
Automated Solutions for
Sustainable and Circular
Construction and Demolition
Waste Management

Czech Technical University in Prague

D4.1 AI-based CDW classification software utilizing
low-cost sensors’ inputs

Contract No: 101058580

June, 2024

This project is funded by the European Union under Grant Agreement No. 101058580.

Document Control Sheet

Project Automated solutions for sustainable and circular con-
struction and demolition waste management

Call identifier HORIZON-CL4-2021-TWIN-TRANSITION-01

Grant Agreement No 101058580

Coordinator CESKE VYSOKE UCENI TECHNICKE V PRAZE
Czech Technical University in Prague

Work package 4. Automated off-site CDW management and treat-
ment

Work package leader České učenı́ technické v Praze (CVUT)
(Czech Technical University in Prague)

Related tasks 4.2

Deliverable title Deliverable 4.1 – AI-based CDW classification soft-
ware utilizing low-cost sensors’ inputs

Deliverable nature Software

Dissemination level PU

Lead Beneficiary CVUT

Contributing partners

Authors Václav Nežerka, CVUT
Tomáš Zbı́ral, CVUT

Reviewer(s) Jan Trejbal, CVUT (internal)
David Šilhánek, CVUT (external)
Jan Valentin, CVUT (internal)
Stanislav Vı́tek, CVUT (internal)

Version 1.3 (final, reviewed)

Total number of pages 43

Due date June 30, 2024

Submission date June 27, 2024

All rights reserved: The document is proprietary to the consortium members. No
copying or distributing, in any form or by any means, is allowed without the prior written
agreement of the owner of the property rights. This document reflects only the authors’
view. The European Community is not liable for any use that may be made of the
information contained herein.

Contents

List of Figures vi

List of Tables viii

1 Introduction 1

2 Dataset 3

3 Convolution versus extraction of selected features 5

3.1 Metrics . 5

3.1.1 Mean intensity . 6

3.1.2 Mean intensity of red color . 7

3.1.3 Shannon’s entropy . 8

3.1.4 Mean intensity gradient . 8

3.2 Classifiers . 9

3.2.1 Gradient boosting . 10

3.2.2 Multi-layer perception . 10

3.2.3 Convolutional neural network . 11

3.3 Model Evaluation Metrics . 12

3.4 Results and discussion . 14

3.5 Application procedure . 17

4 Deep neural networks for segmentation and classification 21

4.1 Data preparation . 21

4.1.1 Data cleaning . 21

4.1.2 Ground truth masks . 22

4.1.3 Data augmentation . 23

4.1.4 Data splitting . 24

June 14, 2024

4.2 Segmentation . 24

4.2.1 U-Net architecture . 24

4.2.2 Segmentation accuracy metrics 26

4.2.3 U-Net model . 27

4.3 Classification . 30

4.3.1 Model architecture . 31

4.3.2 Data preparation for classification 33

4.3.3 Performance of the ResNet model 33

References 37

Document name: AI-based CDW classification software utilizing low-cost sensors’ inputs

Reference: D4.1 Dissemination: PU Version: 1.3 Status: Final Page: iii of 43

June 14, 2024

Executive Summary

Proper sorting of construction and demolition waste (CDW) fragments is essential for
its further valorization. In this document, we demonstrate the potential of machine-
learning models for the recognition and classification of CDW fragments using com-
puter vision-based algorithms. The approach was tested on four types of CDW ma-
terial fragments commonly found in mixed debris from demolition sites: aerated au-
toclaved concrete (AAC), asphalt mix conglomerates (reclaimed asphalt or reclaimed
asphalt pavement), ceramics (roof tiles and bricks), and concrete fragments. For that
purpose, we examined:

1. Three basic machine-learning classification models, gradient boosting (GB), multi-
layer perception (MLP), and convolutional neural network (CNN)

2. Advanced deep-learning models for segmentation (U-net) and classification (ResNet).

The links to image datasets, computer codes, and pre-trained models used in this
study are open and links are provided in this document. We believe that the findings
can promote the developments in robotics-assisted sorting of CDW fragments, en-
abling its efficient use in the production of new materials and products and reduction
of the environmental burden associated with CDW disposal.

Results to date are promising for future research. We consider it crucial for further
development to collect large, diverse datasets. For this purpose, we have developed
a conveyor belt system with the capability of mounting various measurement instru-
ments, facilitating the collection of comprehensive datasets that mirror the conditions
of a real sorting yard. While visual data have proven effective, the incorporation of
additional modalities such as depth measurements, ultrasound properties, or other
electromagnetic spectrum intervals could further enhance accuracy, thus accelerating
and refining the sorting process. In terms of machine learning, numerous innova-
tive approaches remain to be explored. These include the integration of decision tree
models with deep neural networks and averaging the outcomes from the same model
trained on multiple random seeds to maximize accuracy. Such advancements could
significantly advance the precision and efficiency of CDW sorting systems.

Document name: AI-based CDW classification software utilizing low-cost sensors’ inputs

Reference: D4.1 Dissemination: PU Version: 1.3 Status: Final Page: iv of 43

June 14, 2024

Source codes

The suite of scripts developed during the project is open-source and available on-
line:

1. Codeocean capsule contains scripts for feature extraction and classification of
image subsets as described by Nežerka et al. (2024).

2. Github repository contains scripts for segmentation using U-net and classification
using ResNet models.

Document name: AI-based CDW classification software utilizing low-cost sensors’ inputs

Reference: D4.1 Dissemination: PU Version: 1.3 Status: Final Page: v of 43

https://codeocean.com/capsule/5777871/tree/v1
https://github.com/ZbiralTomas/HybridModelsCDW

List of Figures

2.1 The site for collecting images, a CDW collection and sorting yard near
Kladno, Czech Republic. 4

2.2 Examples of image datasets for the examined CDW materials. 4

3.1 Manual extraction of 200×200 px regions (image subsets) used for train-
ing and testing of selected classifiers. 6

3.2 Visualization of the image subset characteristics for individual materials
(classes) as pairwise scatter plots; marginal distributions of each feature
for each class are plotted on the diagonal. 7

3.3 Local coordinates (i, j) for a subset of pixels (right) arbitrarily located
within an image of a CDW fragment (left). 8

3.4 Training and testing accuracy as a function of epoch recorded during
CNN training. 13

3.5 Confusion matrices for different classifiers and comparison of their per-
formance with manual classification done by five experts on building
materials from the FCE CTU in Prague. 16

3.6 Speed (left) and accuracy (right) reached by individual classifiers on
the validation (testing) datasets for different sizes of image subsets that
were extracted by cropping the redundant portion of the images. 17

3.7 Localization of whole CDW fragments and their classification based on
texture recognition using different classifiers; the size of image subsets
135×135 px. 18

3.8 A typical misclassification of AAC fragments by CNN during a compre-
hensive validation of the classification algorithms; size of image subsets
200×200 px with a 70 px overlap. 19

4.1 Examples of image datasets for the examined CDW (Nežerka et al., 2024). 22

4.2 Images with corresponding masks for each material. 22

June 14, 2024

4.3 U-net architecture (example for 32×32 pixels in the lowest resolution).
Each blue box corresponds to a multi-channel feature map. The number
of channels is denoted on top of the box. The x-y-size is provided at the
lower left edge of the box. White boxes represent copied feature maps.
The arrows denote the different operations (Ronneberger et al., 2015). . 26

4.4 Training and validation loss as a function of epoch reported during the
training of the U-Net model. 28

4.5 Training and validation IoU as a function of epoch reported during the
training of the U-Net model. 28

4.6 Training and validation F1 as a function of epoch reported during the
training of the U-Net model. 29

4.7 Comparison of ground truth and predicted mask. The blue overlay dis-
plays true negatives, the red overlay displays false positives, the green
overlay displays false negatives, and true positives are transparent. . . . 29

4.8 Input data for ResNet model. 33

4.9 Training and validation loss as a function of epoch reported during the
training of the ResNet model. 34

4.10 Training and validation accuracy as a function of epoch reported during
the training of the ResNet model. 34

4.11 Predicted probabilities for correct and incorrect predictions for AAC. . . 35

4.12 Confusion matrix for model in epoch 61. 36

Document name: AI-based CDW classification software utilizing low-cost sensors’ inputs

Reference: D4.1 Dissemination: PU Version: 1.3 Status: Final Page: vii of 43

June 14, 2024

List of Tables

3.1 Summary of extracted 200×200 px image subsets used for testing and
training of selected classifiers. 5

3.2 Summary of hyperparameters for the GB classifier implemented in Scikit-
Learn v.1.1.3 (ensemble.GradientBoostingClassifier model class). . . . 10

3.3 Summary of hyperparameters for the MLP classifier implemented in
Scikit-Learn v.1.1.3 (neural network.MLPClassifier model class). 11

3.4 Architecture of the CNN models; the individual layers were implemented
in the Tensorflow Keras v.2.10.0 Python package, the layers class. . . . 13

3.5 Accuracy of different classifiers when recognizing whole CDW fragments
by classifying several (>4) 200×200 image subsets with a 70 px overlap
(Figure 3.8). 17

3.6 Comparison of the current study with previous significant works focused
on machine-learning-based recognition of construction materials in terms
of model performance, data type, and dataset size. 19

4.1 Mean IoU based on material calculated for the test data. 27

4.2 Accuracy comparison for models introduced in previous study by Nežerka
et al. (2024) and ResNet model. 35

Document name: AI-based CDW classification software utilizing low-cost sensors’ inputs

Reference: D4.1 Dissemination: PU Version: 1.3 Status: Final Page: viii of 43

June 14, 2024

1 Introduction

In order to pursue sustainable development, it is imperative to manage waste in a pru-
dent and cost-effective manner and adopt the principles of circular economy (Joensuu
et al., 2020; Oluleye et al., 2022). Following this direction, the European Parliament
and the Commission issued Directive No 98/2008 which required the EU member
states to increase the overall recycling of waste to at least 70% by weight from 2020.
Even though the rate of CDW recycling in the EU is almost constant, at about 90%
on average1, the lion’s share is downcycled. At the global scale, rapidly developing
countries, such as China with 2 bn tons/year, are even bigger CDW producers than all
the EU states combined (Zheng et al., 2017).

The most commonly recycled CDW materials, besides soils, are concrete and ce-
ramics. These waste materials are most often not recycled, but rather utilized directly
for embankments, backfills, fillings, or beddings under foundation slabs or pavings;
such an approach leads to deterioration of the material value. Less frequently, the
recycled fragments are used as aggregates in the production of new concrete mixes
or the finest fractions as micro-fillers (Hlůžek et al., 2020; Prošek et al., 2020; Valentin
et al., 2021; Nežerka et al., 2023). The major limiting factor in the crushed CDW val-
orization in applications such as concrete manufacturing is improper sorting (Hoong
et al., 2020). Su (2020) carried out a multi-agent evolutionary game study and con-
cluded that research into CDW classification holds the greatest potential to promote
CDW recycling and reuse. Davis et al. (2021) pointed out that the automatic classifi-
cation of CDW materials would significantly reduce the costs associated with sorting.

At the pre-sorting stage, methods exploiting gravitational, magnetic, inertial, elec-
trostatic, or buoyancy forces are very efficient in separating specific types of materi-
als from a heterogeneous CDW mix (Gundupalli et al., 2017; Vincent et al., 2022).
Leveraging big data in CDW management offers promising advancements. Yuan et al.
(2021) utilized a dataset of 4.27 million truckloads of construction waste to estimate
waste composition based on bulk density. Such techniques can significantly refine
sorting processes and promote sustainable resource utilization.

Despite recent progress in advanced methods based on research into the develop-
ment of various sensors (image, spectroscopic, spectral, UV sensitive, etc.) (Gundu-
palli et al., 2017; Lu and Chen, 2022), sorting of the remaining fragments is at the
industrial scale most commonly accomplished manually and cannot be done properly
due to their similarity. Therefore, it is desirable to replace manual sorting with robotic

1https://ec.europa.eu/eurostat/databrowser/view/cei_wm040/default/table

Document name: AI-based CDW classification software utilizing low-cost sensors’ inputs

Reference: D4.1 Dissemination: PU Version: 1.3 Status: Final Page: 1 of 43

https://ec.europa.eu/eurostat/databrowser/view/cei_wm040/default/table

June 14, 2024

vision-based technologies such as RGB cameras, hyperspectral imaging, or X-ray sen-
sors assisted with machine learning. This approach has been first employed for the
purpose of municipal waste separation (Özkan et al., 2015; Wang et al., 2019b; Liang
and Gu, 2021; Lu and Chen, 2022) and the extensive development led to the sorting
accuracy exceeding 90% (Yang et al., 2021).

