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Abstract—A semi-supervised formulation to binary kernel
spectral clustering is presented. The formulation fits in a
constrained optimization setting with primal and dual model
representations. The clustering model can be applied naturally
to out-of-sample points allowing model selection and achiev-
ing good generalization capabilities. The proposed method
incorporates labeled information into the core binary kernel
spectral clustering by adding an extra term into the objective
function together with a regularization constant. The resulting
dual problem is no longer an eigenvalue problem as in the
case of the original core model but a linear system. A model
selection criterion combining a cluster distortion measure on the
unlabeled part and the classification accuracy on the labeled
part is also presented. This criterion can be used to obtain
clustering parameters such that the clustering model evaluated
at validation points display a desirable structure. Simulation
results with toy data and real benchmark datasets show the
applicability of the proposed method.

I. INTRODUCTION

S
PECTRAL clustering methods correspond to a family of

unsupervised learning algorithms to group data points

that are similar with respect to some given measure [1],

[2], [3], [4], [5]. Their solutions can be obtained from an

eigenvalue decomposition of a Laplacian matrix derived from

the data. These method have been shown to outperform

classical clustering algorithms such as k-means, especially in

cases of high dimensionality and high nonlinearity. Classical

spectral clustering has several issues concerned with the lack

of an underlying model. Out-of-sample extensions do not

follow naturally from the eigenvalue problem and should

rely on approximations such as the Nyström method [6].

Model selection is also problematic and important clustering

parameters such as the number of clusters, the similarity

function used and its parameters are often set heuristically.

In order to overcome these issues, a different interpretation

of spectral clustering called kernel spectral clustering (KSC)

has been proposed in [7]. This formulation can be seen as a

weighted version of kernel PCA in a constrained optimization

setting with primal and dual model representations typical

of least squares support vector machines (LS-SVM) [8]. The

dual problem is related to the random walks algorithm for

spectral clustering [9] for a particular choice of weights.

By defining a clustering model, it is possible to obtain out-

of-sample extensions and to perform model selection in a

learning framework. A method to estimate eigenvectors for

out-of-sample data is proposed in [10]. When the data display
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strong cluster structures, the eigenvectors show a structural

property making them informative to obtain the underlying

grouping of the data. This property is exploited to perform

model selection by using unseen data and a model selection

measure based on the Fisher criterion [11] has been proposed

in [10].

Semi-supervised learning [12], [13] situates in between

supervised and unsupervised learning. Most semi-supervised

learning algorithms start by extending strategies either for

unsupervised or for supervised learning towards the incorpo-

ration of information from the other learning scheme. In most

cases, there is an abundance of unlabeled examples while

the supervised information is scarce. For semi-supervised

learning to work, several assumptions have to be made: (i)

smoothness: if two points in a high-density zone are close to

each other, the corresponding outputs should be close too; (ii)

low density separation: the decision boundary should be in a

low-density region; (iii) manifold: the input data lie roughly

on a low-dimensional manifold.

In this paper, we propose a formulation for semi-

supervised learning in the context of binary kernel spectral

clustering. We start with the core binary clustering model and

extend it towards the incorporation of labeled information

which is assumed to be scarce. The binary core model

is extended by adding a regularized term quantifying the

squared distance between the projections of the labeled data

points and their corresponding labels. The obtained dual

problem is a linear system instead of a eigenvalue problem

as in the original KSC core model. The incorporation of

the labeled information transforms the eigenvalue problem

into a linear system. This effect has also been discussed in

[14] for visualization purposes. A model selection method-

ology called semi-supervised Fisher (SSF) criterion is also

presented. The proposed measure is a weighted sum between

the standard Fisher criterion [10] on the unlabeled part of the

data and the classification accuracy for the labeled data. The

objective is to obtain clustering parameters by maximizing

the SSF criterion on validation data.

This paper is organized as follows: Section II summarizes

kernel spectral clustering introduced in [7]. Section III con-

tains the main contributions of this work: the proposed for-

mulation to semi-supervised binary kernel spectral clustering

together with a new model selection measure based on the

Fisher criterion. An algorithm is also provided. In Section

IV, we present the experimental results with toy, real and

benchmark datasets. The proposed method is also compared

with respect to the Laplacian SVM [15], [16] and in Section

V we give concluding and future work comments.U.S. Government work not protected by U.S. copyright
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II. KERNEL SPECTRAL CLUSTERING

