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Abstract—The lag of parallel programming models and lan-
guages behind the advance of heterogeneous many-core pro-
cessors has left a gap between the computational capability
of modern systems and the ability of applications to exploit
them. Emerging programming models, such as CUDA and
OpenCL, force developers to explicitly partition applications into
components (kernels) and assign them to accelerators in order
to utilize them effectively. An accelerator is a processor with a
different ISA and micro-architecture than the main CPU. These
static partitioning schemes are effective when targeting a system
with only a single accelerator. However, they are not robust
to changes in the number of accelerators or the performance
characteristics of future generations of accelerators.

In previous work, we presented the Harmony execution model
for computing on heterogeneous systems with several CPUs
and accelerators. In this paper, we extend Harmony to target
systems with multiple accelerators using control speculation
to expose parallelism. We refer to this technique as Kernel
Level Speculation (KLS). We argue that dynamic parallelization
techniques such as KLS are sufficient to scale applications across
several accelerators based on the intuition that there will be fewer
distinct accelerators than cores within each accelerator. In this
paper, we use a complete prototype of the Harmony runtime that
we developed to explore the design decisions and trade-offs in the
implementation of KLS. We show that KLS improves parallelism
to a sufficient degree while retaining a sequential programming
model. We accomplish this by demonstrating good scaling of KLS
on a highly heterogeneous system with three distinct accelerator
types and ten processors.

I. INTRODUCTION

The pursuit of performance through parallelism and ef-

ficiency through specialization is gradually shifting the fo-

cus of the computing industry from general purpose single-

core to heterogeneous many-core processors. Traditionally,

accelerators have been used to improve power efficiency

and performance of domain specific applications without the

overheads required to support generic computation. As rising

power and thermal constraints of future technology nodes

limit the use of highly complex ILP centric architectures

and PVT variations [1] reduce worst case margins, domain-

specific accelerators traditionally used for graphics [2], media

processing [3], and security [4] have become increasingly

attractive. The problem is the additional complexity introduced

by these accelerators – complexity that is typically exposed

directly to the programmer.

Several research and industry efforts have identified the

complexity of writing scalable high performance applications

as a major challenge to the proliferation of many-core sys-

tems, and have focused on reducing this complexity through

programming model abstractions that explicitly address mod-

ularity, data sharing, and encapsulation of code running on

homogeneous cores combined with runtime execution models

that map these abstractions onto diverse hardware resources.

The origins of these models can be traced to research

efforts into asynchronous function calls in Cilk [5], run-

time management of load balancing, synchronization, and

communication latency in Charm++ [6], and streaming data

parallel operations in Brook [7] and StreamIt [8]. These initial

explorations have been solidified in industrial implementations

such as Brook++ for ATI GPUs [9], CUDA for NVIDIA

GPUs [10], and OpenCL [11] for generic architectures where

concepts like asynchronous encapsulated kernel calls, explicit

communication channels, and runtime resource mapping re-

flect their foundations in earlier efforts.

However, as the original efforts typically identified parallel

programming as the primary source of complexity, the problem

was again revisited to address architecture heterogeneity in

efforts such as Merge [12], Harmony [13], and Qilin [14]

as well as memory hierarchy heterogeneity in Sequoia [15].

In the context of these new efforts, applications are typically

expressed as a set of encapsulated function calls whose exe-

cution is constrained by explicit data flow and control flow.

(Hereafter, we refer to encapsulated function calls as kernels).

The goal of these models is to exploit coarse-grained kernel-

level-parallelism (KLP) to partition work among multiple

accelerators in a system and fine-grained data-parallelism to

partition work across cores within an accelerator.

Fine-grained parallelism within an accelerator is typically

handled via partitioning into data-parallel threads as in CUDA

and OpenCL or into streams as in StreamIt or Brook. These

partitioning schemes implicitly rely on the fact that cores

within an accelerator are homogeneous to simplify the pro-

gramming model. Additionally, they must deal with a large

amount of parellelism in hardware. For example, NVIDIA’s

GT200 GPUs support 23040 threads in hardware [10]. This

extreme degree of parallelism benefits from the use of explic-

itly parallel programming models to fully utilize all of the

resources in a given accelerator.

Unfortunately, most of these programming models apply the

same explicitly parallel programming models to target multi-

accelerator systems. CUDA and OpenCL for instance, require
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Fig. 1. CUDA Source Code For The Inner Loop of PNS
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Fig. 2. PNS Control Flow Graph

the programmer to determine the number and type of acceler-

ators in the system and statically assign work to them. These

represent explicitly parallel programming models and static

partitioning schemes; they force the developer to deal directly

with parallelism and heterogeneity. In this paper, we offer an

alternative approach. We use speculation to expose parallelism

within an application and then dynamically map kernels to

accelerators with potentially heterogeneous architectures.