The robotic vision-based technology has also started to find its way into the CDW
sorting (Wang et al., 2019a, 2020). However, automatic CDW recognition encountered
its limitations in terms of accuracy and boundary identification. The latter issue was
addressed by Dong et al. (2022), who proposed a boundary-aware model with the
ability to distinguish and segment individual materials within structural debris. CNNs
are specialized for image recognition, leveraging their ability to identify hierarchical
patterns in visual data. Their design enables them to dissect images into components,
enhancing classification accuracy, especially in intricate tasks like CDW sorting. For
instance, Xiao et al. (2020) utilized CNNs to effectively classify different CDW materi-
als, underscoring the potential of this approach in the domain. They classified different
CDW materials (wood, brick, rubber, rock, concrete) with an accuracy exceeding 80%.
Ku et al. (2020) built a robotic line that automatically recognized and classified the
basic materials within CDW using hyperspectral and 3D cameras with an accuracy of
about 90%. Machine-learning classification was also employed by Lin et al. (2022),
who recognized visually different CDW fragments and achieved an accuracy ranging
between 75 and 80%. The closest to our goal is the study by Hoong et al. (2020),
who employed neural networks for the classification of recycled aggregates. They
constructed a library of 36,000 images of individual aggregate grains and their model
achieved accuracies of up to 97%.

While previous studies have employed CNN-based models for CDW classification,
our research distinguishes itself in two primary ways. Firstly, we focus on the efficient
extraction of features describing the textures captured using ordinary RGB cameras, a
method not extensively explored in prior work. Secondly, we provide a comprehensive
comparison between CNN and other machine-learning models, specifically GB models
and MLP, showcasing the efficacy of feature extraction in enhancing both speed and
accuracy. This paper presents a unique approach to CDW fragment recognition, em-
phasizing the power of feature extraction. In the following part, we focused on the use
of advanced models to accomplish fast segmentation and accurate classification us-
ing U-net and ResNet models, respectively. We provide extensive datasets, computer
codes, and pre-trained models, ensuring our methodology is transparent, reproducible,
and can be built upon by other researchers or industry stakeholders.

Document name: AI-based CDW classification software utilizing low-cost sensors’ inputs

Reference: D4.1 Dissemination: PU Version: 1.3 Status: Final Page: 2 of 43

June 14, 2024

2 Dataset

The capabilities and limitations of the selected feature extraction methods and machine-
learning models are demonstrated on four types of CDW fragments. These were cho-
sen because they are the most common fragments found in mixed debris from demo-
lition sites in the Czech Republic: light-colored aerated autoclaved concrete (AAC),
asphalt conglomerates, ceramics (roof tiles and bricks), and concrete. These materi-
als not only represent a significant portion of the total waste but also pose a challenge
in terms of their similarity, making their accurate classification crucial for efficient recy-
cling and waste management.

The 1920×1280 px images of ∼30–250mm fragments were taken from a distance
of about 70 cm using a handheld digital single-lens reflex camera (Canon EOS 70D
with a Canon zoom lens EF-S 17-85 IS USM) in a CDW collection and sorting yard
near Kladno, Czech Republic (Figure 2.1). The images were captured in a shade to
minimize variations in illumination and to ensure consistent image quality. Importantly,
the CDW fragments were used in their natural state from the yard, without any pre-
sorting or cleaning, reflecting the real-world conditions of such waste. In a potential
industrial deployment, techniques like air-flow cleaning could be introduced on con-
veyor belts to minimize dirt and dust, enhancing the image clarity. The fragments were
placed on the ground while taking the images, or directly on the CDW piles.

Unlike clean structural elements, whose classification has been tackled in other
studies (Zhu and Brilakis, 2010; Son et al., 2012; Dimitrov and Golparvar-Fard, 2014;
Han and Golparvar-Fard, 2015; Braun and Borrmann, 2019; Mahami et al., 2020),
recognition of CDW fragments is a more challenging task as their surface can be con-
taminated with dust and residues of other materials. Randomly selected samples of
CDW fragments are presented in Figure 2.2, showing similar textures, especially in
the case of AAC and concrete. The complete image datasets used for training of
machine-learning classifiers and validation are open and provided as supplementary
material (Nežerka et al., 2023).

Note that for ceramics, the dominant feature in this category is the red color (in-
cluding orange and pink). Although not currently addressed, if models were trained
on various colors of ceramic materials (especially roof tiles), they should handle this
variation. The main goal now is to refine the methodology to achieve the best possible
accuracy. The model’s precision depends on the quantity and quality of the training
data; it performs based on the data it is trained on.

Document name: AI-based CDW classification software utilizing low-cost sensors’ inputs

Reference: D4.1 Dissemination: PU Version: 1.3 Status: Final Page: 3 of 43

June 14, 2024

Figure 2.1: The site for collecting images, a CDW collection and sorting yard near
Kladno, Czech Republic.

A
A

C
A

sp
h

a
lt

C
er

a
m

ic
s

C
o
n

cr
et

e

Figure 2.2: Examples of image datasets for the examined CDW materials.

Document name: AI-based CDW classification software utilizing low-cost sensors’ inputs

Reference: D4.1 Dissemination: PU Version: 1.3 Status: Final Page: 4 of 43

June 14, 2024

3 Convolution versus extraction of se-
lected features

The acquired image datasets were manually split to individual material classes. The
annotated images within each class were divided into training and testing sets in a
4:1 ratio. Since the shape of fragments cannot be the key for classification and the
classifiers were trained to recognize the CDW textures, 200×200 px regions (image
subsets) were manually extracted for training and testing of the selected classifiers
(Figure 3.1). The summary of these training/testing data is provided in Table 3.1.

Table 3.1: Summary of extracted 200×200 px image subsets used for testing and
training of selected classifiers.

Material (class) Number of training images Number of testing images

AAC 939 235

Asphalt 902 226

Ceramics 620 155

Concrete 825 206

Images represent a high-dimensional input space with D = N × N × C features,
where N × N is the image subset size (px) and C is the number of color channels
(equal to 3). Such large inputs can be tackled using CNNs, yet reducing the input
space by extracting informative numeric features that describe the CDW texture (Fig-
ure 3.2) allows to use simple and efficient classification algorithms. In this chapter,
we scrutinize the GB and MLP models for such a classification based on extracted
features.

3.1 Metrics

The following metrics are proposed to describe the color and texture of CDW frag-
ments, reducing the input space to D = 4: (i) mean intensity, (ii) mean intensity of a
selected color channel, (iii) Shannon entropy, and (iv) mean intensity gradient. To cal-
culate these quantities, local coordinates (i, j) are introduced for image subsets (Fig-
ure 3.3). The 3-dimensional matrix of intensities for individual color channels, I(C, i, j),

Document name: AI-based CDW classification software utilizing low-cost sensors’ inputs

Reference: D4.1 Dissemination: PU Version: 1.3 Status: Final Page: 5 of 43

June 14, 2024

AAC Asphalt

Ceramics Concrete

5 cm 5 cm

5 cm5 cm

200 px

20
0

px

Figure 3.1: Manual extraction of 200×200 px regions (image subsets) used for training
and testing of selected classifiers.

was reduced to a single-channel matrix I(1, i, j) ≡ Igray(i, j), representing a gray-scale
image, as

Igray(i, j) = 0.299 Ired(i, j) + 0.587 Igreen(i, j) + 0.114 Iblue(i, j), (3.1)

where Ired(i, j), Igreen(i, j), and Iblue(i, j) represent the matrices of intensities for the
red, green, and blue channel, respectively. The weights for individual channels follow
luma encoding that reflects different human vision sensitivity to particular colors (Khud-
hair et al., 2023).

3.1.1 Mean intensity

Mean intensity, Igray, is strongly influenced by the illumination of a captured scene
and cannot be considered a reliable feature if constant illumination is not ensured for

Document name: AI-based CDW classification software utilizing low-cost sensors’ inputs

Reference: D4.1 Dissemination: PU Version: 1.3 Status: Final Page: 6 of 43

June 14, 2024

1.0

1.2

1.4

I r
ed

50

100

150

200

I g
ra

y

4

6H

1.00 1.25
Ired

100

200

∇
I

100 200

Igray

4 6 8
H

0 100 200
∇I

AAC Asphalt Ceramics Concrete

Figure 3.2: Visualization of the image subset characteristics for individual materials
(classes) as pairwise scatter plots; marginal distributions of each feature for each class
are plotted on the diagonal.

all (training, testing, and classified) images. Since this proof-of-the-concept study is
intended as a cookbook for CDW fragments recognition on conveyor belts in an indoor
environment, Igray can be considered as one of the relevant features for classification
and is calculated as

Igray =
N∑
i=1

N∑
j=1

Igray(i, j)

N2
. (3.2)

3.1.2 Mean intensity of red color

The color distribution is one of the key features and many machine-learning models
for material recognition were based purely on color-based classification (Son et al.,

Document name: AI-based CDW classification software utilizing low-cost sensors’ inputs

Reference: D4.1 Dissemination: PU Version: 1.3 Status: Final Page: 7 of 43

June 14, 2024

0 50 100 150 200

i (px)

0

50

100

150

200

j
(p

x
)

Figure 3.3: Local coordinates (i, j) for a subset of pixels (right) arbitrarily located within
an image of a CDW fragment (left).

2012). It was found during a preliminary analysis that for CDW materials, it is sufficient
to focus on the predominance of a specific color. Given the orange/reddish color of
ceramic fragments, the mean intensity of the red channel, Ired, relative to the mean
intensity (brightness) was selected as the most appropriate color-related label and its
value was calculated as

Ired =
N∑
i=1

N∑
j=1

Ired(i, j)

N2

1

Igray
. (3.3)

3.1.3 Shannon’s entropy

Many distinct CDW materials have similar colors and color-based labeling may fail (Dim-
itrov and Golparvar-Fard, 2014; Bosché et al., 2015; Nežerka and Trejbal, 2019). To
evaluate the randomness of a texture pattern as an additional feature, Shannon’s en-
tropy appears to be the most easy-to-calculate measure (Wu et al., 2013; Antoš et al.,
2017; de Sousa Filho et al., 2022). It was first proposed by Claude Shannon in 1948
to evaluate the average level of uncertainty in a signal as (Shannon, 1948; Wu et al.,
2011)

H = −
255∑

Igray=0

P (Igray) log2P (Igray), (3.4)

where P (Igray) ∈ [0, 255] (8-bit images) is the frequency of gray pixels’ intensity. High
values of H indicate higher uncertainty (randomness) of the signal (image).

3.1.4 Mean intensity gradient

Mean intensity gradient (∇I) was proposed by Pan et al. (2010) as an indicator of
stochastic pattern quality in regard to digital image correlation measurements. It eval-

Document name: AI-based CDW classification software utilizing low-cost sensors’ inputs

Reference: D4.1 Dissemination: PU Version: 1.3 Status: Final Page: 8 of 43

June 14, 2024

uates the frequency and intensity of irregularities within an image. Such a measure
is directly related to the texture roughness, being another crucial feature used for ma-
terial classification (Yuan et al., 2020). In this study, the mean intensity gradient was
calculated as

∇I =
N∑
i=1

N∑
j=1

|∇Igray(i, j)|
1

N2
, (3.5)

where |∇Igray(i, j)| =
√

Ii(i, j)2 + Ij(i, j)2 is the modulus of local intensity gradient and
Ii and Ij are the i-directional and j-directional derivatives of Igray(i, j) at each pixel
location (i, j). The differentiation was accomplished using a Sobel operator with a 3×3
kernel (Nixon and Aguado, 2020).

3.2 Classifiers

The machine-learning models used for classification are only briefly introduced in the
following sections, along with a presentation of input parameters for each model. De-
tailed descriptions and analyses of the models are beyond the scope of this paper.
The curious reader is referred to comprehensive books on machine learning such as
ones by Géron (2022) and Murphy (2022).

