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ABSTRACT

A strut injector for burning hydrogen has been optimised using an automated workflow system. The

design process began with a parametric CAD model that allowed for various design features to be altered

and various different designs to be generated from a given list of parameters. In order to choose the optimal

set of injectors to cover the design space, an optimised design of experiments (DOE) method was used to

automatically choose the parameters that best spanned the design space. One hundred candidate designs

were chosen and a script used to generate a series of stereolithography (STL) files for each design. The

STL files were then uploaded to a supercomputer for CFD analysis. For each of the 100 designs, a 4 step

process was followed to generate the required data, this included a automated mesh generation step, field

initialisation step, mesh adaptation step and finally an LES all within the YALES2 numerical framework.

These 400 simulations were automated using an automatic workflow management process which limited the

quantity of human intervention required and massively boosted productivity. In order to reduce the time

required for post-processing and the amount of data required, the simulations relied heavily on a on-the-

fly post-processing methodology which reduced the complex time-unsteady flow fields to a small number of

quantified outputs of interest that measured the suitability of each design such as the pressure drop across the

injector and the efficiency of the mixing process. At the conclusion of these simulations, automated scripts

translated these outputs into a smaller set of parameters that could be used to compare each design and allow

subsequent optimisation and surrogate modelling. Several surrogate modelling methods were attempted with

mixed results however a simple classification methodology quickly identified the parameters of interest.

NOMENCLATURE

A IN Injector inlet angle

A OUT Injector outlet angle

aχ SDR coefficient

aξ Mixedness coefficient

bχ SDR exponent

bξ Mixedness exponent

E Averaging (Expectation) operator

k Kernel function

K Kernel function matrix

L B Airgate height

3 GT2024-128828, Treleaven



L G Airgate length

L H Distance between injector and airgate

L O Injector offset

L OG Offset between injector trailing edge and airgate

L X Injector thickness

L Y Injector width

L Z Injector length

N I Number of hydrogen injection holes

N Gaussian Process operator

R IN Injector inlet radius

Tmax Maximum adiabatic flamelet temperature

x,y,z physical coordinates

X surrogate model input

Y surrogate model output

Z mixture fraction

Z0 global mixture fraction

∆P Pressure drop across injector

ϕ equivalence ratio

µ mean vector

ρ covariance parameter

σ standard deviation

σ0 standard deviation of Gaussian noise signal

χ Scalar Dissipation Rate (SDR)

X 1D averaged Scalar Dissipation Rate (SDR)

ξ Mixedness

Ξ 1D averaged Mixedness

1 INTRODUCTION

Increasing the efficiency of aerodynamic early-stage design is a subject of interest for rapidly exploring new

design spaces that are becoming available due to the arrival of new manufacturing methods; and in the specific context

of aeroengines, the onset of new fuels, such as hydrogen. Early stage design is difficult because of the large range of
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possible designs and correspondingly large design space. This necessarily requires a large number of experiments or

simulations to cover all of the possible designs, which either entails a long lead-time, a high cost, or both. Any methods,

therefore, that can reduce the time or effort required to cover this early-stage design are extremely worthwhile. Among

others, this includes: parametrisation of design, optimising the design of experiments (DOE), automated workflows

for testing, reduced-order or low-dimensional modelling, and automated optimisation. Parametrisation of design helps

in multiple ways :

1. It ensure that designs are developed and evaluated in a systematic way that avoids accidental duplication.

2. It quantifies the design space through a number of adjustable numerical parameters.

3. It allows for optimisation as the gradient of any chosen objective function with respect to any design change is

quantified through the gradient with respect to the design parameters.

Optimisation of the design of experiments (DOE) is essential as it allows the designer to cover the design space

with the absolute minimum number of experiments or evaluations. This accelerates the design process and reduces

costs. Even with an optimised DOE to reduce the number of test concepts, evaluating potential designs (through

experimental testing or full-order numerical simulation) is expensive and time consuming. This difficulty explains why

an automated testing procedure can be of benefit. In this case, the automated workflow procedure means that after the

parameters of each test design are chosen, there is very little human intervention. This allows the designer to work on

multiple projects in parallel, significantly improving productivity. One important aspect of such a workflow, specific

to CFD simulations is the use of live, real-time, on-the-fly, or streaming post-processing methods. In a traditional CFD

workflow, the beginning point is the pre-treatment stage, including tasks such as defining the computational mesh.

The second point is the simulation itself and the final stage is the post-processing of the simulation data. The cost

of the first stage can be minimised by using an automated meshing strategy where the geometry inputs (file types,

boundary conditions, etc.) are standardised such that after a single mesh is generated manually, the meshing procedure

can be generalised and applied automatically to a number of different concepts. The second stage of the process,

the simulation itself, can be optimised through either the efficiency of the code (physical time per CPU hours spent)

or through improving the parallel efficiency of the code (number of processors that can be used at the same time).

The final stage, post-processing, can require a huge number of man hours, especially in the case where the designer

has limited experience with the flow and needs to visually check the form of the flow before the relevant statistics

or metrics are extracted. Although this remains the case for the present study, once the initial familiarisation of the

flow was completed, metrics were selected to be computed on-the fly. This capability was aided through the post-

processing capabilities of the YALES2 framework, where planes of data can be extracted at a predetermined time

step and quantities of interest calculated before being refined down to small number of low-dimensional output values
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that can be periodically saved to disk. Three recent studies that make use of various elements of the proposed design

strategy are a multifidelety optimisation of a hydrogen injector [1], an experimental optimisation of a pilot injector for

an industrial gas turbine [2], and the optimised rescaling of a liquid fueled aero-engine injector [3]. A more traditional

combustor design process would rely not only on CFD calculations but also on low order models, built and optimised

using data collected during previous design studies [4]. The generation of designs, meshes and running of calculations

may be (partially) automated, howeve the evaluation of designs, based on CFD results, is done manually and relies

heavily on the expertise of the combustion chamber designer [5, 6]. The use of artificial intelligence in the design

process has tended to centre on either developing low order models of engine performance [7] or on improving the

performance of reacting flow solvers [8]. The first aspect limits the number of operating points that must be tested

to ensure wide operability limits, while the second helps to accelerate the resolution of the reacting flow fields of a

previously untested design.