This paper explores the use of a technique traditionally

used to extract parallelism from sequential applications, thread

level speculation, to extract parallelism from applications to

target multi-accelerator systems. We use the term Kernel Level

Speculation (KLS) for our approach to indicate that the basic

unit of work that we launch speculatively is a kernel rather

than a thread. This paper does not introduce a new form of

speculation that is significantly different from those proposed

in the past [16]–[18]. Instead we apply optimizations at the

kernel level and seek to answer the question of whether or not

speculation can extract enough parallelism from workloads for

heterogeneous systems. We expect this work to be supplemen-

tal to fine-grained parallel programming models for individual

accelerators such as OpenCL, CUDA, and OpenMP, which can

be also be augmented to support KLS in future work.

This paper makes the following contributions:

• We show how existing programming models for hetero-

geneous systems such as Harmony, CUDA, and OpenCL

can be automatically parallelized by using speculation to

exploit multi-accelerator systems.

• We develop a complete prototype of a runtime for the

Harmony execution model described in [13], and then

extend it to support speculation.

• We derive a metric to quantify the amount of Kernel

Level Parallelism (KLP) within a given application. We

calculate the upper limit on KLP assuming that all

dependencies can be removed via perfect speculation

and compare this against the speedups achieved by our

implementation.

Organization. This paper is organized as follows: Section

II gives background on execution models for programming

heterogeneous systems; Section III presents the extensions

required to support speculation; Section IV explores the

amount of kernel level parallelism in Harmony and CUDA

applications; Section V describes experimental results; and

Section VI covers related work.

II. EXECUTION MODEL OVERVIEW

OpenCL and CUDA define an execution model where

code segments are encapsulated in compute kernels which

are launched asynchronously and guaranteed to be side-effect-

free. Kernels can be compiled for several possible processor

architectures or an intermediate code representation1 that can

be dynamically recompiled to target different accelerators.

Though neither CUDA nor OpenCL currently exploit this

property, the side-effect-free constraint allows kernels without

data dependencies to be launched in parallel on different

accelerators. Harmony [13] extends these models by anno-

tating each kernel with explicit input and output parameters

to simplify dependence analysis and actively launches kernels

without data dependencies in parallel, relieving the program-

mer from performing the same task manually.

A. The Kernel Control Flow Graph

These execution models are purely imperative at the inter-

accelerator level: the order of execution is constrained by the

programmer defined sequence of kernels and control decisions.

In this paper, we use the term control decisions to refer to

classical if-then-else blocks, loops, etc that typically map to

branch instructions. Figure 1 contains an example of a for

loop structure in CUDA on line 7. The complete figure shows

the inner loop of the PNS application from the UIUC Parboil

benchmark suite [20]. We will continue to refer to this example

application in this section.

Recall that in programming models such as CUDA and

OpenCL, kernels are guaranteed to be side-effect-free. In our

1When implemented on NVIDIA hardware, both standards use NVIDIA’s
PTX [19] virtual ISA.
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Fig. 3. Data Flow Graph for PNS Inner Loop
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Fig. 4. PNS Inner Loop Data Flow Graph After Renaming

previous work, we use this property to assert that kernels that

modify variables are atomic units that can be treated like

instructions that modify registers. In this paper, we extend

this concept further by applying basic compiler analysis to

Harmony programs. We assert that it is possible express an

entire program as a control flow graph (CFG) of interleaved

kernels and instructions in the same way that a traditional

imperative program can be expressed as a CFG of instructions.

More formally, we can express a program as a directed

cyclic graph where nodes are a series of interleaved kernel

calls and native instructions terminated by a control decision.

Figure 2 shows a possible control flow graph for the PNS inner

loop. Edges originate at control decisions and end at possible

targets of a given control decision. In this representation, we

use the common term basic block (BB) to refer to a node.

The only difference between our notion of a BB and the

classical notion is that our BBs contain kernel calls as well

as native instructions. In the figure, the kernel call and dma

operations map to kernels and the other statements map to

native instructions.

Using a CFG representation of a program makes it easier to

visualize parallelism within a program. Parallelism within ker-

nels in the same BB is limited only data dependencies among

kernels. However, for the Harmony applications evaluated in

this paper, there are only an average of 5.78 kernels per BB

(PNS has 3), and, of course, all kernels are not independent. In

order to increase parallelism to an acceptable level to exploit

systems with several accelerators, it is necessary to search

across basic block boundaries to discover kernels that can

be executed in parallel. In this paper, we use speculation to

address this problem.