The choice of classifiers in this study was driven by the aim to span a spectrum
of algorithmic complexity and to capture the strengths of different types of models.
Specifically:

1. GB is renowned for its efficiency in classification tasks. It excels in handling struc-
tured data and can seamlessly navigate the non-linear relationships between
features, making it a robust choice for our dataset (Zhou, 2021).

2. MLP, as a basic form of artificial neural networks (ANNs), bridges the gap be-
tween traditional machine learning and deep learning techniques (Ho et al.,
2023). Its inclusion allowed us to gauge the efficiency of a simpler neural network
architecture in the context of CDW recognition.

3. CNN was incorporated as a benchmark due to its inherent layered analysis ca-
pabilities. By automatically extracting features, CNNs detect edges and intricate
patterns. Its performance provides insights into how deep learning techniques
interpret the visual features in the CDW fragments.

The performance of individual classifiers was tested on a custom-built desktop com-
puter equipped with an Intel 4 core i3-8350K CPU, 16 GB RAM, 250 GB SSD hard
drive, Windows 10 operating system, and Python 3.10.9. The Python codes and pre-
trained models are provided along with this paper (Zbı́ral and Nežerka, 2023).

Document name: AI-based CDW classification software utilizing low-cost sensors’ inputs

Reference: D4.1 Dissemination: PU Version: 1.3 Status: Final Page: 9 of 43

June 14, 2024

3.2.1 Gradient boosting

GB is a machine learning algorithm that typically uses decision trees (Salzberg, 1994)
as its base models (Friedman, 2001). The decision tree is a flowchart-like tree struc-
ture where each internal node tests an attribute, and the connected branches repre-
sent an outcome of the test. Analogically to leaves, the terminal nodes hold class
labels (Friedman, 2002).

At each iteration, GB trains a weak decision tree model on the residual errors be-
tween the true and predicted labels of the previous iteration. The final prediction is
made by adding up the predictions of all the decision trees, where the contribution of
each tree depends on its weight, determined by the improvement in the loss function
after adding the tree to the ensemble. The loss function is minimized using gradient
descent. The algorithm usually outperforms random forest classifiers in terms of speed
and accuracy of the predictions (Hastie et al., 2008; Piryonesi and El-Diraby, 2021).

The GB classifier used in this study was implemented in the Scikit-Learn v.1.1.3
Python package. Standardization of features was performed using the
preprocessing.StandardScaler class. Cross-validation was accomplished using the
model selection.StratifiedShuffleSplit class that provides randomly selected indices
to split datasets into test/train data and preserves the percentage of samples for
each class. The hyperparameters for the ensemble.GradientBoostingClassifier model
class were defined as summarized in Table 3.2. The optimum parameters were se-
lected based on the prediction accuracy and speed. The optimization was done us-
ing the Scikit-learn’s model selection.GridSearchCV class that provides an exhaustive
search over specified values of model parameters (learning rate ∈ [0.2, 0.8], maximum
depth ∈ [3, 5], and a number of estimators ∈ [100, 200]). Other hyperparameters were
kept in their default settings.

Table 3.2: Summary of hyperparameters for the GB classifier implemented in Scikit-
Learn v.1.1.3 (ensemble.GradientBoostingClassifier model class).

Input parameter Keyword argument Value Note

Random state random state 0 Fixing the random state ensures deterministic
behavior during fitting

Learning rate learning rate 0.4 Learning rate shrinks the contribution of each
tree

Maximum depth max depth 4 Maximum depth of individual regression esti-
mators, limiting the number of nodes in deci-
sion trees

Number of estimators n estimators 125 Number of boosting stages to perform

3.2.2 Multi-layer perception

MLP is a type of artificial neural network that consists of an input layer, a specified
number of hidden layers, and an output layer (Rumelhart et al., 1986; Hinton et al.,

Document name: AI-based CDW classification software utilizing low-cost sensors’ inputs

Reference: D4.1 Dissemination: PU Version: 1.3 Status: Final Page: 10 of 43

June 14, 2024

2006). The input layer represents the features of the input data, while the output layer
represents the predicted probability for all classes. The hidden layers are used to learn
the non-linear transformations of the input features that lead to the final prediction. In
our implementation, the MLP model consists of a single hidden layer; this hidden layer
consists of neurons, where each neuron applies a weighted sum of the input features
and a bias term, followed by an activation function, such as sigmoid or hyperbolic
tangent (tanh). The weights and biases are learned through backpropagation, where
the gradients of the loss function are computed to update the weights and biases using
gradient descent.

Also, the MLP classifier was implemented in the Scikit-Learn v.1.1.3 Python pack-
age. The training procedure was similar to that of the GB model: the standardiza-
tion of features was performed using the preprocessing.StandardScaler class and
model selection.StratifiedShuffleSplit class was used for cross-validation. The hyper-
parameters for the neural network.MLPClassifier model class were defined as sum-
marized in Table 3.3. The search for optimum parameters was also accomplished
using the Scikit-learn’s model selection.GridSearchCV class, searching over speci-
fied values of model parameters (learning rate ∈ {adaptive, constant ∈ [0.005, 0.015,
0.05]}, solver ∈ {stochastic gradient descent, stochastic gradient-based optimizer
(adam) (Kingma and Ba, 2015)}, activation ∈ {rectified linear unit function (ReLU),
hyperbolic tan function (tanh)}, and a hidden layer size ∈ [5, 100]). Other hyperparam-
eters were kept in their default settings.

Table 3.3: Summary of hyperparameters for the MLP classifier implemented in Scikit-
Learn v.1.1.3 (neural network.MLPClassifier model class).

Input parameter Keyword argument Value Note

Random state random state 0 Fixing the random state ensures deter-
ministic behavior during fitting

Learning rate learning rate init 0.015 Controls the step-size in updating neu-
ron weights

Maximum number of iterations max iter 800 Number of epochs (how many times
each data point is used)

Learning rate schedule learning rate ’constant’ Selected constant learning rate

Solver solver ’adam’ Weight optimization using the Adam al-
gorithm (Kingma and Ba, 2015)

Neuron activation function activation ’tanh’ Activation function for the hidden layer

Hidden layer size hidden layer sizes (20,) Single hidden layer with 20 neurons

3.2.3 Convolutional neural network

CNN is a type of artificial neural network that is designed for the analysis of data with
a grid-like topology (e.g., images) (Zhou et al., 2012; LeCun et al., 2015; Krizhevsky
et al., 2017). It consists of several layers, including convolutional layers, pooling layers,
and fully connected layers. The convolutional layer applies a convolution operation to

Document name: AI-based CDW classification software utilizing low-cost sensors’ inputs

Reference: D4.1 Dissemination: PU Version: 1.3 Status: Final Page: 11 of 43

June 14, 2024

the input image, where the convolution kernel slides over the image and computes the
dot product between the kernel and the local patch of the image to extract features.
The convolutional layer is followed by an activation function that applies non-linear
transformations to the output of the convolution. The pooling layer reduces the spatial
dimensions of the output of the convolutional layer by applying a pooling operation,
such as max pooling, that takes the maximum value of a local patch. The fully con-
nected layer combines the features learned by the convolutional and pooling layers and
makes the final prediction. The weights and biases of the convolutional and the fully
connected layers are adjusted during the network training through backpropagation,
exploiting the gradient descent algorithm.

Unlike GB and MLP classifiers, CNN takes the whole image as input. Since the
model in our study was trained on 200×200 px 3-channel (RGB) images, images for
classification having a different size were rescaled to 200×200 px using an interpola-
tion function. The CNN classifier was implemented in the Tensorflow Keras v.2.10.0
Python package, provided by the models.Sequential class.

Different architectures of CNNs with various number of filters for the convolutional
layers have been tested. The selected model includes three convolutional layers, each
followed by a max pooling layer, a flatten layer, and two dense layers. The first and third
convolutional layers have 32 3×3 filters, a stride of 1, and a ReLU activation function.
The second convolutional layer has 64 3×3 filters and the same activation function.
The max pooling layers downsample the feature maps by a factor of two to make the
model more efficient. The flatten layer converts the 2D feature maps into a 1D vector.
The two dense layers consist of 256 units with a ReLU activation function, followed by
an output layer with four neurons corresponding to the individual CDW classes.

The selected model architecture is described in detail in Table 3.4. During the
training process, the model achieved 100% accuracy on the training data (αtrain) after
30 epochs, but the maximum accuracy on the testing data (αtest = 80%) was reached
after 11 epochs, suggesting potential overfitting (Figure 3.4). The model trained after
11 epochs was adopted for the future CDW classification.

3.3 Model Evaluation Metrics

To evaluate the performance of our multi-class classification models, we primarily uti-
lize accuracy and the weighted F-score.

Let P true
c be the number of true positives for class c, N true

c the true negatives, P false
c

the false positives, and N false
c the false negatives. Accuracy, denoted by α, measures

the proportion of all correct predictions across all four classes:

α =

∑4
c=1 P

true
c +N true

c∑4
c=1 P

true
c +N true

c + P false
c +N false

c

. (3.6)

The precision Pc and recall Rc for each class are respectively defined as:

Pc =
P true
c

P true
c + P false

c

and Rc =
P true
c

P true
c +N false

c

(3.7)

Document name: AI-based CDW classification software utilizing low-cost sensors’ inputs

Reference: D4.1 Dissemination: PU Version: 1.3 Status: Final Page: 12 of 43

June 14, 2024

Table 3.4: Architecture of the CNN models; the individual layers were implemented in
the Tensorflow Keras v.2.10.0 Python package, the layers class.

Layer Keras class Purpose

Convolutional layer (32 filters, size
3×3)

Conv2D(32, (3, 3), 1, activa-
tion=’relu’, input shape=(200, 200,
3))

Extract features from the in-
put images

Maximum pooling layer (2×2 pool) MaxPooling2D() Downsample the feature
maps from the previous layer

Convolutional layer (64 filters, size
3×3)

Conv2D(64, (3, 3), 1, activa-
tion=’relu’)

Extract features from the pre-
vious layer

Maximum pooling layer (2×2 pool) MaxPooling2D() Downsample the feature
maps from the previous layer

Convolutional layer (32 filters, size
3×3)

Conv2D(32, (3, 3), 1, activa-
tion=’relu’)

Extract features from the pre-
vious layer

Flattening layer Flatten() Flattens the 2D feature map
into a 1D array

Fully connected layer (256 neurons) Dense(256, activation=’relu’) Take the flattened vector
from the previous layer as in-
put

Output layer (4 neurons) Dense(4) Values of individual neurons
represent probabilities that
the input belongs to each of
the possible classes

0 10 20 30 40 50

Epoch

60

70

80

90

100

A
cc
u
ra
cy

(%
)

αtrain

αtest

1
Figure 3.4: Training and testing accuracy as a function of epoch recorded during CNN
training.

Document name: AI-based CDW classification software utilizing low-cost sensors’ inputs

Reference: D4.1 Dissemination: PU Version: 1.3 Status: Final Page: 13 of 43

June 14, 2024

The F-score for class c, denoted as Fc, offers a balance between Pc and Rc. It is
described as the harmonic mean of Pc and Rc:

Fc =
2PcRc

Pc +Rc

(3.8)

For our multi-class problem, the weighted F-score, Fweighted, is calculated by av-
eraging the F-score of each class, weighted by the proportion of samples from that
class:

Fweighted =
4∑

c=1

wcFc (3.9)

where wc denotes the weight (proportion of samples) for the cth class.

We employ both α and Fweighted in this study to evaluate the performance of our
classifiers, providing a comprehensive view of their efficacy, especially in light of the
minor class imbalance present in our dataset.

3.4 Results and discussion

The performance of individual classifiers is represented through confusion matrices
(Figure 3.5), alongside the results of “manual” classification. This manual classification
was accomplished using an online survey1 by five experts on building materials from
the Faculty of Civil Engineering, Czech Technical University in Prague.

While accuracy provides a general measure of correctness, the weighted F-score
offers a more balanced measure between precision (how many selected items are
relevant) and recall (how many relevant items are selected). For instance, GB and
MLP classifiers achieved an accuracy of 82.5% with F-scores of 82.4%, indicating a
harmonious balance between precision and recall. The CNN classifier achieved an
accuracy of 82.1% and an F-score of 82.3%, further demonstrating the model’s con-
sistent performance. In comparison, human experts achieved an accuracy of 87.2%
and an F-score of 87.5%, outperforming the machine classifiers slightly2.