(a) The traditional CFD workflow.

(b) The automated workflow.

Fig. 1: The classic CFD workflow and the new automated workflow used in this study.

The design methodology described in this study was used to explore and optimise the geometry of a hydrogen
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fuel injector for aero-engine applications. The technology used for this injector is a form of microinjection that has

previously only been used for supersonic combustion refered to as a strut injector. The chosen application for this

technology is to replace a singular conventional swirled fuel spray nozzle with an array of these strut injectors for the

main combustion chamber of a gas turbine. The principle of all micro-injection concepts is to limit the production of

nitrous-oxides through miniaturising the size of the flames and hence the recirculation zones and residence times of the

hot gases produced during combustion. In a similar type of injector, micromix, the air is injected into the combustion

chamber through a large number of small holes in an air-guiding panel. Each of these holes produces a jet of air

that is then fed with a small amount of hydrogen, injected perpendicularly into each air jet. This jet-in-crossflow

configuration leads to a series of vortices and small recirculation zones close to the injector face. The problem with

such an injection system is that due to the high flame stability of hydrogen, the flame can easily become attached to

the injector head that may subsequently leads to unacceptable levels of heat stress and premature wear.

Fig. 2: The strut injector concept (Adapted from [9]).

Strut injectors attempt to solve this problem by instead injecting the hydrogen in the same direction as the sur-

rounding airflow (Fig. 16a). The air-guiding panel is also simplified into a series of channels with a single strut

injector consisting of a hydrogen fuel line which act as an obstacle in the flow. Although the rate of mixing between

the hydrogen and air is reduced as compared to a jet-in-crossflow configuration, the likelihood of the flame becoming

attached to the injector is reduced due to either one, or all of the following:

■ The mixture being too rich in (or close to) the hydrogen jet for combustion to occur.

■ The mixture being too lean in the regions between the hydrogen jets to sustain combustion.

■ The local velocity of the flow being higher that the turbulent flame speed close to the injector.

■ The scalar dissipation rate or strain being too high to sustain combustion close to the injector.

In order to enhance the effects of points 3 and 4 above, strut injectors rely on a series of teeth on the trailing edge of

the injector to simultaneously aid mixing and to locally quench the flame close to the injector.

This paper begins with an explanation of the computational, design, and surrogate modelling methodologies
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where the generation of the concepts, design of experiments, LES and low-dimensional models are discussed. This is

followed by a presentation of the results of this study and a brief attempt at optimisation using a simple classification

method. Finally, a discussion is included on how the approach could be improved.

2 METHODOLOGY

2.1 Definition of the parametric geometry

Fig. 3: The parametric strut injector (adapted from [9]).

The strut injector design chosen for this study is based on one of the concepts presented by Sunami et al. [9]

for a supersonic combustion application. It consists of a wedge shaped strut (Fig. 3) with an inlet radius (R IN), and

wedge angle (A IN). The wedge is limited at an overall strut thickness (L Y). On the trailing edge a number (N I)

of hydrogen injections holes are added between a certain number (N I+1) of teeth of triangular cross-section to help

mix the hydrogen with the surrounding air. The triangular teeth are given an exit angle of A OUT and alternate in

orientation, with every second tooth facing up and those in between facing down. The strut also has a length (L X)

and a width (L Z) with an offset (L O) which independently defines the outermost teeth which do not have hydrogen

injection holes.

Fig. 4: Definition of the airgate.
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In order to increase the velocity of the air close to the injector a simple airgate was also added to the geometry.

The air gate is defined by its height (L B) and its width (L Z) which is set to be the same as the injector. The size of

the opening for the air to pass through the airgate is then defined by the air gate height (L H), the length of the airgate

(L G) and an additional offset (L OG) is added to allow for configurations where the air gate is in front of, or behind

the strut. In order for this strut to be appropriate for later testing in an experimental facility, the width of the injector

was fixed at L Z= 100mm and the offset set to L O = 32.5 mm. Excluding these parameters gives a design space with

10 degrees of freedom. The limits of each of these parameters are shown in Table 2. A parametric CAD model was

built of this injector in CATIA allowing rapid generation of the CAD model over a wide range of design parameters.

A visual basic script was also written to read an excel file containing the parameters chosen for a number of injectors

and sequentially generate the CAD model for each and save them as STL (stereolithography) files that could be read

by the CFD and meshing software YALES2.

2.2 Definition of the output metrics

(a) 300 K. (b) 700 K.

Fig. 5: The flame temperature for a non-premixed flame with an air temperature of 300 K and 700 K given as a function
of the flame strain rate. Blue symbols: 1 bar, orange: 5 bar, green: 9 bar, red: 13 bar.