Recall that kernels in Harmony are annotated with explicit

input and output variables which allows for easy determina-

tion of data dependencies. This problem is more difficult in

OpenCL and CUDA because the memory access patterns of

kernels are typically not known at compile time. For the PNS

example, it happens that all instances of the main Petrinet

kernel are completely independent and can be executed in

parallel. We have proven this using our CUDA emulator,

Ocelot [21], to instrument all of the memory access from each

kernel and ensure that there are no conflicting accesses. This

represents the best case, where all kernels in the same BB

are independent and can be executed in parallel at runtime.

Unfortunately, it is not currently possible to assert this property

automatically for CUDA applications and this potential paral-

lelism is wasted. Automatically converting CUDA or OpenCL

applications to the form used by Harmony could possibly

address this problem, but it is beyond the scope of this paper.

For our implementation of KLS presented here, we assume

that kernels are annotated with explicit inputs and outputs, a

process which we see eventually being assisted by a high-level

compiler.

We would like to point out that some applications such

as PNS could be re-written to increase the degree of par-
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Fig. 5. Execution of a Harmony Application

allelism within a basic block via manual loop unrolling or

function in-lining. However, this would defeat the purpose of

automatically extracting parallelism from programs that utilize

accelerators, which already have to deal with fine-grained

thread-level parallelism within kernels. Speculation offers the

potential to scale these applications to additional accelera-

tors without requiring the programmer to specify parallelism

explicitly. Our goal is to eventually enable existing CUDA

applications like PNS to scale across systems with different

numbers and types of accelerators. We focus on enabling this

property for Harmony applications in this paper and leave the

problem of expressing CUDA programs using the Harmony

execution model for future work.

B. Program Execution

A high level program such as the PNS example in Figure

1 is compiled to a Harmony control flow graph2 as in Figure

2. Figure 5 shows the major steps involved in executing a

program stored in control flow graph form. The CFG is passed

to the runtime; it walks the CFG in program order, examining

BBs to determine data dependencies among kernels.

Determining Data Dependencies. In many programming

models for heterogeneous systems including CUDA and

OpenCL, processors are assumed to reside in disjoint memory

spaces. In order to execute a kernel on another processor, it

is necessary to allocate and copy memory segments from one

address space to another before launching the kernel. In most

2Note that we currently do not have a compiler to the Harmony execution
model from any high level language. All of the applications used in this study
were compiled manually.

cases, memory segments are managed at the level of variably

sized contiguous blocks to facilitate DMA operations (lines

13-14 in Figure 1). In the Harmony execution model, these

memory segments are referred to as variables and are tracked

explicitly by the runtime. Before launching a kernel on a given

processor, the runtime checks to make sure that all variables

used by the kernel are allocated and copied into the address

space of that processor. Intuitively, kernels can be executed in

parallel as long as they do not make conflicting accesses to

the same variables, ie. they do not have data dependencies.

The Data Dependency Graph. As kernels are fetched

from the CFG, data dependencies are expressed in a directed

acyclic graph. Nodes in this graph represent kernels and edges

represent conflicting reads/writes to variables. Figure 3 shows

the data flow graph for a the PNS loop body. During execution,

the runtime computes a parallel schedule for fetched kernels

subject the to dependency constraints and assigns them to

available accelerators. Analytical models similar to those used

in Qilin [14] are used to predict the execution time of the

kernel on each type of core in the system with 6.53% average

error for the applications in Section V. These predictions

coupled with the constraints from the data dependency graph

are used to compute a schedule of all available kernels on all

available cores that minimizes their total execution time.

Speculation At Control Decisions. Without speculation,

the runtime must block on control decisions until they have

finished execution before fetching the next basic block of

kernels from the CFG. In cases where the inputs to control

decisions are generated by long running kernels, the par-

allelism within an application is limited by the runtime’s



inability to fetch more kernels from the next BB. Speculating

the outcome of a given control decision can alleviate this

problem by allowing the runtime to fetch from the next several

BBs. In literature, this technique is traditionally referred to as

control speculation and has been explored exhaustively as an

approach for automatic parallelization of sequential programs.

For traditional imperative programs such as the SPEC2000

benchmarks, speculation has been shown to improve perfor-

mance from a modest 1.8x speedup on a simulated 6-core

machine using program demultiplexing [16] to an almost linear

7.8x on an 8-core Intel machine using copy-or-discard [17].

We use a technique inspired by copy-or-discard to implement

kernel level speculation.

III. SUPPORTING SPECULATION

In this section, we outline the high level modifications

required to extend the Harmony execution model presented

in [13] to support kernel level speculation.

A. Variable Renaming

As variables are tracked by the runtime, it is possible to

eliminate false write-after-read and write-after-write depen-

dencies by renaming and reallocating kernel outputs. Re-

naming intuitively trades additional parallelism for increased

memory footprint and allocation latency. During execution the

runtime decides to rename kernel output variables if there is

already a reader or writer on that variable and there are enough

spare accelerator cycles to execute the kernel in parallel.