This Section summarizes the kernel spectral clustering

framework introduced in [7]. The formulation puts spectral

clustering in a constrained optimization setting allowing out-

of-sample extensions. This method can be seen as a weighted

version of kernel PCA where cluster decisions for unseen

data points can be computed using the projections onto the

eigenvectors solution. Consider a set of training data points

X = {xi}
N
i=1 where xi ∈ R

d. The objective of clustering is

to partition the dataset X into k groups such that data points

in the same group are more similar than data points belonging

to different groups. The following clustering model can be

adopted:

e
(l)
i = w(l)Tϕ(xi) + bl, i = 1, . . . , N, l = 1, . . . , ne, (1)

with unknowns w(l) ∈ R
dh , bl ∈ R, ϕ : R

d → R
dh

which is a mapping to a high-dimensional feature space of

dimension dh. The projections e
(l)
i can be written in compact

form:

e(l) = Φw(l) + bl1N =
[

e
(l)
1 , . . . , e

(l)
N

]T
, l = 1, . . . , ne

where Φ = [ϕ(x1)
T ; . . . ;ϕ(xN )T ],Φ ∈ R

N×dh and 1N is

a vector of N ones. The e(l) vectors represent the latent

variables of a set of ne binary clustering indicator vectors

given by sign(e(l)) which will be combined at a later stage

in order to obtain the final k clusters. This model is inspired

in multiclass kernel machines [8], [17].

A. Primal and Dual Formulation

The primal problem of kernel spectral clustering is defined

as follows [7]:

min
w(l),e(l),bl

1

2

ne
∑

l=1

w(l)Tw(l) −
1

2N

ne
∑

l=1

γle
(l)T V e(l) (2)

such that















e(1) = Φw(1) + b11N
...

e(ne) = Φw(ne) + bk−11N

where γl are regularization parameters and V =
diag([v1, . . . , vN ]), vi ∈ R

+ is a user-defined weighting

matrix. Using the Lagrangian and the Karush-Kuhn-Tucker

(KKT) optimality conditions leads to the following dual

eigenvalue problem:

VMV Ωα
(l) = λlα

(l), (3)

where λl = N/γl are the eigenvalues λ1 ≥ . . . ≥ λne
,

α(l) ∈ R
N are corresponding eigenvectors, MV is a cen-

tering matrix MV = IN − (1/1TNV 1N )1N1TNV , Ω is the

training kernel matrix with ij-th entry Ωij = K(xi, xj),
K : Rd × R

d → R is a kernel function satisfying Mercer’s

condition, thus, K(xi, xj) = ϕ(xi)
Tϕ(xj), i, j = 1, . . . , N .

The bias terms bl becomes bl = −(1/1TNV 1N )1TNV Ωα(l).

The clustering model evaluated at the training data points can

now be written in terms of the eigenvectors (dual variables):

e(l) = Φw(l) + bl1N = MV Ωα
(l), l = 1, . . . , ne.

B. Relation to Spectral Clustering and the Choice of ne

It was shown in [7] that if V = D−1 =
diag(1/d1, . . . , 1/dN ) where di =

∑N

j=1 K(xi, xj) is the

degree of the i-th data point, then the eigenvectors with

large eigenvalue of the dual problem (3) contain information

about the underlying grouping of the data. It is assumed here

that the kernel function K(xi, xj) acts as a non-negative

similarity function1. Let us consider an ideal clustering

scenario:

(a) The data contain k clusters denoted as ∆ =
{Ap}

k
p=1, k > 1.

(b) K(xi, xj) > 0 if xi and xj belong to the same cluster.

(c) K(xi, xj) = 0 if xi and xj are in different clusters.

In this situation, the properties of the eigenspectrum of

D−1MDΩ relevant to clustering are summarized as follows:

1) The geometric multiplicity of the maximal eigenvalue

(eigenvalue 1) is k − 1.

2) The k−1 eigenvectors with eigenvalue 1 can be written

as linear combinations of the k indicator vectors of ∆.

These two properties mean that the eigenvectors with eigen-

value 1 are piecewise constant on the partitioning, that is,

if α(l) ∈ R
N , l = 1, . . . , k − 1 is a piecewise constant

eigenvector then α
(l)
i = α

(l)
j = c

(l)
p when xi, xj ∈ Ap and

c
(l)
p is the constant value of the l-th eigenvector associated

to the p-th cluster. Due to the fact that the eigenspace of 1
is spanned by piecewise constant eigenvectors, the clusters

have a localized representation in this new space: data points

in the same cluster will be mapped to exactly the same

point in the eigenspace. However, the condition stating that

K(xi, xj) = 0 when xi and xj are in different clusters

is not fulfilled in practical applications. Moreover, kernel

functions used in clustering such as the RBF kernel do not

become exactly zero. In this case, if the kernel between

points in different clusters is non-zero but small enough, the

eigenvectors will be approximately piecewise constant still

preserving the localized representation of the clusters [5], [9].