The ideal injector geometry would result in low overall NOx emissions, a stable flame, low heat transfer to the

injector and maintain its performance over a wide range of operating conditions. In order to achieve this goal, the

ideal injector should produce a lifted flame [10]. As already mentioned a key part of this capability is linked to a

high level of scalar dissipation rate close to the injector. The scalar dissipation rate is closely linked to the flame

strain rate [11], whose effect on the hydrogen flame can be simulated with a 1D counterflow flame. Figure 5 shows

the maximum temperature of a 1D hydrogen air counterflow diffusion flame as a function of strain rate, air flow
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temperature and pressure, computed using the cantera package [12] with the SanDiego mechanism [13, 14]. The

simulations begin at the lowest strain rate (the most leftward point for each pressure and temperature) and the strain

rate is then progressively increased until the flame extinguishes. The strain rate that leads to flame quenching for

each case is the point furthest to right in each set of data points. The quenching strain rate (or scalar dissipation rate)

shows a strong relationship with temperature and pressure with both higher pressures and temperatures associated with

higher flame quenching strain rates. This shows that as the combustion chamber pressure and temperature increases,

the harder it is to maintain a lifted flame.

Fig. 6: NOx emissions for a multi-tube combustor as a function of equivalence ratio (from Cho et al. [15]).

Figure 6 shows the effect of equivalence ratio on the production of NOx for another type of microinjection [15].

The figure indicates that the closer the equivalence ratio is to one, the more NOx is produced. It is also important to

note that the increase is not linear and an equivalence ratio of 0.7 results in a NOx production of more than two times

the rate of an equivalence ratio of 0.66. This non-linear behaviour highlights an important property of a good injector

design: the hydrogen should be quickly mixed with air before combustion. Because the hydrogen is injected without

premixing, the equivalence ratio is very large close to the injector, however due to the overall lean equivalence ratio

of the system, the mixture at the exit of the chamber is also lean. The goal is therefore to avoid the flame burning

when the equivalence ratio is close to one. In order to reduce the likelihood of this occurring, the flow should be

homogenised as quickly as possible.

Whilst running a set of reacting simulations would give more information, the first two criteria for a good design, a

lifted flame with low NOx, can be developed using cold simulations with a passive scalar to represent the injection and

mixing of hydrogen. Unfortunately, the third and fourth criteria (a stable flame and a broad operating range), cannot

be tested with a cold simulation. However, at the very early stages of the design process, thermoacoustic stability

cannot easily be assessed as the geometry of the combustion chamber has not yet been defined. The operating range
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of the combustor is also difficult to test because it requires testing the design over a broad range of conditions either by

simulation or experiment. At this stage of the design process, it is too expensive due to the large number of candidate

designs. The metrics used to define the cost function for the optimal design are hence chosen to be related to the scalar

dissipation rate and the mixedness of the flow downstream of the injector. Cold, incompressible LES simulations with

a passive scalar to represent hydrogen are chosen as a lower cost alternative to reacting LES.

2.2.1 The scalar dissipation rate (SDR)

The Scalar Dissipation Rate (SDR) is defined as [11]:

χ = 2D
∣∣∣∣∂Z∂x

∣∣∣∣2 (1)

where Z is the passive scalar mixture fraction and D is the diffusivity according to Fick’s law. One option would be

to generate time average fields of the scalar dissipation rate and compare different designs manually. The problem is

that with a large number of designs, the comparison becomes very time consuming. A better option is to calculate

the average scalar dissipation rate over a series of planes with their normal in the x direction, at different distances

downstream from the training edge of the injector. Ten planes were defined in the interval x=[0.0,0.1]. On each plane,

100x100 equidistant points were sampled at each time step and used to compute the surface average of each metric of

interest (Fig. 7).

Fig. 7: A diagram showing how the downstream planes were used to integrate the quantities of interest at each down-
stream location.
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2.2.2 Mixedness

A scalar is also defined to measure the overall efficiency of mixing:

ξ = (Z − Z0)
2 (2)

where Z0 = 0.007 is the overall global mixture fraction. The plane and temporal averaged values of χ and ξ, X and Ξ

respectively can be plotted as a function of distance downstream from the injector trailing edge. Because these values

are still a function of space, they present a difficulty to any future optimisation or surrogate modelling task. In order

to simplify the task of any future surrogate modelling, the number and dimensionality of the target outputs should be

reduced. The dissipation of a passive scalar in a fully developed turbulent planar jet or wake evolves according to [16]:

u
∂Z

∂x
+ v

∂Z

∂y
= Γ

∂2Z

∂y2
− ∂v′Z ′

∂y
(3)

where the overbar represent a ensemble average and the dash represents the instantaneous (mean subtracted) quantity,

this is very similar as the equation for the mean axial velocity u. The mixture fraction of the passive scalar is therefore

expected to vary as [16]:

Z(x) ∝ x−1/2 (4)

It is therefore assumed that the evolution of Ξ and X are of the form:

Ξ = aξx
−bξ (5)

and

X = aχx
−bχ (6)
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Results from the simulations are therefore used to find the values of best fit of aξ, aχ, bξ, and bχ for each concept.

Because the curve fit assumes that the wake is fully developed, it is not surprising that the inclusion of the value at

the trailing edge injector plane leads to lower accuracy fit. The values of X and Ξ at the trailing edge of the injectors

are therefore included as separate optimisation parameters (X(x = 0) and Ξ(x = 0)). Table 1 shows the list of

output values that were approximated by the surrogate models along with an indication of whether the value should be

maximised or minimised during the optimisation.

Output Parameter Symbol Optimum

1 Pressure loss (%) ∆P < 5

2 Global maximum SDR max χ maximised

3 SDR at trailing edge X(x = 0) maximised

4 SDR coefficient 1 aχ maximised

5 SDR coefficient 2 bχ maximised

6 mixedness at trailing edge Ξ(x = 0) maximised

7 mixedness coefficient 1 aξ maximised

8 mixedness coefficient 2 bξ maximised

Table 1: List of outputs collected from the simulations.

2.2.3 Global maximum scalar dissipation rate and pressure drop

An additional parameter of interest is the global maximum scalar dissipation rate, which may not necessarily lie

in one of the extracted planes. It is calculated by finding the maximum value of SDR in the 3D domain. Finally, the

overall pressure drop across the injector and air gate is also calculated, which is an important design parameter for the

combustion chamber. The pressure drop is calculated using an area average of the static pressure over the inlet and

outlet patches of the computational domain.