Figures 3 and 4 show the PNS dataflow graph before and

after renaming.

Though renaming is used primarily for removing data

dependencies, it also provides a mechanism for distinguishing

between speculative and non-speculative state. Assuming that

the outputs of speculative kernels are renamed, they will

not affect the variables accessed by previous non-speculative

kernels. In our implementation of speculation, we use this

property to color variables based on which speculative kernels

produce them. This allows variables that were modified by

misspeculated kernels to be easily identified and discarded.

B. Keeping Speculative Variables Separate

In order to distinguish between speculative and non-

speculative state, we use a coloring scheme similar to Tian

et al.’s approach [17] that tags all kernels and variables with

a sequence number, or color, that determines the system state

that they belong to.

Coloring Speculative Variables. Every kernel within a

non-speculative BB must be executed. Therefore, the execution

of a BB changes the state of the variables written to by kernels

within the BB. If we assign a color to the complete system

state after each BB has executed, the process of executing a

BB will change the color of modified variables from that of

the previous BB to that of the executed block. For a BB that

is executed speculatively, it is necessary to be able to roll back

to the color of the previous BB in case of a misspeculation.

Renaming On Speculative Writes. In this model, spec-

ulations are made at control decisions which correspond to

edges in the CFG. In order to determine the next BB to fetch

from, we use a software implementation of branch prediction

using combined global and local history as in Pierre et al.

[22]. Once the next BB has been determined by the software

branch predictor, the runtime assigns a speculative color to all

kernels in that BB. The renaming mechanism is extended to

always rename variables that are written to by a speculative

kernel. As variables are written to by speculative kernels, they

inherit the kernel’s color. In the case of a series of speculations,

a different speculative color will be assigned to each basic

block. Variables are renamed whenever they are written to by

a kernel with a different speculative color than the variable’s

color. Additionally, the runtime does not discard the copy of a

variable with the most recent non-speculative color. As control

decisions are resolved and speculative colors are confirmed

to be correct, all kernels with that color are reassigned non-

speculative colors, old copies of renamed variables are dis-

carded, and speculative variables with that color are assigned

non-speculative colors.

C. Handling Misspeculation

If a control decision resolves to a different target BB than

it was predicted to, it is considered to be misspeculated and

the system state must be reverted back to the color of the

immediately preceding BB.

Reseting Control Flow. In case of a misspeculation, the

runtime must flush all kernels and variables with a speculative

color greater than the color of the misspeculated control

decision. This does not mean that all speculative state is rolled

back, only the state modified by BBs after the misspeculated

control decision. Since control decisions can be resolved out

of order, it is possible that a correctly speculated control

decision precedes an incorrectly speculated control decision

in program order that resolves earlier, resulting in a subset

of all outstanding speculative colors being rolled back. After

the state has been reverted, the runtime front-end can resume

fetching BBs from the correct path.

Deallocating Resources. Once a control decision is deter-

mined to have been misspeculated, all kernels with subsequent

speculative colors are flushed. It would be useful to support in-

terrupting misspeculated kernels as soon as possible. However,

the underlying libraries that we use to launch kernels (pthreads

on x86 and cudart on NVIDIA GPUs) do not support reliable

asynchronous kill operations 3.

Errors In Speculative Kernels. Speculative kernels can

possibly be given incorrect input data resulting in undefined

behavior such as making out of bounds memory accesses,

executing invalid instructions, or looping indefinitely. This is

a problem of any speculative system and numerous solutions

have been presented in the past to deal with it [16], [17]. In

our implementation, we leverage the side-effect-free property

3We do not consider pthread cancel to be reliable since it does not free
dynamically allocated memory



Application Description Problem Size Control Flow Model
AES Encrypts and decrypts a large document using 256-bit AES 3.2 MB Text File For Loops Harmony
MonteCarlo Gaussian Quadrature estimates the area under a normal function 1 Precision value While Loops Harmony
MatrixMultiply Dense matrix multiplication using subblocks 4096x4096 matrices Nested Loops Harmony
CapModel3 Risk analysis for adding a new asset to an existing loan portfolio 1000000 Samples Nested Loops Harmony
Random A regression test for Harmony that constructs a CFG of simple kernels

with random edges subject to a completion constraint
10 Variables 100 Av-
erage Iterations

Random
Structure

Harmony

MRI-Q Computation of a matrix Q, representing the scanner configuration,
used in a 3D MRI reconstruction algorithm in non-Cartesian space.

450KB Image For Loops CUDA

MRI-FHD Computation of an image-specific matrix FHd, used in a 3D MRI
reconstruction algorithm in non-Cartesian space.