Both machine-learning classifiers and human experts had difficulties distinguishing
between image samples of AAC, asphalt, and concrete. This demonstrates the in-
herent difficulty in differentiating these materials visually, particularly when they share
similar characteristics like a grayish color and texture. In contrast, ceramics (bricks,
roof tiles, etc.) were recognized with an impressive accuracy of over 96% by both
groups. A potential enhancement to the classification process could be the integration
of a basic weight measurement device. Given the significant differences in density
between the grayish materials, weight can be a distinguishing factor. Moreover, if a
dual-camera setup were employed, the segmentation technique would permit volume
estimation from visual data, further refining the differentiation process.

1https://rm.fsv.cvut.cz/cdw/
2As shown next, evaluating more image subsets increased the accuracy of ML models, surpassing

the classification accuracy of human experts.

Document name: AI-based CDW classification software utilizing low-cost sensors’ inputs

Reference: D4.1 Dissemination: PU Version: 1.3 Status: Final Page: 14 of 43

https://rm.fsv.cvut.cz/cdw/

June 14, 2024

Despite the commendable performance of human experts, there are inherent lim-
itations to relying on manual sorting. Prolonged concentration can lead to lapses in
attention, impacting the consistency of the sorting process (Firestone, 2020). Further-
more, machine classifiers, especially when deployed on standard office computers,
can process samples at a rate that outpaces human capability by orders of magnitude.

In recent literature, Davis et al. (2021) reported accuracy levels between 80% and
97% for the CNN-based classification of general waste. Their categories included
paper, glass, plastic, metal, cardboard, and non-recyclables. Although their work
achieved an accuracy of up to 95.7% for CDW, it’s crucial to note that the objects
they classified had more distinct shapes than the CDW fragments. Xiao et al. (2019)
reported a perfect accuracy of 100% in their classification of CDW on a conveyor belt.
They employed a high-cost near-infrared hyperspectral camera and a dataset with dis-
tinct categories like foam, plastic, brick, concrete, and wood. Introducing more chal-
lenging materials such as asphalt conglomerates or AAC, often found in CDW, could
potentially reduce this high accuracy even with advanced hardware.

A study on the performance of the individual classifiers in terms of speed and ac-
curacy is presented as a function of subset size in Figure 3.6. As larger subsets con-
tained more information, the accuracy of models increased. This phenomenon was
most significant in the case of CNN, for which the image subsets had to be rescaled
to 200×200 px to have the same size as images used for training. Similar findings
were reported by Dimitrov and Golparvar-Fard (2014), who developed a system for
vision-based material recognition and monitoring of construction progress, employing
the SVM classifier (Cortes and Vapnik, 1995).

In our study, the GB and MLP models that utilized feature extraction, exhibited
similar speed and accuracy, both superior to CNN, especially for small subsets. Unlike
CNN, both models approached their maximum accuracies at approximately 150×150 px
subset size. The classification speed of GB and MLP classifiers, including feature ex-
traction, was about 15× higher compared to CNN.

The practical demonstration of the image subset classification is provided in Fig-
ure 3.7. Here, the randomly selected CDW fragments from the testing dataset were
localized using the Rembg1 Python package based on the U2-Net deep neural net-
work (Qin et al., 2020). An auxiliary script was designed to extract image subsets from
the unmasked regions. The accuracy of the CNN classifier was compromised by the
small size (135×135 px) subsets placed over the region of interest; however, even
despite this shortcoming, even the CNN classified the fragments correctly with high
confidence. Nearly 100% confidence was reached by the GB and MLP classifiers.

This demonstration shows that the accuracy reached for individual subsets is im-
proved by placing a higher number of these subsets over the samples. The accu-
racy was tested on a comprehensive dataset containing 2664 images of CDW frag-
ments (Nežerka et al., 2023); the summary of reached accuracies for individual classi-
fiers is provided in Table 3.5. Classification of several samples per a CDW fragment led
to overall accuracy ranging between 85.9% (CNN) and 92.3% (GB), reaching the ac-
curacy reported by other authors dealing with the classification of clean building mate-

1https://github.com/danielgatis/rembg

Document name: AI-based CDW classification software utilizing low-cost sensors’ inputs

Reference: D4.1 Dissemination: PU Version: 1.3 Status: Final Page: 15 of 43

https://github.com/danielgatis/rembg

June 14, 2024

AAC Asphalt Ceramics Concrete

Predicted label

A
A
C

A
sp
ha
lt

C
er
am

ic
s

C
on
cr
et
e

T
ru
e
la
b
el

80.0%
(188)

5.5%
(13)

0.0%
(0)

14.5%
(34)

3.1%
(7)

88.1%
(199)

0.4%
(1)

8.4%
(19)

1.9%
(3)

1.3%
(2)

96.8%
(150)

0.0%
(0)

21.4%
(44)

10.2%
(21)

0.0%
(0)

68.4%
(141)

GB (αtest = 82.5%, Fweighted = 82.4%)

AAC Asphalt Ceramics Concrete

Predicted label

A
A
C

A
sp
ha
lt

C
er
am

ic
s

C
on
cr
et
e

T
ru
e
la
b
el

75.7%
(178)

6.0%
(14)

0.0%
(0)

18.3%
(43)

3.5%
(8)

90.7%
(205)

0.0%
(0)

5.8%
(13)

2.6%
(4)

0.6%
(1)

96.8%
(150)

0.0%
(0)

19.4%
(40)

9.7%
(20)

0.5%
(1)

70.4%
(145)

MLP (αtest = 82.5%, Fweighted = 82.4%)

AAC Asphalt Ceramics Concrete

Predicted label

A
A
C

A
sp
ha
lt

C
er
am

ic
s

C
on
cr
et
e

T
ru
e
la
b
el

68.5%
(161)

0.0%
(0)

0.0%
(0)

31.5%
(74)

1.3%
(3)

90.3%
(204)

0.0%
(0)

8.4%
(19)

1.9%
(3)

0.6%
(1)

96.1%
(149)

1.3%
(2)

8.7%
(18)

12.1%
(25)

1.0%
(2)

78.2%
(161)

CNN (αtest = 82.1%, Fweighted = 82.3%)

AAC Asphalt Ceramics Concrete

Predicted label

A
A
C

A
sp
ha
lt

C
er
am

ic
s

C
on
cr
et
e

T
ru
e
la
b
el

84.5%
(993)

0.0%
(0)

0.8%
(9)

14.7%
(173)

0.2%
(2)

82.1%
(928)

0.1%
(1)

17.6%
(199)

0.1%
(1)

0.3%
(2)

97.7%
(757)

1.9%
(15)

6.7%
(69)

2.7%
(28)

2.7%
(28)

87.9%
(905)

Manual (αtest = 87.2%, Fweighted = 87.5%)

1Figure 3.5: Confusion matrices for different classifiers and comparison of their perfor-
mance with manual classification done by five experts on building materials from the
FCE CTU in Prague.

rials (not contaminated by other materials or dust). In a study by Mahami et al. (2020),
the authors managed to classify eleven construction materials using CNN (VGG16
network (Simonyan and Zisserman, 2014)) and reached up to 97.35% accuracy, yet,
their dataset did not contain contaminated materials having similar textures, such as
fragments of AAC and concrete in our study.

Our models, especially the Gradient Boosting and Multi-Layer Perceptron classi-
fiers, demonstrated competitive performance when compared to previous studies, as
summarized in Table 3.6. Notably, while our dataset size was comprehensive, the na-
ture of our CDW images, which included contaminated materials with similar textures,
made the classification task more challenging.

It should be noted that all the images for both training and testing datasets were
taken using the same camera and similar conditions, which can compromise the ro-
bustness of the classification models. The goal of this proof-of-the-concept study is

Document name: AI-based CDW classification software utilizing low-cost sensors’ inputs

Reference: D4.1 Dissemination: PU Version: 1.3 Status: Final Page: 16 of 43

June 14, 2024

50
×5

0

87
×8

7

12
5×

12
5

16
2×

16
2

20
0×

20
0

Image subset size (px)

101

102

103

C
la

ss
ifi

ca
ti

on
sp

ee
d

(i
m

a
ge

su
b

se
ts

/s
)

50
×5

0

87
×8

7

12
5×

12
5

16
2×

16
2

20
0×

20
0

Image subset size (px)

65.0

67.5

70.0

72.5

75.0

77.5

80.0

82.5

α
te

st
(%

)

GB MLP CNN

Figure 3.6: Speed (left) and accuracy (right) reached by individual classifiers on the
validation (testing) datasets for different sizes of image subsets that were extracted by
cropping the redundant portion of the images.

Table 3.5: Accuracy of different classifiers when recognizing whole CDW fragments by
classifying several (>4) 200×200 image subsets with a 70 px overlap (Figure 3.8).

Classifier
AAC Asphalt Ceramics Concrete Complete dataset

(582 images) (741 images) (572 images) (769 images) (2664 images)

GB 86.9% 93.9% 99.1% 89.7% 92.3%

MLP 89.4% 93.8% 98.4% 85.2% 91.3%

CNN 56.7% 97.2% 99.0% 87.5% 85.9%

to demonstrate the capabilities of the proposed low-cost lightweight procedures that
could be implemented in CDW sorting and recycling plants for CDW recognition on
conveyor belts. For particular industrial applications, new site-specific training datasets
should be acquired, optimally involving auxiliary data (weight, acoustic emissions, etc.)
from other sensors. Fusion of RGB cameras with different sensors could significantly
increase the accuracy, especially in the case of lightweight AAC which is often con-
fused with fragments of concrete that also have a fine texture and grayish color.

3.5 Application procedure

Our developed machine-learning-assisted method for CDW fragment recognition is
designed for easy integration into existing CDW sorting systems. Here, we outline the

Document name: AI-based CDW classification software utilizing low-cost sensors’ inputs

Reference: D4.1 Dissemination: PU Version: 1.3 Status: Final Page: 17 of 43

June 14, 2024

Cer Cer Cer

Cer Cer Cer Cer

Cer Cer

Ceramics (100%)

GB

Cer Cer Cer

Cer Cer Cer Cer

Cer Cer

Ceramics (100%)

MLP

Cer Cer Cer

Cer Cer Cer Cer

Cer Cer

Ceramics (100%)

CNN

AAC

AACAAC

AACAACAAC

AACAAC

AAC (100%)

AAC

AACAAC

AACAACAAC

AACAAC

AAC (100%)

Con

AACAAC

ConAACAAC

AACCon

AAC (62%)

Asp

Asp Asp Asp Asp Asp

Asp AspAACAsp Asp

Asp Asp Asp Asp Asp Asp

Asp Asp

Asphalt (94%)

Asp

Asp Asp Asp Asp Asp

Asp Asp Asp Asp Asp

Asp Asp Asp Asp Asp Asp

Asp Asp

Asphalt (100%)

Asp

Asp Con Asp Asp Asp

Asp Asp Con Asp Asp

Asp Asp Asp Asp Asp Asp

Asp Asp

Asphalt (89%)

Con

Con Con

Con

Concrete (100%)

Con

Con Con

Con

Concrete (100%)

Con

Con Con

Con

Concrete (100%)

Figure 3.7: Localization of whole CDW fragments and their classification based on
texture recognition using different classifiers; the size of image subsets 135×135 px.

Document name: AI-based CDW classification software utilizing low-cost sensors’ inputs

Reference: D4.1 Dissemination: PU Version: 1.3 Status: Final Page: 18 of 43

June 14, 2024

AAC

AACAACAAC

AAC

AAC (100%)

GB

AAC

AACAACAAC

AAC

AAC (100%)

MLP

Con

ConAACAAC

Con

Concrete (60%)

CNN

Figure 3.8: A typical misclassification of AAC fragments by CNN during a comprehen-
sive validation of the classification algorithms; size of image subsets 200×200 px with
a 70 px overlap.

Table 3.6: Comparison of the current study with previous significant works focused
on machine-learning-based recognition of construction materials in terms of model
performance, data type, and dataset size.