2.3 Definition of the workflow

The workflow process is broken into 3 main parts: preparation, automation and result collection. Preparation

remains the most labour intensive process as it requires the operator to setup and test the automated parts of the

workflow to ensure that the workflow can continue without supervision. The automation step is designed to be as

autonomous as possible to limit the interaction required from the user and the result collection stage is designed such

that it is either entirely automated or, requires only very small quanties of input data so that the results can be analysed
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Fig. 8: The four simulations run for each new concept automatically during the workflow.

efficienty in real-time.

Fig. 9: The (unrefined) LES mesh for an optimal (D86) design.

The preparation step involved the setup of four test stages of the simulation (Fig. 8): Mesh, Initialise, Refine

and LES. The mesh step runs a simulation to generate an initial coarse mesh of the domain using only the input

STL files (also automatically generated from the parametric CAD model). The full domain included an STL file that

corresponded to the body of the injector, an STL file that represented the airgate and an STL file that represented the

injection holes for the hydrogen at the trailing edge of the injectors. These STL files were placed into a rectangular

domain automatically generated by the CFD solver YALES2 with dimensions of 800× 100× 100 mm. The mesh was

then generated using the methods described in [17, 18]. The initial mesh was heavily refined at the hydrogen injector

holes in order to capture the finest surface geometries (0.2 mm for the injection holes, 0.3 mm for the struts and 0.6

mm for the airgate). Once the mesh generation step is completed, the initialisation step begins, which involves an

initial guess of the mixture fraction field (Z = 0 upstream of the injector, Z = Z0 downstream) and a subsequent

poorly refined LES simulation run for 24 hours until the plume of high mixture fraction is sufficiently downstream.

The third step was then to refine the mesh to LES quality using the methods described in [19] using the MMG

library [20, 21]. The LES mesh had a maximum mesh cell density of 1 mm close to the injector (with smaller surface
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(a) Integral Kinetic Energy as a func-
tion of time.

(b) Average Scalar Dissipation Rate as
a function of axial position. Symbols
= values extracted from simulations at
predefined planes. Lines = lines of best
fit used in the optimisation study.

(c) Average Mixedness as a function of
axial position. Symbols = values ex-
tracted from simulations at predefined
planes. Lines = lines of best fit used in
the optimisation study.

Fig. 10: A comparison of three important statistics between an optimal (D86) and sub-optimal (D23) design. Solid
line = original unrefined mesh density used in the optimisation study. Dashed line = refined mesh.

Fig. 11: The output of workflow.py –plot.

densities maintained from the initial mesh) and linearly expanded towards the inlet and outlet with a maximum density

of 7 mm. This resulted in a final mesh cell count of around 10 million cells. Figure 9 shows the mesh used for an

optimal case (D86), this mesh is typical of the meshes used throughout the study. The final stage is the LES which is

run for a total of 7 ms, during which, the statistics are collected for further analysis.

The mesh resolutions chosen were tested by refining the mesh by a factor of two for an optimal (D86) and a

sub-optimal (D23) design. The linear expansions of the mesh density before and after the injectors was maintained,

however the minimum and maximum cells sizes were reduced to 0.5 and 3.5 mm, leading to meshes of around 80

million cells. The temproral evolution of the global integrated kinetic energy and spatial evolution of the SDR and

mixedness are shown in Fig. 10. The higher resolution of the meshes results in higher levels of kinetic energy due to a

greater propotion of turbulent scales being resolved in the refined simulations. However, as can be seen by the spatial

evolution of the mixedness and scalar dissipation rate, the change in mesh resolution does not significantly alter the

statistics used for the optimisation. Some variation is seen for the case of the scalar dissipation rate however this only

affects the absolute values of scalar dissipation rate and does not alter either the slope of the lines of best fit (bξ, and

bχ) or the ranking of the concepts in terms of X(x = 0).

Once the robustness of these four simulation steps was validated, the workflow was initiated with all of the 100
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geometries to be analysed. YALES2 workflows are launched in three automated stages. The first stage copied the files

from the test directories into the working directory and automatically changed the input files to point to the different

geometries to be tested. An additional list of strut lengths was also read so that the dimensions of the refine mesh zone

around each injector corresponded to the each injector length. A second automated stage entered each of the now 400

simulation folders (100 geometries × 4 simulations) and compiled the YALES2 code ready for submission. After the

400 executables were compiled, a final automated step launched the submission process. The first 100 simulations

were submitted to the scheduler. At the completion of each simulation a script was called to link the most recent

simulation’s output to the next simulation step. This process was monitored automatically by using the workflow.py

–plot command which generated an output (Figure 11) showing which simulations had completed, which were still

pending and which had crashed and needed further input from the user. The workflow ran on a supercomputing cluster

for around 4 days in physical time, during which 1.5 million CPU hours were consumed.

2.4 Design of Experiments (DOE)

Before a surrogate model can be constructed or a design can be optimised, data must be collected from either

simulation or experiment. If the design process is begun without previous experience or data available, a number of

experiments and/or simulations must be planned. Simulations and experiments are expensive and as such the number

should be minimised. At the same time, the response surface obtained for different output parameters of interest can

be highly irregular and non-linear with respect to the input design parameters and as such, in order to prevent the

design falling into a local, but not global minimum, the span covered by the set of simulations or experiment should be

maximised. The worst choice for efficiency but optimal for covering the design space is to conduct an experiment for

multiple levels of each design parameters whilst keeping all the others constant. In the case of finding the sensitivity

with repsect to ten design parameters at two different levels, a complete set of results would require 1024 simulations.

