

Geology in Your Kitchen

14 July 2024 | Special Libraries Association (SLA) Conference, Kingston, Rhode Island

Library Research Guide

Emily C. Wild, Chemistry, Geosciences and Environmental Studies Librarian Princeton University Library, Lewis Science Library

Abstract

Mineral Resources

This poster presentation provides an overview of print and digital resources available for Earth's mineral resources used to create items in your kitchen. Attendees will learn the differences (and similarities) of critical minerals, conflict minerals, rare earths, and other mineral terminologies used around the world in the contexts of sustainability and economic growth, as well as environmental considerations of mineral extractions, uses, and wastes in everyday life.

IUPAC Periodic Table of the Elements

1																	18
1 H hydrogen 1,0080 ±0,0002	2		Key:									13	14	15	16	17	2 He helium 4,0026 ±0,0001
3 Li lithium 6.94 ±0.06	4 Be beryllium 9.0122 ± 0.0001		atomic number Symbol name abridged standard atomic weight									5 B boron 10.81 ± 0.02	6 C carbon 12.011 ± 0.002	7 N nitrogen 14.007 ± 0.001	8 O oxygen 15.999 ± 0.001	9 F fluorine 18.998 ± 0.001	10 Ne neon 20.180 ± 0.001
11 Na sodium 22.990 ±0.001	12 Mg magnesium 24,305 ± 0.002	3	4	5	6	7	8	9	10	11	12	13 Al aluminium 26.982 ± 0.001	14 Si silicon 28.085 ± 0.001	15 P phosphorus 30.974 ± 0.001	16 S sulfur 32.06 ± 0.02	17 CI chlorine 35.45 ±0.01	18 Ar argon 39.95 ± 0.16
19 K potassium 39.098 ±0.001	20 Ca calcium 40.078 ± 0.004	21 Sc scandium 44.956 ± 0.001	22 Ti titanium 47.867 ±0.001	23 V vanadium 50.942 ± 0.001	24 Cr chromium 51.996 ± 0.001	25 Mn manganese 54.938 ±0.001	26 Fe iron 55.845 ± 0.002	27 Co cobalt 58.933 ±0.001	28 Ni nickel 58.693 ± 0.001	29 Cu copper 63.546 ± 0.003	30 Zn zinc 65.38 ± 0.02	31 Ga gallium 69.723 ± 0.001	32 Ge germanium 72.630 ± 0.008	33 As arsenic 74.922 ± 0.001	34 Se selenium 78.971 ± 0.008	35 Br bromine 79.904 ± 0.003	36 Kr krypton 83.798 ± 0.002
37 Rb rubidium 85.468 ±0.001	38 Sr strontium 87.62 ± 0.01	39 Y yttrium 88.906 ±0.001	40 Zr zirconium 91.224 ±0.002	41 Nb niobium 92.906 ± 0.001	42 Mo molybdenum 95.95 ± 0.01	43 TC technetium	44 Ru ruthenium 101.07 ± 0.02	45 Rh rhodium 102.91 ±0.01	46 Pd palladium 106.42 ±0.01	47 Ag silver 107.87 ± 0.01	48 Cd cadmium 112.41 ±0.01	49 In indium 114.82 ± 0.01	50 Sn tin 118.71 ± 0.01	51 Sb antimony 121.76 ± 0.01	52 Te tellurium 127.60 ± 0.03	53 iodine 126.90 ± 0.01	54 Xe xenon 131.29 ± 0.01
55 Cs caesium 132,91 ± 0.01	56 Ba barium 137.33 ± 0.01	57-71 lanthanoids	72 Hf hafnium 178.49 ±0.01	73 Ta tantalum 180.95 ± 0.01	74 W tungsten 183,84 ± 0.01	75 Re rhenium 186.21 ±0.01	76 Os osmium 190.23 ± 0.03	77 Ir iridium 192.22 ± 0.01	78 Pt platinum 195.08 ± 0.02	79 Au gold 196.97 ± 0.01	80 Hg mercury 200.59 ± 0.01	81 T I thallium 204.38 ± 0.01	82 Pb lead 207.2 ± 1.1	83 Bi bismuth 208.98 ± 0.01	PO polonium	85 At astatine	86 Rn radon
87 Fr francium	88 Ra radium	89-103 actinoids	104 Rf rutherfordium	105 Db dubnium	106 Sg seaborgium	107 Bh bohrium	108 HS hassium	109 Mt meitnerium	110 Ds darmstadtium	111 Rg roentgenium	112 Cn copernicium	113 Nh nihonium	114 FI flerovium	115 Mc moscovium	116 Lv livermorium	117 Ts tennessine	118 Og oganesson
[223]	[226]		[267]	[268]	[269]	[270]	[269]	[277]	[281]	[282]	[285]	[286]	[290]	[290]	[293]	[294]	[294]

INTERNATIONAL UNION OF PURE AND APPLIED CHEMISTRY

slate, argillite, schist, gneiss, marble, metasandstone,

quartzite, greenstone, serpentinite, chert breccia

Copyright @ 2022 IUPAC, the International Union of Pure and Applied Chemistry.