450KB Image For Loops CUDA

CP Computes the coulombic potential at each grid point over on plane in
a 3D grid in which point charges have been randomly distributed.

40000 Atoms in a
512x512 grid

For Loops CUDA

SAD Sum of absolute differences kernel, used in MPEG video encoders. 50KB image None CUDA
TPACF Measures the probability of finding an astronomical body at a given

angular distance from another astronomical body.
100 Random Num-
bers 4096 Points

None CUDA

PNS Implements a generic algorithm for Petri net simulation. 2000x2000 matrix For Loops CUDA
RPES Calculates 2-electron repulsion integrals which represent the Coulomb

interaction between electrons in molecules.
20000 molecules For Loops CUDA

TABLE I
APPLICATION CHARACTERISTICS

of kernels to determine that all memory accesses that do

not correspond to registered inputs or outputs of the kernel

are memory errors. These can be handled with appropriate

MMU support. Invalid instructions can similarly be handled

by trapping faults until the kernel that generated them becomes

nonspeculative. Infinite loops are currently not handled in our

implementation, though they could be easily supported if we

could asynchronously kill running kernels. For our benchmark

applications, we did not encounter any of these errors.

D. Deciding When to Speculate

Balancing the benefits against the overheads of speculation

for a given kernel requires a decision model to determine

whether or not to launch a speculative kernel. A simple

expression of the form of equation (1) relates the probability

of correctly predicting a control decision PC to the expected

benefit of launching a kernel speculatively E(TB). Intuitively,

the product of the probability of correctly speculating a kernel

and the reduction in execution time TE plus the reduction

in memory copy time TM represents the expected benefit of

a given speculation. Similarly, the product of the execution

time of a misspeculated kernel TRB and the probability of

incorrectly speculating a kernel 1−PC expresses the expected

overhead of a given speculation. Our runtime uses a decision

model that chooses to launch a given kernel speculative only

if the expected benefit is greater than the expected overhead.

E(TB) = PC ∗ (TE + TM )− (1− PC) ∗ (TRB) (1)

E. Scheduling Optimizations - Control Decision Criticality

Our first implementation of a scheduler for Harmony was

based on the widely used list scheduling algorithm. We used a

ranking function that assigned the predicted execution time of

each kernel in the data dependency graph as a weight in the

scheduling algorithm. Based on the performance of this initial

implementation, we made several noteworthy modifications to

address the criticality of control decisions.

Even in the presence of speculation, we found that it was

still advantageous to resolve control decisions as soon as

possible so that misspeculated kernels could be flushed before

they were launched, previous copies of renamed variables

could be discarded, and control flow could continue at the

next correct basic block. This suggested that control deci-

sions were more critical to the execution of a program than

generic kernels. More generally, data dependency chains in

the program data-flow graph that contain a control decision

are critical to the execution of the program because they

determine the latency required to resolve a control decision.

In our initial implementation of speculation, the scheduler

was agnostic to the criticality of control decisions, resulting

in several cases where control decisions would be scheduled

behind particularly long running kernels, artificially increasing

the latency of resolving a given control decision.

To address this problem, we implemented an improved

scheduling algorithm that gave preference to control decisions.

This algorithm improved average performance by up to 20%
over the base implementation. However, it still led to cases

where kernels that produced values used as inputs to control

decisions could be scheduled behind long running indepen-

dent kernels. The scheduling algorithm was again revised to

identify data-dependency chains of kernels ending in control

decisions. These kernels were assigned high priority status and

scheduled before lower priority (any other) kernels.

IV. KERNEL LEVEL PARALLELISM

In this section, we develop a theoretical formulation of the

upper bound of KLP in Harmony and CUDA applications.

We show how this upper bound is impacted by speculation

and renaming for the benchmark applications in Table I. The

Harmony applications were written from scratch by us and

the CUDA applications were taken from the UIUC Parboil

benchmark suite [20].
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Fig. 6. Kernel Level Parallelism in Harmony Applications

Application Kernels KLP MIMD SIMD
CP 10 9.85 256 128
MRI-Q 4 3.91 97.5 320
MRI-FHD 7 6.96 110.57 292.57
SAD 3 2.6 594 70.28
TPACF 1 1.0 156.63 206.11
PNS 112 111.03 17.99 248.88
RPES 71 70.42 64757 40.5799

TABLE II
PARALLELISM IN CUDA APPLICATIONS

A. KLP Definition

At a high level, we would like a metric that expresses the

amount of parallelism within a Harmony or CUDA application

in the same way that ILP expresses the amount of instruction

level parallelism within a single threaded application. KLP

is difficult to formulate exactly as different kernels typically

have different, data-dependent execution times as shown in

Diamos et al. [13] and Luk et al. [14]. With these concerns in

mind, we define kernel level parallelism for an application on
a heterogeneous system as the speedup of a parallel execution
on a system with an infinite number of accelerators over a
sequential execution on the same system where each kernel is

run on the accelerator that gives the lowest execution time. In

order to account for possible non-determinism in the execution

time of a kernel, we use the average execution time from the

accelerator with the lowest such average time.