Latin Hypercube Sampling (LHS) improves the efficiency of the DOE by considering each level of each parameter

only once. In the given example, this would reduce the number of required simulations from 1024 to 20. This assumes

however that the non-linear interactions between multiple inputs and each output are minimal. The choice of the

values of each input design parameter for a LHS DOE is not fixed though and the LHS can be optimised to improve

the space filling of the method. The MaxProj LHS (Maximum Projection Latin Hypercube) [22] optimises the LHS

such that it fills a maximum of space assuming no non-linear interaction but also optimises for non-linear interactions

of higher and higher order with progressively smaller and smaller weightings. Unfortunately in this design one of the

design parameters (N I, the number of injection holes) is a categorical input (it must be an integer value). For this

type of input, the DOE must be adapted to the Sliced Maximin-Distance LHS method [23]. This is achieved using
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the SLHD (Sliced Latin Hypercube Design) package [https://cran.r-project.org/web/packages/SLHD/index.html]. In

a pure (non-sliced) LHS DOE, a good rule of thumb is that there should be at least 10 designs tested for each input

parameter. However, the slicing of the domain using different categories usually entails an increase in the size of the

DOE. Due to the cost of the simulations in this study, the 10 designs per input where maintained leading to a total

DOE size of 100 designs across 4 different numbers of injection holes. The design parameters and their ranges tested

are listed in Table 2. Figure 12 shows some of the designs tested.

Input Parameter Min Max Categories

1 N I [2,3,4,5]

2 D I (mm) 1 5

3 L X (mm) 20 100

4 L Y (mm) 5 30

5 R IN (mm) 1 5

6 A IN (degrees) 10 45

7 A OUT (degrees) 10 80

8 L H (mm) 5 10

9 L OG (mm) -10 50

10 L G (mm) 10 100

Table 2: Range of design parameters

2.5 LES Solver

The meshing, simulations and initial post-processing were done using the YALES2 software package [24]. Due

to the computational cost and uncertainty associated with a reacting simulation of turbulent hydrogen flames, a hot

combustion simulation strategy was avoided and replaced by a surrogate cold simulation. The LES simulations were

solved using the variable density solver of YALES2 using the WALE subgrid scale model [25]. It solves the low-Mach

Navier-Stokes equations [26] using the finite volume method on unstructured meshes using a projection method [27].

The time advancement used a 4th order TFV4A method with a 4th order accurate central spatial integration for the

equations of density and momentum [28]. A single transported scalar was solved to represent the mixture fraction (Z)

using MUSCL scheme with the second-order accurate flux limiter SUPERBEE [29] and 3rd order accurate temporal

integration. The local properties of the fluid were calculated as a linear function of the local mixture fraction based

on the properties of air (Z = 0) and hydrogen (Z = 1). The laminar Schmidt number was set to 0.204 which is
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Fig. 12: Side views of nine of the one hundred designs tested. Blue = injector/strut, red = hydrogen injection holes,
grey = airgate.

approximately equal to the Schmidt number of hydrogen in air at Z = 0.007 at 400 K, which is equal to the global

hydrogen mixture fraction (Z0). Hydrogen was injected through the hydrogen injection holes at 300 K and air was

injected at the domain inlet boundary at 450 K with a mass flow rate of 103 g/s.

2.6 Surrogate modelling

2.6.1 LASSO model

The LASSO (least absolute shrinkage and selection operator) model [30] was developed as an alternative to the

least squares method that helps to boost the accuracy and interpretability of the derived model. It seeks a model of the

form:

f∗ =

N∑
i=0

βiXi (7)
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where Xi are the input vector components, βi is the set of coefficients and f∗ is the optimal estimator for the input

data function f(Xi). The model is chosen such that:

N∑
i=0

|βi| ≤ t (8)

where t is a tuning parameter. The aim of this restriction is to drive some of the model coefficients to zero such that

the dimensionality of the resulting model is reduced and that only the strongest interactions between the model inputs

and output are retained. The optimisation of this model is performed using the glmnet package [31, 32]. The LASSO

models were built within the in-house Safran data exploration and optimisation platform NEXT STEP. An open-source

version called Lagun [https://gitlab.com/drti/lagun] is freely available.

2.6.2 ACOSSO

ACOSSO (Adaptive COmponent Selection Shrinkage Operator) [33] is similar to the LASSO model except that

non-linear interactions between the inputs (Xi, ...,Xp) are considered (in general up to any order but in this study

limited to order 2):

f(Xi, ..., Xp) = f0 +

p∑
i=1

fi(Xi) +

p∑
i<j

fij(Xi,Xj) (9)

The functions f are chosen to be elements of a reproducing kernel Hilbert space, and similarly to the LASSO model,

the model coefficents are forced towards zero by penalising the sum of the norms of the coefficients. This allows for

non-linear effects to be included in a LASSO type model. The ACOSSO model was built within NEXT STEP.

2.6.3 Kriging model

A kriging model or Gaussian Process regression (GPR) is a type of machine learning that builds a model from

a set of data and simultaneously gives an estimate of the certainty of the model prediction. Battacharya et al. [34]

recently used such a model, extended to take into account inputs of variable fidelity, to predict the emissions of a gas

turbine running on hydrogen. GPR assumes that the output of a function f with a vector of inputs X is:

y = f(X) + ϵ (10)
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where ϵ is a noise term assumed to follow a normal distribution. If it is assumed that the input vector signal is a random

variable following its own distribution, the function can be approximated as a Gaussian process:

f(X) ∼ N (µ(X),K) (11)

where µ(X) = E[f(X)] is the mean vector, Kij = k(Xi,Xj) is the matrix of kernel functions that defines the

statistical correlation between two set of inputs and N is the multivariate normal distribution function. The kernel

functions are defined as:

k(Xi,Xj) = E[(f(Xi)− µ(Xi))(f(Xj − µ(Xj))] (12)

The defined Gaussian process will then be used to estimate a set of unknown outputs (f∗) from an additional set of

untested inputs (X∗), the combined system is written:

 f

f∗

 ∼ N


 µ(X)

µ(X∗)

 ,
K(X,X) + σ2

nI K(X,X∗)

K(X∗,X) K(X∗,X∗)


 (13)

where there is expected to be a Gaussian noise signal with variance σ2
n in the input data and I is the identity matrix.

