applications and our model will
help to provide a way for the performance assessment
of real heterogeneous computing systems.
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sity of Paris-South in 2000. Rosenberg’s research focuses on
developing algorithmic models and techniques to exploit the
new modalities of “collaborative computing” (wherein multiple
computers cooperate to solve a computational problem) that
result from emerging technologies, especially Internet-based
computing. Rosenberg is the author or coauthor of more than
170 technical papers on these and other topics in theoretical
computer science and discrete mathematics. He is the coauthor
of the research book “Graph Separators, with Applications” and
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the author of the textbook “The Pillars of Computation Theory:
State, Encoding, Nondeterminism”; additionally, he has served
as coeditor of several books. Dr. Rosenberg is a Fellow of the
ACM, a Fellow of the IEEE, and a Golden Core member of
the IEEE Computer Society. Rosenberg received an A.B. in
mathematics at Harvard College and an A.M. and Ph.D. in
applied mathematics at Harvard University.

Howard Jay Siegel was appointed the Abell Endowed Chair
Distinguished Professor of Electrical and Computer Engineer-
ing at Colorado State University (CSU) in 2001, where he is
also a Professor of Computer Science. He is the Director of
the CSU Information Science and Technology Center (ISTeC),
a university-wide organization for promoting, facilitating, and
enhancing CSU’s research, education, and outreach activities
pertaining to the design and innovative application of computer,
communication, and information systems. From 1976 to 2001,
he was a professor at Purdue University. Prof. Siegel is a
Fellow of the IEEE and a Fellow of the ACM. He received
a B.S. degree in electrical engineering and a B.S. degree in
management from the Massachusetts Institute of Technology
(MIT), and the M.A., M.S.E., and Ph.D. degrees from the
Department of Electrical Engineering and Computer Science
at Princeton University. He has co-authored over 370 technical
papers. His research interests include robust computing sys-
tems, resource allocation in computing systems, heterogeneous
parallel and distributed computing and communications, paral-
lel algorithms, and parallel machine interconnection networks.
He was a Coeditor-in-Chief of the Journal of Parallel and
Distributed Computing, and was on the Editorial Boards of
both the IEEE Transactions on Parallel and Distributed Sys-
tems and the IEEE Transactions on Computers. He was Pro-
gram Chair/Co-Chair of three major international conferences,
General Chair/Co-Chair of seven international conferences,
and Chair/Co-Chair of five workshops. He is a member of
the Eta Kappa Nu electrical engineering honor society, the
Sigma Xi science honor society, and the Upsilon Pi Epsilon
computing sciences honor society. He has been an international
keynote speaker and tutorial lecturer, and has consulted for
industry and government. For more information, please see
www.engr.colostate.edu/∼hj.
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