Reference Model Accuracy Dataset type and size Dataset size

This study (GB) GB 92.3% CDW images 2664
This study (MLP) MLP 91.3% CDW images 2664
This study (CNN) CNN 85.9% CDW images 2664
Davis et al. (2021) CNN 80-97% Images of conatiners

with bulk CDW
2283

Xiao et al. (2019) CNN 100% Hyperspectral images
of very diverse materi-
als

250

Dimitrov and
Golparvar-Fard
(2014)

SVM Up to 97.1% Point cloud patches
(images of construc-
tion surfaces)

3740

Mahami et al. (2020) CNN (VGG16) 97.35% Images of clean very
diverse materials

1231

Yuan et al. (2021) BD-P model 90.2% Bulk density (truck
loads)

4.27 mil.

Hoong et al. (2020) CNN (Custom
ResNet34)

97% Images of recycled ag-
gregates

36000

Lin et al. (2022) CNN
(CVGGNet-
16)

76.6% Images of diverse
clean bulk materials

2836 (bofore
augmentation)

Document name: AI-based CDW classification software utilizing low-cost sensors’ inputs

Reference: D4.1 Dissemination: PU Version: 1.3 Status: Final Page: 19 of 43

June 14, 2024

potential application procedure:

1. Image Acquisition: Using high-resolution cameras, images of CDW fragments
on conveyor belts or sorting platforms are captured. Ideally, this would be inte-
grated into a continuous flow system where CDW moves along a conveyor.

2. Preprocessing: The captured images undergo preprocessing, which may in-
clude cleaning using air-flow or other mechanisms to enhance clarity, and then
they are fed into the model.

3. Density Estimation: For individual fragments on the conveyor belt, a weight
measurement system can be integrated to estimate the density of each fragment.
This can assist in further refining the classification, especially for fragments with
similar appearances but different densities (e.g., AAC and concrete).

4. Classification: The preprocessed images are classified in real-time using a
trained model. The model identifies the type of CDW fragment and can poten-
tially direct its sorting into appropriate bins or sections.

5. Post-processing: Based on classifications, automated mechanisms or manual
laborers can be directed to ensure correct sorting or further refinement.

6. Feedback Loop: The system can be designed to continuously learn from any
misclassifications through a feedback mechanism, enhancing accuracy over time.

This proposed application procedure is modular and can be customized based on
the specific requirements of the CDW sorting facility, available resources, and desired
accuracy levels.

Document name: AI-based CDW classification software utilizing low-cost sensors’ inputs

Reference: D4.1 Dissemination: PU Version: 1.3 Status: Final Page: 20 of 43

June 14, 2024

4 Deep neural networks for segmen-
tation and classification

Multiple deep neural networks have been introduced for image segmentation tasks
over the course of the last few years. U-Net (Ronneberger et al., 2015) and fully
convolutional networks (FCN) (Long et al., 2015) are two of the most common, with
U-Net being used as a keyword over 14,000 times and FCN being used as a keyword
over 20,000 times based on data from web of science. (Ozturk et al., 2020) found that
U-Net gave significantly more accurate results than FCN when using smaller resolution
images (256×256 px). U-Net was the number one choice for the segmentation of
construction and demolition waste (CDW) as we aim to perform this task in real time,
and higher resolutions may result in slower segmentation.

ResNet (He et al., 2016), winner of the 2015 ImageNet Large Scale Visual Recogni-
tion Challenge (ILSVRC), appeared to be one of the best choices for the classification
task as it is highly accurate and fast to make predictions. Another idea to improve clas-
sification accuracy was to combine deep neural networks with decision trees. Multiple
studies have shown the potential of this idea to increase the accuracy of deep neural
networks (Kontschieder et al., 2015; Arifuzzaman et al., 2023; Crockett et al., 2018).

4.1 Data preparation

Data preparation is a critical step in the training of deep neural networks, significantly
impacting the model’s performance, efficiency, and generalization capabilities. Effec-
tive data preparation involves several key processes, including data cleaning, aug-
mentation, and splitting, each contributing to the overall quality and robustness of the
model.

4.1.1 Data cleaning

The original dataset presented in Chapter 2 was inappropriate for automatic segmen-
tation as some images were depreciated for various reasons: they were taken from a
pile of multiple pieces of material, and some contained structures, feet, or other objects
that were redundant in an image. Data cleaning ensured the reliable and automatic
creation of the ground truth masks that served as an important input into segmentation

Document name: AI-based CDW classification software utilizing low-cost sensors’ inputs

Reference: D4.1 Dissemination: PU Version: 1.3 Status: Final Page: 21 of 43

https://www.webofscience.com/wos/woscc/basic-search

June 14, 2024

A
A

C
A

sp
h

a
lt

C
er

a
m

ic
s

C
o
n

cr
et

e

Figure 4.1: Examples of image datasets for the examined CDW (Nežerka et al., 2024).

AAC Asphalt Ceramics Concrete

Figure 4.2: Images with corresponding masks for each material.

models. From the original dataset of 2,664 images, there were 2,133 images left, with
538 images of AAC, 315 images of asphalt, 622 images of ceramics, and 658 images
of concrete (Figure 4.1).

4.1.2 Ground truth masks

For supervised learning segmentation tasks, it is necessary to create ground truth
masks with highlighted regions of interest (Figure 4.2). For this purpose, we used
rembg library, which is a powerful and easy-to-use tool for background removal over
a wide range of images. The remove function defined in rembg implements multi-
ple background removal models such as U-2-Net (Qin et al., 2020), IsNet (Qin et al.,
2022), and Sam (Kirillov et al., 2023), making the process reliable, but computationally
expensive. The ground truth masks created using rembg.remove have been visually
reviewed to ensure maximal suitability.

Document name: AI-based CDW classification software utilizing low-cost sensors’ inputs

Reference: D4.1 Dissemination: PU Version: 1.3 Status: Final Page: 22 of 43

https://github.com/danielgatis/rembg

June 14, 2024

4.1.3 Data augmentation

Data augmentation is a crucial machine learning technique that significantly improves
the generalization of a model, especially when dealing with limited datasets. It in-
volves generating new samples by applying various transformations to the existing
data. These transformations include operations like rotation, flipping, translation, scal-
ing, and adding noise (for example, blur or brightness changes). The primary benefits
are (i) improved generalization, (ii) increased data diversity, and (iii) enhanced robust-
ness.

Generalization of a model helps a model prevent overfitting, where the model per-
forms well on the training data but poorly on the validation data. Data diversity is very
important for implementing neural networks in the real world. In various fields, includ-
ing CDW sorting, it is difficult or time-consuming to collect diverse and large datasets
for training neural networks. Applying data augmentations increases the size of the
dataset significantly. The model robustness is crucial for applications such as image
recognition in diverse and unpredictable environments.

In our project, we exploited the albumentations library (Buslaev et al., 2020) de-
signed to perform fast and flexible data augmentation for deep learning applications. It
provides a comprehensive set of augmentation techniques specifically tailored for im-
age data, making it a popular choice among practitioners and researchers. The library
offers a vast array of augmentation techniques, including basic transformations (like
flips, rotations, and scaling), color transformations, advanced augmentations (such as
cutout, grid distortions, and elastic transformations), and more. The library supports
the composition of complex augmentation pipelines and can be easily integrated with
popular deep learning frameworks such as pytorch (Paszke et al., 2019), which has
been used in this project. The pipeline for data augmentation is presented in the fol-
lowing code snippet:

1 def augment_image(image, mask):
2 # Define the augmentation pipeline for both image and mask
3 transform = A.Compose([
4 A.Rotate(limit=25, p=1),
5 A.HorizontalFlip(p=0.5),
6 A.VerticalFlip(p=0.5),
7 A.RandomBrightnessContrast(p=0.3),
8 A.OneOf([
9 A.Blur(blur_limit=5, p=0.2),

10 A.GaussianBlur(blur_limit=5, p=0.2),
11], p=0.2),
12 ToTensorV2(),
13])

The cleaned and augmented dataset from Chapter 2 used for training of the U-Net
and ResNet models consisted of 4266 images, half of them being augmented.

Document name: AI-based CDW classification software utilizing low-cost sensors’ inputs

Reference: D4.1 Dissemination: PU Version: 1.3 Status: Final Page: 23 of 43

https://albumentations.ai/

June 14, 2024

4.1.4 Data splitting

In this project, we structured the dataset into three sets: training, validation, and test.
The training set is crucial for developing the neural network, while the validation set
aids in fine-tuning hyperparameters and selecting the optimal model architecture. Ad-
justments based on the validation set’s feedback after each epoch helped us enhance
the model’s generalization and avoid overfitting. The test set allowed for an unbiased
evaluation of the model’s performance in conditions mimicking real-world scenarios.

We adopted a 70/15/15 split ratio for both segmentation and classification tasks,
effectively balancing the need for extensive training data with adequate validation and
testing to ensure the model’s robustness and reliability in practical applications. This
tailored approach supports our objective of developing deep-learning models that per-
form well across diverse real-world environments.

4.2 Segmentation

Despite the versatility of the existing rembg model, training our custom U-Net (Ron-
neberger et al., 2015) model was crucial to achieve real-time segmentation speeds.
We conducted runtime tests on both models using a set of 100 images. The rembg
model proved inadequate for real-time applications, with a total runtime of 840 sec-
onds, averaging 8.4 seconds per image. In contrast, our tailored U-Net model, detailed
further in this section, markedly outperformed rembg, delivering a significantly faster
runtime of 0.37 seconds per image, which is 22.7× quicker. This speed enhancement
underscores the necessity of developing a specialized model to meet the demands of
real-time processing.

4.2.1 U-Net architecture

U-Net architecture was first proposed in 2015 and it is described in Figure 4.3, repro-
duced from the original paper (Ronneberger et al., 2015). In our model, we used batch
norm, not used in the original U-Net model; the architecture of our U-Net model can
be seen in a code snippet below.

1 class DoubleConv(nn.Module):
2 def __init__(self, in_channels, out_channels):
3 super(DoubleConv, self).__init__()
4 self.conv = nn.Sequential(
5 nn.Conv2d(in_channels, out_channels, kernel_size=3,

stride=1, padding=1, bias=False),↪→

6 nn.BatchNorm2d(out_channels),
7 nn.ReLU(inplace=True),
8 nn.Conv2d(out_channels, out_channels, kernel_size=3,

stride=1, padding=1, bias=False),↪→

9 nn.BatchNorm2d(out_channels),

Document name: AI-based CDW classification software utilizing low-cost sensors’ inputs

Reference: D4.1 Dissemination: PU Version: 1.3 Status: Final Page: 24 of 43

June 14, 2024

10 nn.ReLU(inplace=True),
11)
12

13 def forward(self, x):
14 return self.conv(x)
15

16

17 class Unet(nn.Module):
18 def __init__(self, in_channels=3, out_channels=1,

features=[64, 128, 256, 512]):↪→

19 super(Unet, self).__init__()
20 self.downs = nn.ModuleList()
21 self.ups = nn.ModuleList()
22 self.pool = nn.MaxPool2d(kernel_size=2, stride=2)
23

24 # Down part of Unet
25 for feature in features:
26 self.downs.append(DoubleConv(in_channels, feature))
27 in_channels = feature
28

29 # Up part of Unet
30 for feature in reversed(features):
31 self.ups.append(
32 nn.ConvTranspose2d(
33 feature*2, feature, kernel_size=2, stride=2,

padding=0↪→

34)
35)
36 self.ups.append(DoubleConv(feature*2, feature))
37

38 self.bottleneck = DoubleConv(features[-1],
features[-1]*2)↪→

39 self.final_conv = nn.Conv2d(features[0], out_channels,
kernel_size=1)↪→

40

41 def forward(self, x):
42 skip_connections = []
43 for down in self.downs:
44 x = down(x)
45 skip_connections.append(x)
46 x = self.pool(x)
47

48 x = self.bottleneck(x)
49 # Now we need to go up
50 skip_connections = skip_connections[::-1]
51

52 for idx in range(0, len(self.ups), 2):
53 x = self.ups[idx](x)

Document name: AI-based CDW classification software utilizing low-cost sensors’ inputs

Reference: D4.1 Dissemination: PU Version: 1.3 Status: Final Page: 25 of 43

June 14, 2024

54 skip_connection = skip_connections[idx//2]
55

56 if x.shape != skip_connection.shape:
57 x = TF.resize(x, size=skip_connection.shape[2:])
58

59 concat_skip = torch.cat((skip_connection, x), dim=1)
60 x = self.ups[idx+1](concat_skip)
61

62 return self.final_conv(x)

U-Net: Convolutional Networks for Biomedical Image Segmentation 235

Fig. 1. U-net architecture (example for 32x32 pixels in the lowest resolution). Each blue
box corresponds to a multi-channel feature map. The number of channels is denoted
on top of the box. The x-y-size is provided at the lower left edge of the box. White
boxes represent copied feature maps. The arrows denote the different operations.

as input. First, this network can localize. Secondly, the training data in terms
of patches is much larger than the number of training images. The resulting
network won the EM segmentation challenge at ISBI 2012 by a large margin.