Assuming that the model data has been normalised such as µ(X) = µ(X∗) = 0, the predicted output f∗(X∗) is given

by:

f∗ ∼ N (K∗(X∗,X)[K(X,X) + σ2
nI]

−1f,K(X∗,X∗)

−K(X∗,X)[K(X,X) + σ2
nI]

−1K(X,X∗)) (14)
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In this study the kernel function is assumed to be the Matérn 5/2 function:

kν(τ) = σ2 2
1−ν

Γ(ν)

(√
2ν
τ

ρ

)ν

Kν

(√
2ν
τ

ρ

)
(15)

where Γ is the gamma function, σ is the standard deviation, Kν is the modified Bessel function of the second kind, ρ

is a non-negative covariance parameter and ν = 5/2. The surrogate model is trained within NEXT STEP using the

Robust GaSP package [35].

2.6.4 O-POD

The Output based Proper Orthogonal Decomposition (O-POD) [36] uses the Snapshot POD method [37] to build

a set of modes that statistically link the input and output data, and approximate the outputs based on a given set of

inputs. The model inputs and outputs are used to generate an augmented matrix:

φ = [X,y] (16)

where X is the set of input data and y is the set of output data that will be used to train the model. The columns of

X and y consist of the different input and output data available and the rows consists of the values of this data for

different tests or simulations. The POD is then applied to this augmented matrix:

φ =

Nr∑
i=0

aiθi (17)

with

θi = [θi, ψi] (18)

ai is a column vector of temporal coefficients that correspond to the different tests or simulations but that are indepen-

dent of the measurement (input or output) while θ and ψ are modes that statistically link the behaviour of the inputs
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and outputs across all of the data set. These modes are constructed such that the original data is optimally represented

by the smallest number of modes (Nr) and therefore the POD has the advantage of acting as a noise filter as non-

statistically significant white noise is pushed into the higher order modes that can be excluded from the model with a

minimal effect on the model accuracy. Once these modes are constructed they can be used to interpolate the output

solution y∗ from an unknown input vector X∗.

The interpolation is done by finding the values of ai that closest represent the new, untested model inputs X∗. In

POD, this is done by projection of the model inputs and outputs (φ) onto the POD modes (θ) however, in the case

of O-POD, only the values of X∗ are known and not y∗. The interpolation is therefore done using the least square

method by finding a∗i such that:

min
Nin∑
j=1

(
Nr∑
i=1

a∗i θi,j −X∗
j

)2

(19)

which is easily solved using the numpy.linalg package [38] and Nin are the number of model inputs. Finally the

unknown model outputs can be found using:

y∗ =

Nr∑
i=0

a∗iψi (20)

3 RESULTS AND DISCUSSION

3.1 Automated workflow

The automated workflow progressed as expected although there were some difficulties encountered with the mesh-

ing of the geometries. The mesh solver of YALES2 is sensitive to the mesh density of the chosen geometry STL

selected by the user and is also sensitive to the relative target size of the volume mesh cells and the nearby surfaces.

Because the geometry changes between each design, in some cases the values chosen by the user were inappropriate

for the chosen geometry resulting in a crash of the meshing program. The workflow would therefore be aided by both

a more robust algorithm and the automatic switching of the target mesh cell sizes without user intervention. There

remained ten simulations that could not be meshed by the solver and this is a focus for improving the robustness of the

chosen approach in the future. Nevertheless, the failure rate (10 out of 100) is similar to the experience of colleagues

working in the turbomachinery space who perform geometry optimisation using commercial tools.

After the geometries were meshed, the workflow progressed as expected. The freshly meshed geometries were
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initialised and run with the coarse mesh over 24 hours to reduce the time of LES computation. Then the domain was

refined to the LES standard and the simulation run for 7 ms while the statistics were collected. The calculation of the

output scalars, and their integration on the planes of interest was done by YALES2 and the results printed to a text file

at each time step. A small script was run at the end of the simulation to assemble all of these outputs across all of the

simulations into one file for final post-processing.

Before the surrogate models could be built, the data was time averaged. The convergence of all of the simulations

was checked by plotting the volume integral of the kinetic energy and the time-averaging was done over the last 5000

samples which corresponded with a global time to convergence (5 - 7 ms, Figure 10a). Lines of best fit were made

using the scipy.optimize [39] python package and the resulting coefficients and time averaged values were saved into

a text file for futher analysis.

3.2 Surrogate modelling

Type ∆P max χ X(x = 0) aχ bχ Ξ(x = 0) aξ bξ

LASSO 0.007 0.075 0.500 -0.013 0.410 0.393 0.089 0.526

ACOSSO 0.012 -0.024 0.61 0.001 0.571 0.640 0.109 0.638

Kriging 0.010 0.086 0.575 0.008 0.531 0.541 0.207 0.563

Table 3: The output of NEXT STEP showing the Q2 accuracy of the LASSO, ACOSSO and Kriging models. The
poorest quality models are highlighted in red.

(a) Number of hydrogen injection holes
(N I).

(b) Height of the strut (L Y). (c) Angle at the leading edge of the
strut (A IN).