For Harmony applications, we computed KLP by analyzing

traces of the kernels and control decisions launched by an

application as it executed. These traces expressed the average

kernel execution time and the input and output variables of

each kernel. For CUDA applications, we used Ocelot [21] to

instrument all load and store instructions from every kernel in

an application. We maintained a set of all memory locations

written by kernels along with the id of the last kernel to write

to that location. If a kernel ever loaded a value that was stored

by a previous kernel, we created a dependency between the

two kernels. This information was used to create a dependency

graph for the entire application. We did not have the ability to

identify control decisions in CUDA applications, so we report

on the best case KLP assuming that all control decisions could

be removed via perfect speculation in Table II. We also present

the average MIMD and SIMD parallelism as defined in Kerr

et al. [21] within each kernel for comparison.



B. Results

Figure 6 shows the computed upper bound on KLP for all

of the Harmony applications in our test suite. In this figure,

speculative depth refers to the maximum number of control

decisions that can be outstanding at a time. These results show

a significant amount of KLP within all applications tested.

For all of the applications except Monte Carlo, renaming

provides the most significant boost to KLP and indeed most

applications without renaming do not show any improvement

from speculation. Monte Carlo stands out because it explicitly

uses different variables for the input seed and output result

of each Monte Carlo simulation; this demonstares that it is

possible for the programmer to do the equivalent of renaming.

However, once renaming has been enabled, being able to

remove control decisions via speculation greatly improves

KLP. Over all of the applications, it extends the upper bound

of KLP by an average of 3.6x over renaming alone. The KLP

saturates around a speculative depth of about 10 except for

Monte Carlo which continues to scale up to a speculative depth

of 133.

For the CUDA applications, KLP is comparable to that of

the Harmony applications in all cases except for SAD, TPACF

and MRI-Q, which simply do not launch a significant number

of kernels. It is possible that increasing the data set size for

these benchmarks would improve their KLP. It is also possible

that the kernels in these applications would have to be split

to expose additional KLP, which would limit the potential

benefits of speculation. Kerr et al. [21] show that this is not

the common case for CUDA applications, which typically have

tens to hundreds of kernels, but it still represents a problem

that will have to be addressed in future work in order to apply

kernel level speculation to certain CUDA applications.

For the remainder of the paper, we focus on the Harmony

benchmarks exclusively as our runtime prototype does not

yet support CUDA. However, from these KLP results, we

hypothesize that many CUDA applications have enough KLP

to benefit from speculation as well. This hypothesis may or

may not be correct, but we believe that these results warrant

deeper investigation in future work.

C. Branch Prediction Accuracy

The KLP measurements in Figure 6 give an upper bound

on parallelism for Harmony applications assuming that all

branches can be predicted with perfect accuracy. Branch

predictors used for speculation in out-of-order processor can

typically achieve over 95% accuracy [22]. Our runtime uses

a combined branch predictor as in [22] with 16 bits of global

history and a history table that maintains a unique entry

for each control decision and global history value. This is

possible because our implementation is done in software,

and table entries are lazily allocated upon their first use. We

instrumented the branch predictor in our runtime to report the

average accuracy for each Harmony application using several

history sizes. Figure 7 shows that the accuracy of our predictor

on Harmony applications is comparable to that of state of

the art hardware predictors and that control decisions in
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CPU Intel Core2 Quad-Core 2.33Ghz
Accelerator 1 NVIDIA 9800GX2 (2-GPUs)
Accelerator 2 NVIDIA Tesla s870 (4-GPUs)
CPU Compiler GCC-4.3.2
GPU Compiler NVCC-2.1
OS 64-bit Ubuntu 9.04

TABLE III
TEST SYSTEM

Harmony applications are about as easy to predict as branches

in SPEC2000 benchmarks. For the subsequent analysis our

branch predictor is set to use tables of 1024 entries each.

V. EXPERIMENTS

This section covers an empircal evaluation of our imple-

mentation of KLS running on a highly heterogeneous system.

The characteristics of our test system are given in Table III.

We begin by comparing measured scaling to our KLP model,

then present the base case execution time of each Harmony

application using multiple system configurations, and conclude

with the execution time of the complete system with and

without speculation.