Obviously, the strategy in Ciresan et al. [2] has two drawbacks. First, it is quite
slow because the network must be run separately for each patch, and there is a lot
of redundancy due to overlapping patches. Secondly, there is a trade-off between
localization accuracy and the use of context. Larger patches require more max-
pooling layers that reduce the localization accuracy, while small patches allow
the network to see only little context. More recent approaches [11,4] proposed a
classifier output that takes into account the features from multiple layers. Good
localization and the use of context are possible at the same time.

In this paper, we build upon a more elegant architecture, the so-called “fully
convolutional network” [9]. We modify and extend this architecture such that it
works with very few training images and yields more precise segmentations; see
Figure 1. The main idea in [9] is to supplement a usual contracting network by
successive layers, where pooling operators are replaced by upsampling operators.
Hence, these layers increase the resolution of the output. In order to localize, high
resolution features from the contracting path are combined with the upsampled
output. A successive convolution layer can then learn to assemble a more precise
output based on this information.

Figure 4.3: U-net architecture (example for 32×32 pixels in the lowest resolution).
Each blue box corresponds to a multi-channel feature map. The number of channels
is denoted on top of the box. The x-y-size is provided at the lower left edge of the
box. White boxes represent copied feature maps. The arrows denote the different
operations (Ronneberger et al., 2015).

4.2.2 Segmentation accuracy metrics

Segmentation accuracy is critical in assessing the performance of image segmenta-
tion models. This chapter focuses on two widely used metrics for evaluating segmen-
tation performance: the F1 score (F1) and Intersection over Union (IoU). Evaluating
segmentation accuracy using F1 and IoU provides a balanced and comprehensive
understanding of a model’s performance.

F1 is the harmonic mean of precision and recall, defined as

F1 = 2
PR

P +R
, (4.1)

where P represents precision defined as P = P true

P true+P false , where P true represents true

Document name: AI-based CDW classification software utilizing low-cost sensors’ inputs

Reference: D4.1 Dissemination: PU Version: 1.3 Status: Final Page: 26 of 43

June 14, 2024

positives and P false represents false positives and R represents recall defined as R =
P true

P true+N false , where N false represents false negatives.

The IoU metric, also known as the Jaccard index, is the most intuitive way to mea-
sure how good the prediction of segmentation is. It measures the overlap between the
predicted region and the ground truth region, and it is defined as

IoU =
|A ∩B|
|A ∪B| , (4.2)

where A is the set of pixels of the predicted region, and B is the set of the ground truth
region. The numerator |A ∩ B| of the fraction represents the intersection, which is the
common area between the predicted and the ground truth regions. The denominator
|A ∪ B| represents the union, or the total area covered by both the predicted and the
ground truth regions, without subtracting any parts of either.

4.2.3 U-Net model

After optimization, the U-Net model used the sigmoid activation function, binary cross
entropy with logits loss as a loss function, and Adam optimizer with a learning rate
of 0.001. The model was been trained during 35 epochs. As depicted in Figure 4.4,
the validation loss values exhibit stabilization around epoch 15, whereas the accuracy
metrics for the validation data show stabilization around epoch 20, with optimal perfor-
mance observed at epoch 32 as illustrated in Figures 4.5 and 4.6. The highest IoU
achieved on the validation dataset was 0.902, and F1 reached 0.928. Notably, the
model from epoch 32 achieved the second-highest performance on the test dataset,
with IoU of 0.863 and F1 of 0.941. Table 4.1 presents the variability of IoU across dif-
ferent materials, suggesting variations in capture conditions. Although an IoU of 0.867
might initially appear low, examination of Figure 4.7 indicates that even an average
IoU of 90% is sufficient for generating bounding boxes necessary for the classification
tasks described in Section 4.3.

Class Mean IoU

AAC 0.943

Asphalt 0.865

Ceramics 0.935

Concrete 0.767

Table 4.1: Mean IoU based on material calculated for the test data.

Document name: AI-based CDW classification software utilizing low-cost sensors’ inputs

Reference: D4.1 Dissemination: PU Version: 1.3 Status: Final Page: 27 of 43

June 14, 2024

0 5 10 15 20 25 30 35
Epoch

0.05

0.10

0.15

0.20

L
os

s

Train Loss

Validation Loss

Figure 4.4: Training and validation loss as a function of epoch reported during the
training of the U-Net model.

0 5 10 15 20 25 30 35
Epoch

0.6

0.7

0.8

0.9

Io
U

Train IoU

Validation IoU

Figure 4.5: Training and validation IoU as a function of epoch reported during the
training of the U-Net model.

Document name: AI-based CDW classification software utilizing low-cost sensors’ inputs

Reference: D4.1 Dissemination: PU Version: 1.3 Status: Final Page: 28 of 43

June 14, 2024

0 5 10 15 20 25 30 35
Epoch

0.70

0.75

0.80

0.85

0.90

0.95

F
1

Train F1

Validation F1

Figure 4.6: Training and validation F1 as a function of epoch reported during the train-
ing of the U-Net model.

Highest IoU

AAC Asphalt Ceramics Concrete

Mean IoU

90% IoU

Lowest IoU

Figure 4.7: Comparison of ground truth and predicted mask. The blue overlay displays
true negatives, the red overlay displays false positives, the green overlay displays false
negatives, and true positives are transparent.

Document name: AI-based CDW classification software utilizing low-cost sensors’ inputs

Reference: D4.1 Dissemination: PU Version: 1.3 Status: Final Page: 29 of 43

June 14, 2024

4.3 Classification

It is imperative to employ the most effective architectures available for classification
tasks to achieve optimal results in terms of both accuracy and speed. The ResNet
(residual network) architecture (He et al., 2016) was identified as a particularly promis-
ing approach for this application. ResNet addresses the problem of training very deep
networks, which often suffer from vanishing gradients, making it difficult for the network
to learn and converge. Our objective is to surpass the benchmark accuracy of 92.3%
established by Nežerka et al. (2024), striving for the highest achievable performance
level in CDW classification.

Residual learning: The core idea of ResNet is the use of residual learning to
ease the training of networks that are substantially deeper than those previously used.
Residual learning involves shortcut connections that skip one or more layers. These
shortcuts add the input of a layer directly to the output of a subsequent layer, effectively
creating a residual mapping. Mathematically, instead of learning a direct mapping
H(x), ResNet learns the residual function F (x) = H(x)−x, which is easier to optimize.

Shortcut connections: The shortcut connections perform identity mapping, mean-
ing they do not introduce additional parameters or computational complexity. These
connections help mitigate the vanishing gradient problem by allowing gradients to flow
more easily through the network.

Building Blocks:

• Basic block: Used in ResNet architectures with fewer layers (e.g., ResNet-18
and ResNet-34). It consists of two convolutional layers with batch normalization
and ReLU activation, followed by an addition operation from the shortcut connec-
tion.

• Bottleneck block: Used in deeper architectures (e.g., ResNet-50, ResNet-101,
ResNet-152). It consists of three convolutional layers: a 1×1 layer for reducing
dimensions, a 3×3 layer, and another 1×1 layer for restoring dimensions, along
with batch normalization and ReLU activation.

Depth and performance: ResNet architectures come in various depths, commonly
referred to by the number of layers: ResNet-18, ResNet-34, ResNet-50, ResNet-101,
and ResNet-152. Deeper networks like ResNet-50 and beyond use bottleneck blocks
to reduce the computational load while maintaining performance.

Impact on image recognition: ResNet has significantly improved the accuracy of
image recognition tasks. It won the ImageNet Large Scale Visual Recognition Chal-
lenge (ILSVRC) in 2015 with a top-5 error rate of 3.57%. Its architecture has been
influential, leading to the development of other advanced models such as DenseNet,
Inception-ResNet, and others.

Document name: AI-based CDW classification software utilizing low-cost sensors’ inputs

Reference: D4.1 Dissemination: PU Version: 1.3 Status: Final Page: 30 of 43

June 14, 2024

4.3.1 Model architecture

ResNet-18/34 (Basic block):

• Consists of multiple layers of basic blocks.

• Each basic block has two 3×3 convolutional layers.

• Shortcut connections skip over each block.

ResNet-50/101/152 (Bottleneck nlock):

• Consists of multiple layers of bottleneck blocks.

• Each bottleneck block has a 1×1, 3×3, and another 1×1 convolutional layer.

• Shortcut connections skip over each block.

Implementation:

• Layers: A typical ResNet model includes an initial convolutional layer followed
by multiple stages of residual blocks, each stage reducing the spatial dimensions
while increasing the number of filters.

• Pooling: A global average pooling layer at the end aggregates the feature maps
before passing them to a fully connected layer for classification.

The following code snippet illustrates the model’s implementation:

1 class BasicBlock(nn.Module):
2 def __init__(self, in_channels, out_channels, stride=1):
3 super(BasicBlock, self).__init__()
4 self.conv1 = nn.Conv2d(in_channels, out_channels,

kernel_size=3, stride=stride, padding=1, bias=False)↪→

5 self.bn1 = nn.BatchNorm2d(out_channels)
6 self.conv2 = nn.Conv2d(out_channels, out_channels,

kernel_size=3, stride=1, padding=1, bias=False)↪→

7 self.bn2 = nn.BatchNorm2d(out_channels)
8

9 self.shortcut = nn.Sequential()
10 if stride != 1 or in_channels != out_channels:
11 self.shortcut = nn.Sequential(
12 nn.Conv2d(in_channels, out_channels, kernel_size=1,

stride=stride, bias=False),↪→

13 nn.BatchNorm2d(out_channels)
14)
15

16 def forward(self, x):
17 out = F.relu(self.bn1(self.conv1(x)))

Document name: AI-based CDW classification software utilizing low-cost sensors’ inputs

Reference: D4.1 Dissemination: PU Version: 1.3 Status: Final Page: 31 of 43

June 14, 2024

18 out = self.bn2(self.conv2(out))
19 out += self.shortcut(x)
20 out = F.relu(out)
21 return out
22

23

24 class ResNet(nn.Module):
25 def __init__(self, block, num_blocks, num_classes=4):
26 super(ResNet, self).__init__()
27 self.in_channels = 64
28 self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2,

padding=3, bias=False)↪→

29 self.bn1 = nn.BatchNorm2d(64)
30 self.layer1 = self._make_layer(block, 64, num_blocks[0],

stride=1)↪→

31 self.layer2 = self._make_layer(block, 128, num_blocks[1],
stride=2)↪→

32 self.layer3 = self._make_layer(block, 256, num_blocks[2],
stride=2)↪→

33 self.layer4 = self._make_layer(block, 512, num_blocks[3],
stride=2)↪→

34 self.avg_pool = nn.AdaptiveAvgPool2d((1, 1))
35 self.linear = nn.Linear(512, num_classes)
36

37 def _make_layer(self, block, out_channels, num_blocks, stride):
38 strides = [stride] + [1] * (num_blocks - 1)
39 layers = []
40 for stride in strides:
41 layers.append(block(self.in_channels, out_channels,

stride))↪→

42 self.in_channels = out_channels
43 return nn.Sequential(*layers)
44

45 def forward(self, x):
46 out = F.relu(self.bn1(self.conv1(x)))
47 out = F.max_pool2d(out, kernel_size=3, stride=2, padding=1)
48 out = self.layer1(out)
49 out = self.layer2(out)
50 out = self.layer3(out)
51 out = self.layer4(out)
52 out = self.avg_pool(out)
53 out = out.view(out.size(0), -1)
54 out = self.linear(out)
55 return out
56

57

58 def ResNet18(num_classes):
59 return ResNet(BasicBlock, [2, 2, 2, 2], num_classes)

Document name: AI-based CDW classification software utilizing low-cost sensors’ inputs

Reference: D4.1 Dissemination: PU Version: 1.3 Status: Final Page: 32 of 43

June 14, 2024

4.3.2 Data preparation for classification

In the study conducted by Nežerka et al. (2024), the classification algorithms for con-
struction and demolition waste were trained using images cropped to 200× 200 pixels
from larger originals. The classification process entailed the placement of as many
200 × 200 pixel squares within the region of interest (ROI) as feasible, with the final
classification being determined by the most frequently occurring prediction across all
squares within the ROI. This method, while systematic, potentially omits crucial infor-
mation by not considering the entire ROI in the neural network’s input, which could
lead to less effective classification outcomes.