Fig. 13: The change in outputs predicted by the O-POD model with a 10% increase in the values of 3 different inputs.

The resulting simulations outputs were imported into NEXT STEP along with the corresponding design param-
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(a) The pressure drop accross the strut. (b) The global maximum of SDR. (c) The rate of mixing.

Fig. 14: The change in select outputs predicted by the O-POD model with a 10% increase in the values of all inputs.

eters as inputs. These combined results were then used to build surrogate models for each output using LASSO,

ACOSSO and Kriging type models. The error of each surrogate model was evaluated using a leave one out analysis

where a single sample of input and output data is removed from the set and the surrogate model computed a second

time. This is then repeated for every data point. If the surrogate model is robust and accurate it should accurately

reproduce the value of the left out data point. The error is therefore calculated between each model and the left out

data using the Q2 criterion:

Q2 = 1−
1

ntest

∑ntest
i=1(Y

true
i − Y pred

i )2

1
ntest

∑ntest
i=1(Y

true
i − Y

true
i )2

(21)

where Y is the data output being tested and the subscripts pred and true represent the predicted values from the model

and the true values respectively. The results of the surrogate modelling in NEXT STEP is shown in Tab. 3. The

accuracy of all of the tested surrogate models falls below the limit of a “good” model (Q2 > 0.85). The surrogate

modes do especially badly at predicting the pressure drop, maximum SDR, and the aX and aΞ coefficients. The other

outputs are more easily predicted but still fall short. Globally, the ACOSSO models do the best out of the models

available which can be explained by the strong non-linear physics that are expected to be represented by the models.

The LASSO models are clearly the worst which further enforces this hypothesis. The limitation of the ACOSSO

models to only second order interactions limits the number of inputs whose effects must be combined together to

predict the output response observed. One option at this point would be to continue running simulations at the points

where the models are least precise in order to reduce the uncertainty and boost the accuracy of the surrogate models.

Although this remains a possibility, this action was put on hold until it is sure that other types of models can not

produce better results than those already available within NEXT STEP.
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The advantage of a POD based model over the previous tested models is that the POD can capture the non-linear

interaction between different inputs (even though each mode individually can only capture the linear relationship

between two inputs) and that the POD has the natural property of pushing the error and noise into the higher order

modes. This means that a POD based model can tune out some of the noise to focus only on the correlations that matter

at the cost of reducing the fidelity of the model. A detailed error analysis of this model has not yet been undertaken

however some of the results are presented in Figs. 13 & 14. The first set of figures tests the sensitivity of the design

to changes in the input parameters. Figure 13 shows the effect of increasing each input value independently by 10%

on the outputs starting from the mean values (R IN = 2.9 mm , A IN = 29◦ , L Y = 18 mm, N I = 4, A OUT = 48◦,

L X = 74 mm, L H = 7.5 mm, L OG = 21 mm, L G = 57 mm). Three inputs are chosen: the number of hydrogen

injection holes, the height of the strut, and the angle of the leading edge. Increasing the number of injection holes (and

therefore teeth) is associated with a large increase in the values of aX and aΞ as well as a modest increase in the other

outputs but a decrease in the values of bX and bΞ. This shows that increasing the geometric complexity of the injector

increases the local SDR at the injector exit but with the effect of decreasing the rate of mixing. This is consistent with

the observations made in the theoretical study of Marant and Cossu [40] who used linear stability analysis to show that

the optimum mixing is achieved using vortices and streaks (flow structures) of the largest size. The height of the strut

can be seen to decrease slightly the rate of mixing but also to increase the maximum value of the SDR in the flow field.

An increasing inlet angle is seen to increase the rate of mixing and also reduce the global maximum of the SDR. An

increased inlet angle is likely to promote a region of separation at the point where the inlet section of the strut meets

the top and bottom surfaces and this appears to improve mixing further downstream.

An alternative approach is shown in Fig. 14 where the effects on each output are plotted as a function of which

input is modified. The larger the bar, the larger the effect on the chosen output. The pressure drop is shown first and,

as expected, the largest effect on the pressure drop is the size of the air gate between the injector and the surrounding

structure. The global maximum SDR is shown next and indicates that the largest increase in global SDR is achieved

by having a shorter (decreasing L X (Input 3)) or fatter strut (increasing L Y (Input 4). Finally, the rate of mixing bΞ

is shown and indicates that the largest influence is driven also the length of the injector, but with the reverse effect:

an increase of L X (Input 3) or reduction in the value of L Y (Input 4) leads to an increase in the rate of mixing. A

shorter or fatter injector leads to a larger maximum SDR most likely due to large separations at the trailing edge. A

longer injector might promote the generation of turbulent eddies in the boundary layer, leading to better mixing and

small separations at the trailing edge. This relationship shows that there is globally a trade-off to be made between the

rate of mixing and having the highest local SDR close to the injector.
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3.3 Optimisation

Fig. 15: The five designs chosen as being the most optimal. Blue = injector/strut, red = hydrogen injection holes, grey
= airgate.

After defining the surrogate models the injectors can be optimised. There are however a number of practical

difficulties in doing so:

■ There is no surrogate model of good enough quality generated within NEXT STEP and that can be used within

the NEXT STEP optimisation routines.

■ The relationship between the inputs and outputs appears to be highly non-linear and difficult to interpret, therefore

optimisation without the right tools runs the risk of falling into local minima.

■ The optimisation is clearly multi-objective in nature and without reacting experiments, simulations or other tools,

it is difficult to assign weights to the criteria.

Due to these restrictions a simple classification routine is used as a demonstration and to get an idea of the kinds

of struts that appear to have desirable properties. Refering to Tab. 1, the desirable characteristics of an injector are

chosen to be:

■ The largest possible value of SDR at the trailing edge to prevent the flame from attaching to the injector.