A. KLP Comparison

The KLP metric presented in Section IV represents an upper

bound on the parallel scaling of a given application. In order to

evaluate the effectiveness of our implementation of speculation

in relation to the KLP ideal, we first measure the execution

time of each application without speculation. The KLP metric

for each speculative depth is then normalized to the measured

non-speculative time, eg. an application with an execution time

of 10s and a KLP of 2 at depth 1 would be predicted to finish

in 5s on a machine with at least two cores. For this experiment,

we use only CPU cores for both the KLP metric as well as

the measured execution time so that scaling trends are easily

visible.

Figure 8 shows the measured and KLP predicted execu-

tion times. The MonteCalo, CapModel3, and MatrixMultiply
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Fig. 8. KLP Predicted vs Measured Scaling (4 CPUs)

follow the prediction closely. Random deviates the most,

experiencing no speedup even though the KLP metric predicts

a speedup of up to 4x. This can be explained by examining the

structure of the application, where kernels only contain several

instructions each; the execution time is dominated by runtime

overheads, which are serialized. The AES application suffers

from inaccuracy as well. Profiling the application shows that

it spends most of its time in functions doing memory and disk

accesses suggesting that it is IO rather than compute bound,

limiting its scalability on a multicore system.

B. Heterogeneous Scaling

This experiment establishes a base case for the speedup of

each application using Harmony without KLS4. As can be

seen in Figure 9, on average, the use of all 10 cores in the

system provides a 14.8x increase in performance over a single

CPU with the MatrixMultiply example seeing the largest im-

provement at 57.6x. For MatrixMultiply, the complete system

achieves 824 Gflops compared to 201 Gflops achieved by a

single 8800GTX GPU in prior work [23].

4Random is omitted from these results since it does not use GPU kernels.

Only the AES application experiences a slow-down moving

from a single CPU to the entire system. In our GPU imple-

mentation, the GPU encrypt and decrypt are at least an order

of magnitude slower than their CPU equivalent. This is not a

typical result for AES, which others have shown to perform

well on GPUs [24], and is likely due to an inefficiency in our

implementation. However, it presents an interesting case where

a GPU kernel is much slower than a CPU kernel. As these

applications only have ten encrypt or decrypt kernels each,

running even a single kernel on a GPU core will degrade the

performance of the application. Examples like this motivate

the refinement of the performance predictor to either try

to estimate the execution time on each architecture before

actually launching a kernel, or kill extremely long running

kernels and restart them on faster architectures.

C. Additional Scaling Using Speculation

The next experiment focuses on the benefits from adding

speculation to the base implementation. Figure 10 shows the

performance improvement of the entire system moving from

the non-speculative implementation to the speculative imple-

mentation using various speculative depths. Of the applications
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that were predicted by the KLP model to benefit from specula-

tion, performance improves by an average of 3.98x. The other

two applications, CapModel3 and MatrixMultiply, are not

affected at all by the overheads of speculation, experiencing a

±3% change in execution time. These two applications already

have enough KLP within each basic block to fully utilize the

system, and thus do not require speculation to expose any

more. Across all of these applications, adding kernel level

speculation either improves performance or does not impact it

at all.

VI. RELATED WORK

A. Heterogeneous Many-Core Programming

BrookGPU [7] proposes the use of stream extensions to the

C programming language where compute kernels are defined

to be functions applied to every element in a stream. The

definition of a kernel explicitly declares stream parameters

as inputs and outputs enabling the determination of data

dependencies between kernels. Similarly, StreamIt [8] applies

uniform operations (kernels although they do not use this

terminology) to each element in several input data streams

to produce an output data stream. Complete programs are

composed of a data-flow-like graph of kernels. In each of these

languages, a runtime component maps kernels onto processing

elements. BrookGPU passes kernels to the runtime as they are

encountered during the execution of the application, whereas

in StreamIt, the entire program is directly made visible to the

runtime.

CUDA [10] and OpenCL [11] begin with the C program-

ming language and again introduce the concept of kernels

which are executed on GPUs in the case of CUDA or generic

accelerators in the case of OpenCL. Kernels in this context

are different in that they can operate on any data structure,

not just streams, and assume a Single-Program Multiple-Data

execution model within kernels where the number of threads

launched per kernel is explicitly stated by the programmer.

They also drop the requirements for specifying parameters

as read-only inputs or write-only outputs, but they keep the

restriction that kernels are side-effect-free and can only update

local variables in accelerator memory.

Sequoia [15] models heterogeneous systems as an arbitrarily

structured tree of distinct memory modules with the leaves

containing processors. The programmer must orchestrate trans-

fers up and down the tree as well as mapping kernels to

leaf nodes. Sequoia kernels maintain the explicit input/output

semantics for kernel parameters and the side-effect-free re-

striction that they can only operate on local data. Imperative

control flow is permitted, but cannot be easily decomposed into

parallel code. Merge [12] uses a similar map-reduce tree style

programming model, but without programmer orchestrated

data movement up and down the memory hierarchy. It supports

heterogeneity by including multiple implementations of each

kernel and its runtime uses simple sampling to bias specific

kernels to faster cores.