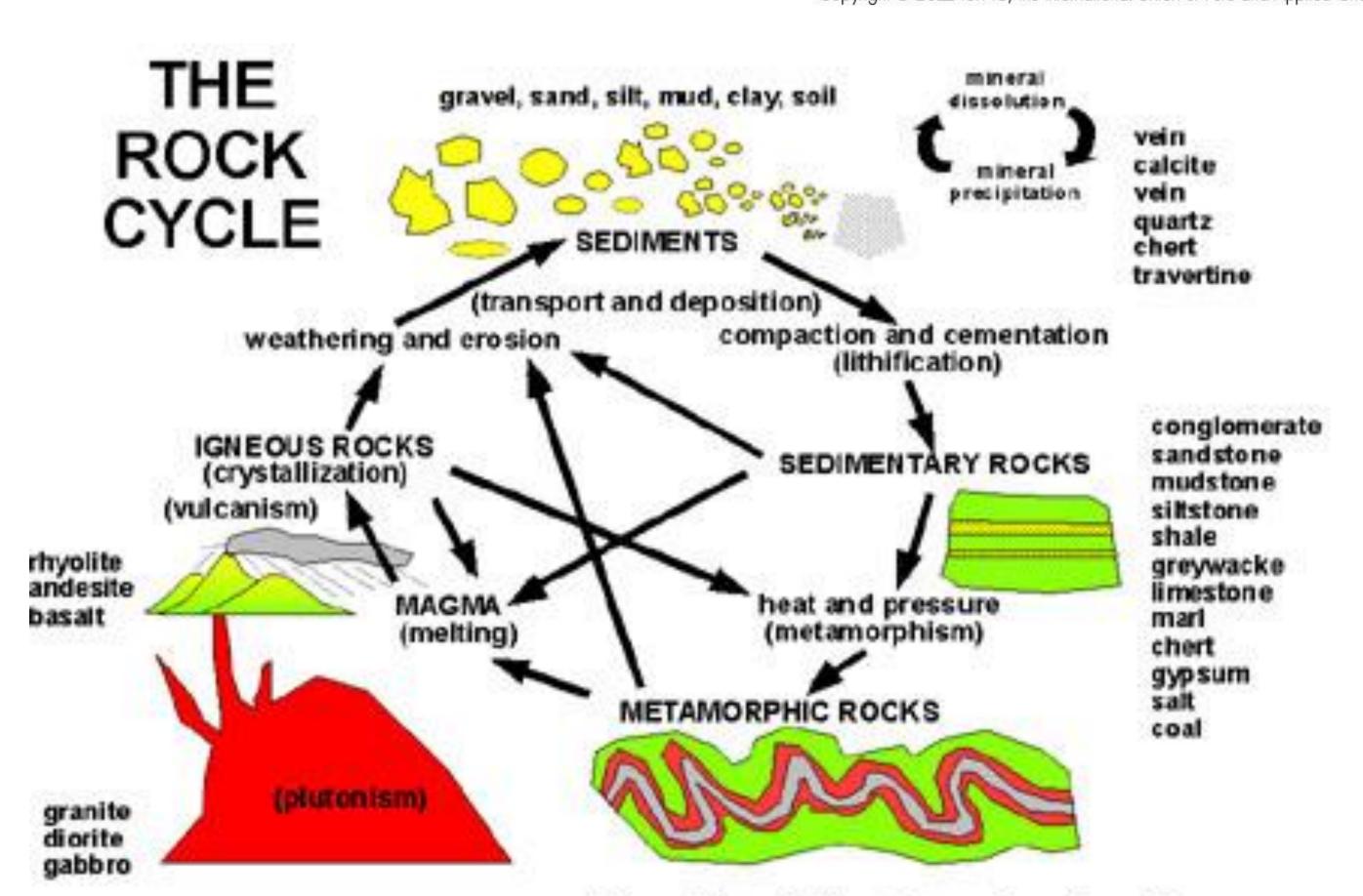


Figure 2 – The Rock Cycle Figure 3 – Overview of Rocks in a Kitchen

Figure 1 – Periodic Table of Elements

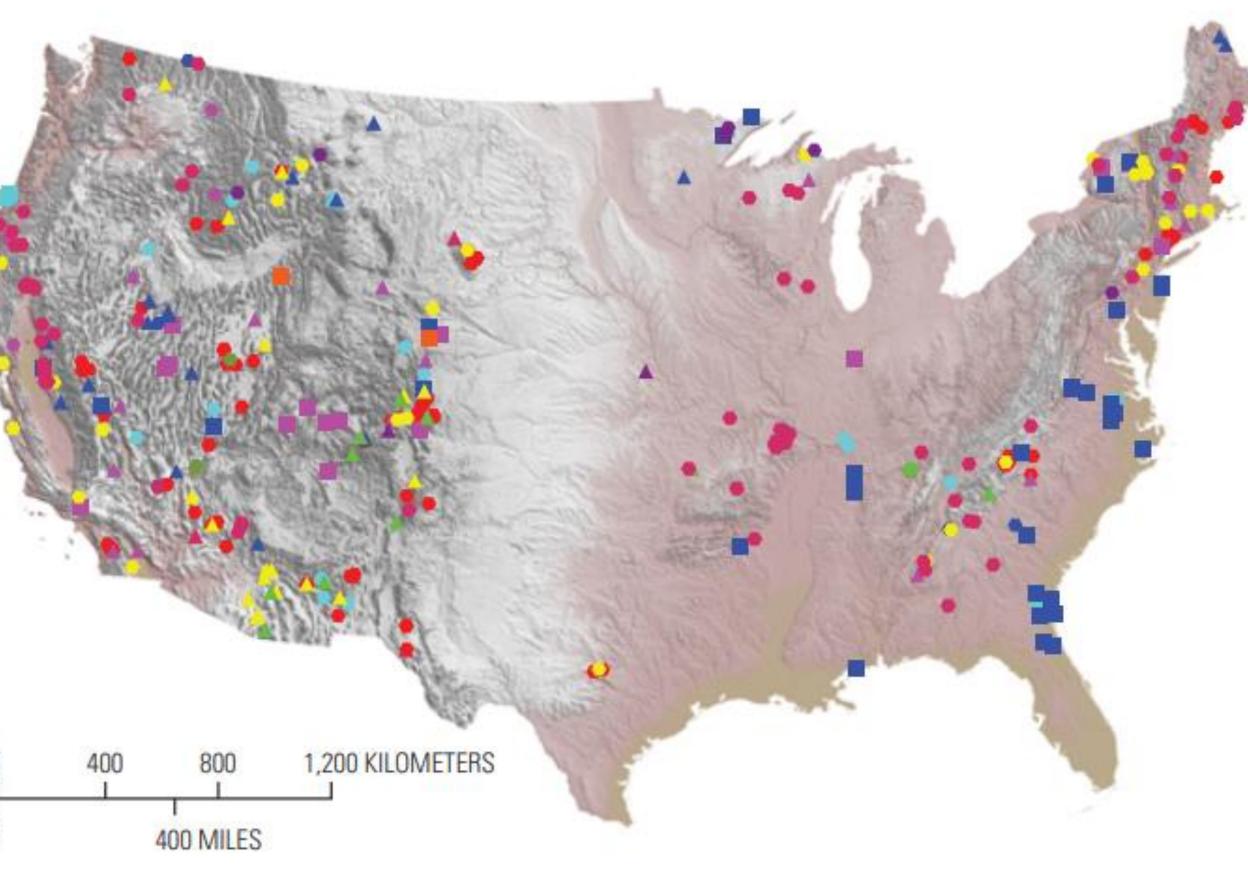
Counter – Natural Granite (or Engineered Stone) Refrigerator – Stainless Steel, Aluminum, Copper, Iron, Nickel, Petroleum Products, Zinc Stove – Burners, Natural Gas; Microwave – Copper, Gold, Iron, Nickel, Silica Toaster – Copper, Iron, Nickel, Mica, Chromium, **Petroleum Products Lights and Appliances – Electricity, Nuclear** Stainless Steel Sink – Iron and Nickel

Library Research Sources for Education and Outreach

Apples (and Rice) – Arsenic Table Salt – Halite Plates – Clays, Silica, Feldspar Cutlery – Iron, Nickel, Silver, Chromium **Medicines:**

Cold/Flu/Pain – Critical Minerals (Catalysis) **Upset Stomach – Bismuth** Vitamins, Supplements – Calcium, Magnesium Pencil for Grocery List – Graphite Batteries for Technology – Cobalt, Lithium, Graphite

Critical Minerals – a non-fuel mineral or mineral material essential to the economic or national security of the U.S. and which has a supply chain vulnerable to disruption, Figure 4


Geology Terminologies

Examples: Aluminum, Arsenic, Bismuth, Chromium, Cobalt, Graphite, Magnesium, Nickel, Tin, Titanium, Tungsten, Zinc. Zirconium

Conflict Minerals – minerals used to fund terrorists and other armed groups who seek to commit crimes and overthrow legitimate governments

Examples: Diamonds, Gold, Tin, Titanium

Rare Earth Minerals - bastnasite, monazite, and loparite and the lateritic ion-adsorption clays; a relatively abundant group of 17 elements composed of scandium, yttrium, and the lanthanides

EXPLANATION Critical Minerals

Manganese

Niobium and Tantalum

Rare Earth Elements

▶ Platinum Group Elements

- Antimony
- Barite
- Beryllium
- Cobalt
- Fluorite
- Gallium
- Germanium
- Graphite
- Indium
- Titanium Vandium

Rhenium

▲ Tellurium

■ Tin

- ▲ Lithium
 - Zirconium