■ The largest possible mixing rate.

■ The smallest possible pressure drop.

■ The largest possible value of global SDR.
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(a) D86: An optimal design.

(b) D23: A sub-optimal design.

Fig. 16: The mixture fraction field for an optimal and sub-optimal design. The color scale is logorithmic in order to
highlight the differences between the designs.

These criteria were applied one by one to the 90 concepts and the bottom 50% of the injectors were eliminated at

each stage. After applying the 4 criteria, 5 injectors remained and these are shown in Fig. 15. The results demonstrate

the power of the human eyeball: although the surrogate models struggle to identify the design features leading to the

optimal design, it is reasonable obvious that these designs have common features:

■ The injectors are long.

■ The displacement between the end of the air gate and the end of the injector is always positive (L OG< 0).

■ The injectors can either be thick with small inlet/outlet angles and large numbers of hydrogen injector holes or

thinner with larger inlet/outlet angles and a smaller number of hydrogen injector holes

Figure 16 shows the hydrogen mass fraction contours along the centreline of the combustion chamber for an

optimal (D86) and sub-optimal injector (D23). The color scale is logarithmic to better highlight the difference in the

two designs. It can be noted that in the case of the sub-optimal design, the high hydrogen containing wake behind

the strut is larger than in the optimal design. The most noticable dfference in the two designs in this plane is the

relative distance from the end of the air canal to the end of the injector. The protrusion of the optimal design into

the combustion chamber leads to a (double) backwards facing step, while the sub-optimal design is closer to a wake

configuration. The presence of the backwards facing steps leads to a large adverse pressure gradient at the dump-plane

which encourages the growth of turbulent fluctuations in the boundary layer close to the injector wall. At the rearwards
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tip of the injetor, these fluctuations lead to a more rapid mixing of the wake region. For the sub-optimal design, the

adverse pressure gradient is only triggered at the trailing edge of the injector and therefore it takes more time for the

turbulent fluctuations to grow and mix out the high-hydrogen containing wake.

Future work will aim to link the results from this study to results from reacting simulations, experiments and

correlations in order to define the weightings that should be used in a future multi-object optimisation routine. A good

place to start is the work of Leroy et al. [41] who developed a relationship between the NOx produced and the design

parameters of a jet flame and the work of Marragou et al. [10] who developed a theory to discern whether or not a

hydrogen flame will attach itself to an injector based on the triple flame speed and the local velocity field.

4 CONCLUSION

An automated design workflow has been demonstrated for an early stage design of hydrogen fuelled strut injector.

The strut design was parametrised using ten adjustable parameters and an optimal LHS DOE developed to test the

sensitivity of the design to the input parameters. Eight design outputs were identified and an automated workflow

developed using YALES2 to generate the outputs in real time to minimise the amount of user intervention. After the

workflow was completed, several surrogate models were tested in the hope that they could be used to optimise a future

design. The surrogate models identified some interesting trends in the sensitivity of the outputs to the input parameters

but were not sufficiently accurate to enable optimisation without additional simulation or experimental input. Future

work will aim to link these cold flow simulation results to the real-life reacting case. This will include the use of

simple correlations and also the integration of a multi-fidelity design approach where surrogate models are built to

accommodate different input data of varying fidelity (LES, RANS simulations, experiments, correlations) in order to

optimise a design with a minimal level of human intervention and with a minimum of high-fidelity, expensive data.
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D. A., Hagen, D. R., Pasechnik, D. V., Olivetti, E., Martin, E., Wieser, E., Silva, F., Lenders, F., Wilhelm, F.,

Young, G., Price, G. A., Ingold, G.-L., Allen, G. E., Lee, G. R., Audren, H., Probst, I., Dietrich, J. P., Silterra,
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M., Kümmerer, M., Bolingbroke, M., Tartre, M., Pak, M., Smith, N. J., Nowaczyk, N., Shebanov, N., Pavlyk, O.,

Brodtkorb, P. A., Lee, P., McGibbon, R. T., Feldbauer, R., Lewis, S., Tygier, S., Sievert, S., Vigna, S., Peterson,

S., More, S., Pudlik, T., Oshima, T., Pingel, T. J., Robitaille, T. P., Spura, T., Jones, T. R., Cera, T., Leslie, T., Zito,

T., Krauss, T., Upadhyay, U., Halchenko, Y. O., Vázquez-Baeza, Y., and SciPy 1.0 Contributors, 2020. “SciPy

1.0: Fundamental Algorithms for Scientific Computing in Python”. Nature Methods, 17(3), Mar., pp. 261–272.

[40] Marant, M., and Cossu, C., 2018. “Influence of optimally amplified streamwise streaks on the Kelvin–Helmholtz

instability”. Journal of Fluid Mechanics, 838, Mar., pp. 478–500.

[41] Leroy, M., Mirat, C., Renaud, A., Puggelli, S., Zurbach, S., and Vicquelin, R., 2024. “Structure and NOx

Emissions of Stratified Hydrogen-Air Flames Stabilized on a Coaxial Injector”. Journal of Engineering for Gas

Turbines and Power, 146(3), Mar., p. 031012.

32 GT2024-128828, Treleaven


	INTRODUCTION
	METHODOLOGY
	Definition of the parametric geometry
	Definition of the output metrics
	The scalar dissipation rate (SDR)
	Mixedness
	Global maximum scalar dissipation rate and pressure drop

	Definition of the workflow
	Design of Experiments (DOE)
	LES Solver
	Surrogate modelling
	LASSO model
	ACOSSO
	Kriging model
	O-POD


	RESULTS AND DISCUSSION
	Automated workflow
	Surrogate modelling
	Optimisation

	CONCLUSION