For our model, we opted to enhance the input methodology by first creating a
bounding box based on predicted masks, then cropping the original image to this
bounding box. Subsequently, these cropped and masked images were resized to
256×256 pixels to align with the predetermined input dimensions for our ResNet model.
The visual representation of the ResNet input data, post-resizing, is depicted in Fig-
ure 4.8.

AAC Asphalt Ceramics Concrete

Figure 4.8: Input data for ResNet model.

4.3.3 Performance of the ResNet model

Similar to the U-Net model, the dataset for the ResNet model comprised 4266 im-
ages, with half subjected to augmentation to enhance model robustness. We utilized a
ResNet-18 architecture due to its balance of depth and computational efficiency. The
model training parameters were configured with a batch size of 16 and four parallel
data loaders (‘num workers=4’). We employed the cross-entropy loss function cou-
pled with the Adam optimizer, setting the learning rate to 0.001. The training regimen
spanned 90 epochs to ensure sufficient model convergence.

As depicted in Figures 4.9 and 4.10, the ResNet model initially exhibited instability,
which stabilized by epoch 55. Optimal validation performance was achieved at epoch
71, with an accuracy of 97.2%. Additionally, this epoch registered the second-highest
performance on the test dataset with an accuracy of 94.9%, while the highest test ac-
curacy occurred at epoch 61 with 95.3%. Analysis of the confusion matrix from epoch
one, shown in Figure 4.12, indicates that the ResNet model accurately classifies as-
phalt and ceramics with minimal error. The primary confusion occurs between AAC

Document name: AI-based CDW classification software utilizing low-cost sensors’ inputs

Reference: D4.1 Dissemination: PU Version: 1.3 Status: Final Page: 33 of 43

June 14, 2024

0 20 40 60 80
Epoch

0

2

4

6

8

L
os

s

Train Loss

Validation Loss

Figure 4.9: Training and validation loss as a function of epoch reported during the
training of the ResNet model.

0 20 40 60 80
Epoch

20

40

60

80

100

A
cc

ur
ac

y
[%

]

αtrain

αvalidation

Figure 4.10: Training and validation accuracy as a function of epoch reported during
the training of the ResNet model.

Document name: AI-based CDW classification software utilizing low-cost sensors’ inputs

Reference: D4.1 Dissemination: PU Version: 1.3 Status: Final Page: 34 of 43

June 14, 2024

and concrete, marking an improvement over previous studies. Significant enhance-
ments in overall accuracy are also documented in Table 4.2.

Model Accuracy (%)

CNN 85.9%

GB 92.3%

MLP 91.3%

ResNet 95.3%

Table 4.2: Accuracy comparison for models introduced in previous study by Nežerka
et al. (2024) and ResNet model.

Correct and incorrect prediction for AAC is visualized in figure 4.11. Higher proba-
bilities were assigned to the correct predictions than to the incorrect ones, allowing to
identify predictions that are suspicious to be incorrect ones and reclassify them using
a DT model based on feature extraction.

AAC: 97.8%

Asphalt: 0.0%

Ceramics: 0.0%

Concrete: 2.2%

Correct Prediction

AAC: 36.7%

Asphalt: 0.0%

Ceramics: 0.0%

Concrete: 63.3%

Incorrect Prediction

Figure 4.11: Predicted probabilities for correct and incorrect predictions for AAC.

Document name: AI-based CDW classification software utilizing low-cost sensors’ inputs

Reference: D4.1 Dissemination: PU Version: 1.3 Status: Final Page: 35 of 43

June 14, 2024

AAC Asphalt Ceramics Concrete
Predicted label

A
A

C
A

sp
ha

lt
C

er
am

ic
s

C
on

cr
et

e
T

ru
e

la
b

el

90.3%
(159)

0.0%
(0)

0.0%
(0)

9.7%
(17)

0.0%
(0)

98.1%
(106)

0.0%
(0)

1.9%
(2)

0.5%
(1)

0.0%
(0)

99.5%
(205)

0.0%
(0)

5.6%
(11)

0.5%
(1)

0.0%
(0)

93.9%
(185)

Accuracy: 95.34%

Figure 4.12: Confusion matrix for model in epoch 61.

Document name: AI-based CDW classification software utilizing low-cost sensors’ inputs

Reference: D4.1 Dissemination: PU Version: 1.3 Status: Final Page: 36 of 43

References

J. Antoš, V. Nežerka, and M. Somr. Assessment of 2D-DIC stochastic patterns. Acta
Polytechnica CTU Proceedings, 13:1–10, 2017. doi: 10.14311/app.2017.13.0001.

M. Arifuzzaman, M. R. Hasan, T. J. Toma, S. B. Hassan, and A. K. Paul. An advanced
decision tree-based deep neural network in nonlinear data classification.
Technologies, 11:24, 2023. doi: 10.3390/technologies11010024.

F. Bosché, M. Ahmed, Y. Turkan, C. T. Haas, and R. Haas. The value of integrating
scan-to-BIM and scan-vs-BIM techniques for construction monitoring using laser
scanning and BIM: The case of cylindrical MEP components. Automation in
Construction, 49:201–213, 2015. doi: 10.1016/j.autcon.2014.05.014.

A. Braun and A. Borrmann. Combining inverse photogrammetry and BIM for
automated labeling of construction site images for machine learning. Automation in
Construction, 106:102879, 2019. doi: 10.1016/j.autcon.2019.102879.

A. Buslaev, V. I. Iglovikov, E. Khvedchenya, A. Parinov, M. Druzhinin, and A. A.
Kalinin. Albumentations: Fast and flexible image augmentations. Information, 11,
2020. doi: 10.3390/info11020125.

C. Cortes and V. Vapnik. Support-vector networks. Machine Learning, 20:273–297,
1995. doi: 10.1007/bf00994018.

K. Crockett, J. O’Shea, W. Khan, and Z. Bandar. A hybrid model combining neural
networks and decision tree for comprehension detection. In Neural Networks
(IJCNN). IEEE, 2018. doi: 10.1109/ijcnn.2018.8489621.

P. Davis, F. Aziz, M. T. Newaz, W. Sher, and L. Simon. The classification of
construction waste material using a deep convolutional neural network. Automation
in Construction, 122:103481, 2021. doi: 10.1016/j.autcon.2020.103481.

F. N. M. de Sousa Filho, V. G. Pereira de Sá, and E. Brigatti. Entropy estimation in
bidimensional sequences. Physical Review E, 105:054116, 2022. doi:
10.1103/physreve.105.054116.

A. Dimitrov and M. Golparvar-Fard. Vision-based material recognition for automated
monitoring of construction progress and generating building information modeling
from unordered site image collections. Advanced Engineering Informatics, 28:
37–49, 2014. doi: 10.1016/j.aei.2013.11.002.

June 14, 2024

Z. Dong, J. Chen, and W. Lu. Computer vision to recognize construction waste
compositions: A novel boundary-aware transformer (BAT) model. Journal of
Environmental Management, 305:114405, 2022. doi:
10.1016/j.jenvman.2021.114405.

C. Firestone. Performance vs. competence in human-machine comparisons.
Proceedings of the National Academy of Sciences, 117:26562–26571, 2020. doi:
10.1073/pnas.1905334117.

J. H. Friedman. Greedy function approximation: A gradient boosting machine. The
Annals of Statistics, 29:1189–1232, 2001. doi: 10.1214/aos/1013203451.

J. H. Friedman. Stochastic gradient boosting. Computational Statistics & Data
Analysis, 38:367–378, 2002. doi: 10.1016/s0167-9473(01)00065-2.

A. Géron. Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow.
O’Reilly Media, Inc., 2022.

S. P. Gundupalli, S. Hait, and A. Thakur. A review on automated sorting of
source-separated municipal solid waste for recycling. Waste Management, 60:
56–74, 2017. doi: 10.1016/j.wasman.2016.09.015.

K. K. Han and M. Golparvar-Fard. Appearance-based material classification for
monitoring of operation-level construction progress using 4d BIM and site
photologs. Automation in Construction, 53:44–57, 2015. doi:
10.1016/j.autcon.2015.02.007.

T. Hastie, R. Tibshirani, and J. Friedman. Boosting and additive trees. In The
Elements of Statistical Learning, pages 337–387. 2008. doi:
10.1007/978-0-387-84858-7 10.

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016. doi: 10.1109/cvpr.2016.90.

G. E. Hinton, S. Osindero, and Y.-W. Teh. A fast learning algorithm for deep belief
nets. Neural Computation, 18:1527–1554, 2006. doi: 10.1162/neco.2006.18.7.1527.

R. Hlůžek, J. Trejbal, V. Nežerka, P. Demo, Z. Prošek, and P. Tesárek. Improvement
of bonding between synthetic fibers and a cementitious matrix using recycled
concrete powder and plasma treatment: from a single fiber to FRC. European
Journal of Environmental and Civil Engineering, 26:3880–3897, 2020. doi:
10.1080/19648189.2020.1824821.

S. Y.-C. Ho, T.-W. Chien, M.-L. Lin, and K.-T. Tsai. An app for predicting patient
dementia classes using convolutional neural networks (CNN) and artificial neural
networks (ANN): Comparison of prediction accuracy in microsoft excel. Medicine,
102:e32670, 2023. doi: 10.1097/md.0000000000032670.

Document name: AI-based CDW classification software utilizing low-cost sensors’ inputs

Reference: D4.1 Dissemination: PU Version: 1.3 Status: Final Page: 38 of 43

June 14, 2024

J. D. L. H. Hoong, J. Lux, P.-Y. Mahieux, P. Turcry, and A. Aı̈t-Mokhtar. Determination
of the composition of recycled aggregates using a deep learning-based image
analysis. Automation in Construction, 116:103204, 2020. doi:
10.1016/j.autcon.2020.103204.

T. Joensuu, H. Edelman, and A. Saari. Circular economy practices in the built
environment. Journal of Cleaner Production, 276:124215, 2020. doi:
10.1016/j.jclepro.2020.124215.

Z. N. Khudhair, A. N. Khdiar, N. K. El Abbadi, F. Mohamed, T. Saba, F. S. Alamri, and
A. Rehman. Color to grayscale image conversion based on singular value
decomposition. IEEE Access, 11:54629–54638, 2023. doi:
10.1109/access.2023.3279734.

D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. In Y. Bengio
and Y. LeCun, editors, 3rd International Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings,
2015. URL http://arxiv.org/abs/1412.6980.

A. Kirillov, E. Mintun, N. Ravi, H. Mao, C. Rolland, L. Gustafson, T. Xiao,
S. Whitehead, A. C. Berg, W.-Y. Lo, P. Dollár, and R. Girshick. Segment anything.
In 2023 IEEE/CVF International Conference on Computer Vision (ICCV), 2023. doi:
10.1109/iccv51070.2023.00371.

P. Kontschieder, M. Fiterau, A. Criminisi, and S. R. Bulo. Deep neural decision
forests. In Proceedings of the IEEE international conference on computer vision,
pages 1467–1475, 2015. doi: 10.1109/iccv.2015.172.

A. Krizhevsky, I. Sutskever, and G. E. Hinton. ImageNet classification with deep
convolutional neural networks. Communications of the ACM, 60:84–90, 2017. doi:
10.1145/3065386.

Y. Ku, J. Yang, H. Fang, W. Xiao, and J. Zhuang. Deep learning of grasping detection
for a robot used in sorting construction and demolition waste. Journal of Material
Cycles and Waste Management, 23:84–95, 2020. doi: 10.1007/s10163-020-01098-z.

Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. Nature, 521:436–444, 2015. doi:
10.1038/nature14539.