Qilin [14] Is by far the most similar execution model to

Harmony. Qilin allows programs to be specified either in

terms of Intel TBB [25] for CPU kernels or NVIDIA CUDA

[10] for GPU kernels. Like the approach used in our prior

work [13], a directed acyclic dependency graph of kernels

is created by a runtime component as the program executes.

Qilin uses the term adaptive mapping to refer to the process

by which the runtime determines which kernels can execute in

parallel and maps them to available accelerators, dynamically

choosing either the CPU or GPU implementation, similar to

the scheduling process in Harmony. Additionally, Qilin uses an

analytical performance model to determine the execution time

of individual kernels on specific accelerators, which is very

similar to our approach. Qilin retains a sequential program-

ming model, but like the original formulation of Harmony, it

can only exploit parallelism within a single basic block.

The Harmony [13] execution model draws from these high

level languages the concepts of side-effect-free kernels, ex-

plicit input and output parameters, and kernels that can operate

on generic data structures. It extends these execution models

to make the entire program control flow graph visible to the



runtime in the same way that the program data flow graph

is made visible to the StreamIt runtime and the map/reduce

tree is made visible to Merge. These abstractions allow us to

extend the techniques described in these prior works to support

executing kernels speculatively. All of these prior works either

impose an explicitly parallel programming model at the inter-

accelerator level, or employ a sequential programming model

without the ability to search beyond basic block boundaries

for additional parallelism.

B. Speculation

Tian et al. [17] present a copy-or-discard mechanism for

unrolling generic imperative loops via speculation by running

speculative threads for each loop iteration. Variables modified

by each speculative thread are stored locally and upon comple-

tion are either copied back into the main thread or discarded

if they were modified by the main thread. Similarly, Program-

Demultiplexing [16] uses compiler analysis to identify func-

tions in imperative programs that are side-effect-free and

can be executed speculatively. Their implementation requires

hardware-support to buffer speculative memory operations, but

their concept of a side-effect-free function is very similar to

our concept of a kernel.

Several proposed schemes [18], [26], [27] exist for thread

level speculation (TLS) where threads are spawned and al-

lowed to proceed ahead of a main thread. Hardware support

is required to detect memory dependency violations between

the speculative thread and the main thread. Typically, writes

from speculative threads are buffered in hardware and only

committed after the thread becomes non-speculative. Also, the

points at which to launch speculative threads are added by the

compiler [18].

Finally, Eric Petit and Francois Bodin propose a software

only approach for thread level speculation in systems with

attached accelerators [28]. In this study, threads with the poten-

tial for acceleration are identified using a combination of static

compiler analysis and profiling before being speculatively

assigned to discrete accelerators without shared memory. Only

those regions of memory that are expected to be accessed by

the speculative thread are copied into the accelerator’s memory

space and, in the case the thread accesses an unmapped region,

the program faults and falls back on execution on the main

processor. Their study focuses mainly on the identification and

partitioning of a sequential application into threads, whereas

our approach relies on the concept of encapsulated kernels

embedded in the targeted programming models.

We drew upon these previous implementations of specula-

tion to guide our implementation of KLS. The techniques that

we describe in this paper are not fundamentally different from

these previous works. Instead, we show that the techniques de-

scribed in these prior works and implemented in our prototype

of the Harmony runtime enable the retention of a sequential

programming model for heterogeneous systems with several

accelerators that can efficiently utilize all of the accelerators

in a large system.

VII. CONCLUSIONS

We have leveraged the abstractions offered by kernel pro-

gramming languages to design a software implementation of

speculation for heterogeneous many-core systems, augmenting

the our prior work on the Harmony execution model [13]. Our

implementation uses speculation to break control dependencies

between kernels and increase program concurrency using

software branch prediction coupled with memory renaming

to distinguish between speculative and nonspeculative state.

Compared to a theoretical upper bound on the performance

improvement from speculation assuming oracle predictors and

infinite accelerator resources, we show that our implementa-

tion achieves 41.2% − 98.6% of the theoretical ideal across

6 full applications running on a system with 10 cores and

3 different architectures, resulting in a 1.02x-6.13x speedup.

Additionally, we show that many CUDA applications have a

similar degree of kernel level parallelism as the applications

evaluated in this paper. In the future, we plan to explore ex-

pressing CUDA program as Harmony programs such that they

can benefit from optimizations like Kernel Level Speculation.
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