S. Liang and Y. Gu. A deep convolutional neural network to simultaneously localize
and recognize waste types in images. Waste Management, 126:247–257, 2021.
doi: 10.1016/j.wasman.2021.03.017.

K. Lin, T. Zhou, X. Gao, Z. Li, H. Duan, H. Wu, G. Lu, and Y. Zhao. Deep convolutional
neural networks for construction and demolition waste classification: VGGNet
structures, cyclical learning rate, and knowledge transfer. Journal of Environmental
Management, 318:115501, 2022. doi: 10.1016/j.jenvman.2022.115501.

Document name: AI-based CDW classification software utilizing low-cost sensors’ inputs

Reference: D4.1 Dissemination: PU Version: 1.3 Status: Final Page: 39 of 43

http://arxiv.org/abs/1412.6980

June 14, 2024

J. Long, E. Shelhamer, and T. Darrell. Fully convolutional networks for semantic
segmentation. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 3431–3440, 2015. doi: 10.1109/cvpr.2015.7298965.

W. Lu and J. Chen. Computer vision for solid waste sorting: A critical review of
academic research. Waste Management, 142:29–43, 2022. doi:
10.1016/j.wasman.2022.02.009.

H. Mahami, N. Ghassemi, M. T. Darbandy, A. Shoeibi, S. Hussain, F. Nasirzadeh,
R. Alizadehsani, D. Nahavandi, A. Khosravi, and S. Nahavandi. Material
recognition for automated progress monitoring using deep learning methods, 2020.

K. P. Murphy. Probabilistic machine learning: an introduction. MIT press, 2022.

V. Nežerka, J. Trejbal, and T. Zbı́ral. Dataset of construction and demolition waste
images: aerated autoclaved concrete (AAC), asphalt, ceramics, and concrete, Feb.
2023.

V. Nežerka and J. Trejbal. Assessment of aggregate-bitumen coverage using
entropy-based image segmentation. Road Materials and Pavement Design, pages
1–12, 2019. doi: 10.1080/14680629.2019.1605304.

V. Nežerka, Z. Prošek, J. Trejbal, J. Pešta, J. Ferriz-Papi, and P. Tesárek. Recycling of
fines from waste concrete: Development of lightweight masonry blocks and
assessment of their environmental benefits. Journal of Cleaner Production, 385:
135711, 2023. doi: 10.1016/j.jclepro.2022.135711.

V. Nežerka, T. Zbı́ral, and J. Trejbal. Machine-learning-assisted classification of
construction and demolition waste fragments using computer vision: Convolution
versus extraction of selected features. Expert Systems with Applications, 238:
121568, 2024. doi: 10.1016/j.eswa.2023.121568.

M. S. Nixon and A. S. Aguado. Image processing. In Feature Extraction and Image
Processing for Computer Vision, pages 83–139. Elsevier, 2020. doi:
10.1016/b978-0-12-814976-8.00003-8.

B. I. Oluleye, D. W. Chan, A. B. Saka, and T. O. Olawumi. Circular economy research
on building construction and demolition waste: A review of current trends and
future research directions. Journal of Cleaner Production, 357:131927, 2022. doi:
10.1016/j.jclepro.2022.131927.

K. Özkan, S. Ergin, Ş. Işık, and İ. Işıklı. A new classification scheme of plastic wastes
based upon recycling labels. Waste Management, 35:29–35, 2015. doi:
10.1016/j.wasman.2014.09.030.

O. Ozturk, B. Sarıtürk, and D. Z. Seker. Comparison of fully convolutional networks
(FCN) and U-Net for road segmentation from high resolution imageries.
International journal of environment and geoinformatics, 7:272–279, 2020. doi:
10.30897/ijegeo.737993.

Document name: AI-based CDW classification software utilizing low-cost sensors’ inputs

Reference: D4.1 Dissemination: PU Version: 1.3 Status: Final Page: 40 of 43

June 14, 2024

B. Pan, Z. Lu, and H. Xie. Mean intensity gradient: An effective global parameter for
quality assessment of the speckle patterns used in digital image correlation. Optics
and Lasers in Engineering, 48:469–477, 2010. doi: 10.1016/j.optlaseng.2009.08.010.

A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, et al. Pytorch: An imperative style, high-performance
deep learning library. Advances in neural information processing systems, 32,
2019.

S. M. Piryonesi and T. E. El-Diraby. Using machine learning to examine impact of
type of performance indicator on flexible pavement deterioration modeling. Journal
of Infrastructure Systems, 27:04021005, 2021. doi:
10.1061/(asce)is.1943-555x.0000602.

Z. Prošek, J. Trejbal, V. Nežerka, V. Goliáš, M. Faltus, and P. Tesárek. Recovery of
residual anhydrous clinker in finely ground recycled concrete. Resources,
Conservation and Recycling, 155:104640, 2020. doi:
10.1016/j.resconrec.2019.104640.

X. Qin, Z. Zhang, C. Huang, M. Dehghan, O. Zaiane, and M. Jagersand. U2-net:
Going deeper with nested u-structure for salient object detection. Pattern
Recognition, 106:107404, 2020.

X. Qin, H. Dai, X. Hu, D.-P. Fan, L. Shao, and L. V. Gool. Highly accurate
dichotomous image segmentation. In Lecture Notes in Computer Science, 2022.
doi: 10.1007/978-3-031-19797-0 3.

O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional networks for
biomedical image segmentation. In Medical image computing and
computer-assisted intervention–MICCAI 2015: 18th international conference,
Munich, Germany, October 5-9, 2015, proceedings, part III 18, pages 234–241,
2015. doi: 10.1007/978-3-319-24574-4 28.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning representations by
back-propagating errors. Nature, 323:533–536, 1986. doi: 10.1038/323533a0.

S. L. Salzberg. C4.5: Programs for machine learning by j. ross quinlan. morgan
kaufmann publishers, inc., 1993. Machine Learning, 16:235–240, 1994. doi:
10.1007/bf00993309.

C. E. Shannon. A mathematical theory of communication. Bell System Technical
Journal, 27:623–656, 1948. doi: 10.1002/j.1538-7305.1948.tb00917.x.

K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale
image recognition, 2014.

H. Son, C. Kim, and C. Kim. Automated color model-based concrete detection in
construction-site images by using machine learning algorithms. Journal of
Computing in Civil Engineering, 26:421–433, 2012. doi:
10.1061/(asce)cp.1943-5487.0000141.

Document name: AI-based CDW classification software utilizing low-cost sensors’ inputs

Reference: D4.1 Dissemination: PU Version: 1.3 Status: Final Page: 41 of 43

June 14, 2024

Y. Su. Multi-agent evolutionary game in the recycling utilization of construction waste.
Science of The Total Environment, 738:139826, 2020. doi:
10.1016/j.scitotenv.2020.139826.

J. Valentin, J. Trejbal, V. Nežerka, T. Valentová, and M. Faltus. Characterization of
quarry dusts and industrial by-products as potential substitutes for traditional fillers
and their impact on water susceptibility of asphalt concrete. Construction and
Building Materials, 301:124294, 2021. doi: 10.1016/j.conbuildmat.2021.124294.

T. Vincent, M. Guy, P. Louis-César, B. Jean-François, and M. Richard. Physical
process to sort construction and demolition waste (c&dw) fines components using
process water. Waste Management, 143:125–134, 2022. doi:
10.1016/j.wasman.2022.02.012.

Z. Wang, H. Li, and X. Zhang. Construction waste recycling robot for nails and
screws: Computer vision technology and neural network approach. Automation in
Construction, 97:220–228, 2019a. doi: 10.1016/j.autcon.2018.11.009.

Z. Wang, B. Peng, Y. Huang, and G. Sun. Classification for plastic bottles recycling
based on image recognition. Waste Management, 88:170–181, 2019b. doi:
10.1016/j.wasman.2019.03.032.

Z. Wang, H. Li, and X. Yang. Vision-based robotic system for on-site construction and
demolition waste sorting and recycling. Journal of Building Engineering, 32:
101769, 2020. doi: 10.1016/j.jobe.2020.101769.

Y. Wu, J. P. Noonan, and S. Agaian. A novel information entropy based randomness
test for image encryption. In 2011 IEEE International Conference on Systems,
Man, and Cybernetics. IEEE, 2011. doi: 10.1109/icsmc.2011.6084076.

Y. Wu, Y. Zhou, G. Saveriades, S. Agaian, J. P. Noonan, and P. Natarajan. Local
shannon entropy measure with statistical tests for image randomness. Information
Sciences, 222:323–342, 2013. doi: 10.1016/j.ins.2012.07.049.

W. Xiao, J. Yang, H. Fang, J. Zhuang, and Y. Ku. Development of online classification
system for construction waste based on industrial camera and hyperspectral
camera. PLOS ONE, 14:e0208706, 2019. doi: 10.1371/journal.pone.0208706.

W. Xiao, J. Yang, H. Fang, J. Zhuang, and Y. Ku. Classifying construction and
demolition waste by combining spatial and spectral features. Proceedings of the
Institution of Civil Engineers—Waste and Resource Management, 173:79–90,
2020. doi: 10.1680/jwarm.20.00008.

J. Yang, Z. Zeng, K. Wang, H. Zou, and L. Xie. GarbageNet: A unified learning
framework for robust garbage classification. IEEE Transactions on Artificial
Intelligence, 2:372–380, 2021. doi: 10.1109/tai.2021.3081055.

L. Yuan, J. Guo, and Q. Wang. Automatic classification of common building materials
from 3d terrestrial laser scan data. Automation in Construction, 110:103017, 2020.
doi: 10.1016/j.autcon.2019.103017.

Document name: AI-based CDW classification software utilizing low-cost sensors’ inputs

Reference: D4.1 Dissemination: PU Version: 1.3 Status: Final Page: 42 of 43

June 14, 2024

L. Yuan, W. Lu, and F. Xue. Estimation of construction waste composition based on
bulk density: A big data-probability (BD-p) model. Journal of Environmental
Management, 292:112822, 2021. doi: 10.1016/j.jenvman.2021.112822.

T. Zbı́ral and V. Nežerka. Python codes for machine-learning-based classification of
construction and demolition waste fragments, Feb. 2023.

L. Zheng, H. Wu, H. Zhang, H. Duan, J. Wang, W. Jiang, B. Dong, G. Liu, J. Zuo, and
Q. Song. Characterizing the generation and flows of construction and demolition
waste in China. Construction and Building Materials, 136:405–413, 2017. doi:
10.1016/j.conbuildmat.2017.01.055.

S. Zhou, Q. Chen, and X. Wang. Convolutional deep networks for visual data
classification. Neural Processing Letters, 38:17–27, 2012. doi:
10.1007/s11063-012-9260-y.

Z.-H. Zhou. Decision trees. In Machine Learning, pages 79–102. Springer Singapore,
2021. doi: 10.1007/978-981-15-1967-3 4.

Z. Zhu and I. Brilakis. Parameter optimization for automated concrete detection in
image data. Automation in Construction, 19:944–953, 2010. doi:
10.1016/j.autcon.2010.06.008.

Document name: AI-based CDW classification software utilizing low-cost sensors’ inputs

Reference: D4.1 Dissemination: PU Version: 1.3 Status: Final Page: 43 of 43

	List of Figures
	List of Tables
	1 Introduction
	2 Dataset
	3 Convolution versus extraction of selected features
	3.1 Metrics
	3.1.1 Mean intensity
	3.1.2 Mean intensity of red color
	3.1.3 Shannon’s entropy
	3.1.4 Mean intensity gradient

	3.2 Classifiers
	3.2.1 Gradient boosting
	3.2.2 Multi-layer perception
	3.2.3 Convolutional neural network

	3.3 Model Evaluation Metrics
	3.4 Results and discussion
	3.5 Application procedure

	4 Deep neural networks for segmentation and classification
	4.1 Data preparation
	4.1.1 Data cleaning
	4.1.2 Ground truth masks
	4.1.3 Data augmentation
	4.1.4 Data splitting

	4.2 Segmentation
	4.2.1 U-Net architecture
	4.2.2 Segmentation accuracy metrics
	4.2.3 U-Net model

	4.3 Classification
	4.3.1 Model architecture
	4.3.2 Data preparation for classification
	4.3.3 Performance of the ResNet model

	References