Since only the k − 1 top eigenvectors of D−1MDΩ contain

information useful for clustering, the number of additional

projections ne defined in the clustering model (1) is equal

to k − 1. At this point, classical and kernel spectral cluster-

ing algorithms share the approximately piecewise constant

property of their eigenvectors. However, there also exist

fundamental differences which are summarized as follows.

C. Differences with Classical Spectral Clustering

Kernel spectral clustering can be seen as a weighted ver-

sion of kernel PCA where the weighting matrix is set to D−1.

The clustering model is defined in the dual as projections

onto the eigenvectors. Having a primal and dual model for

performing spectral clustering is the main difference with

respect to classical algorithms where no model is defined.

The clustering model allows out-of-sample extensions and

model selection criteria, which are important for obtaining

1Popular kernel functions such as the RBF kernel fulfill the non-negativity
condition.
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Fig. 1. Main idea behind kernel spectral clustering. Left: Clustering results and boundaries. A random subsample of the full dataset (Ntotal = 2, 250)
was used to create the training set (N = 600). The clustering parameters k = 3 and σ2 = 0.08 were determined using grid search and the Fisher criterion
on validation data (Nval = 800). The boundaries display good generalization capabilities together with non-linear decision regions. Center: Estimated
out-of-sample eigenvectors of the full dataset showing a localized representation of the clusters. The Fisher criterion value is high in this case. Right:

Estimated projections of the full dataset showing cluster collinearity. The BLF criterion is high when the projections display collinearity.

good generalization capabilities and reducing the compu-

tational complexity as it has been shown in [7]. Another

important difference comes from the use of bias terms in the

clustering model. The bias terms induce a special centering

matrix leading to piecewise constant eigenvectors with zero

mean. This property together with the orthogonality of the

eigenvectors lead to data points in the same cluster mapped to

the same coordinates in the eigenspace and different clusters

mapped to different orthants. This additional result allows

us to obtain the final k groups by using the sign patterns of

the projections since they will be different for every cluster.

This step is typically done in classical spectral clustering by

using k-means.

D. Out-of-Sample Extensions and Model Selection

Given an out-of-sample data point x, the clustering model

becomes:

ê(l)(x) = w(l)Tϕ(x) + bl =
N
∑

j=1

α
(l)
j K(x, xj) + bl,

l = 1, . . . , k − 1. The projections for out-of-sample points

drawn i.i.d. from the same probability distribution as the

training points display a special structure when the eigen-

vectors α(l) are (approximately) piecewise constant. Namely,

data points belonging to the same cluster are collinear in

the projection space [7]. This structural property of the

projections allows model selection by selecting clustering

parameters leading to cluster collinearity in the projection

space. A criterion to select good values for the clustering

parameters was introduced in [7]. The Balanced Line Fit

(BLF) criterion measures average collinearity and balanced

of the obtained clusters on validation data. Another model

selection method based on the Fisher criterion was first

discussed in [10]. This criterion is applied on estimated out-

of-sample eigenvectors which display a localized structure

(instead of collinearity) when the clusters are well-formed.

The main idea behind kernel spectral clustering is shown in

Figure 1.

III. SEMI-SUPERVISED FORMULATION FOR BINARY

KERNEL SPECTRAL CLUSTERING

Consider now a set of training data points X =
{x1, . . . , xN , xN+1, . . . , xM} where xi ∈ R

d and i =
1, . . . ,M . Classification labels are available for the last

NL = M − N data points: Y = {yN+1, . . . , yM}, ym ∈
{−1, 1},m = N +1, . . . ,M . The objective is to incorporate

the labeled information into the clustering problem. From

now on, we consider the core binary kernel spectral cluster-

ing model, that is, equation (2) with ne = 1 to go inline

with the binary labeled information. This binary core model

can be extended by adding a term and an extra regularization

constant ρ ∈ R
+ into the objective function.

A. Primal and Dual Formulation

The proposed primal problem becomes:

min
w,e,b

1

2
wTw −

γ

2
eTD−1e+

ρ

2

M
∑

m=N+1

(em − ym)2 (4)

such that e = Φw + b1M .

This extra term quantifies the squared distance between the

projections of the labeled data points and their corresponding

labels. The primal problem can be written in matrix form as:

min
w,e,b

1

2
wTw −

γ

2
eTD−1e+

ρ

2

(

eTAe− 2yT e+ yT y
)

(5)

such that e = Φw + b1M ,

where

A =

[

0N×N 0N×NL

0NL×N INL

]

∈ R
M×M ,

y = [0, . . . , 0, yN+1, . . . , yM ]T ∈ {−1, 0, 1}M and INL
is the

NL ×NL identity matrix. The Lagrangian of the constrained

optimization problem (5) becomes:

L(w, e, b;α) =
1

2
wTw −

1

2
eT (γD−1 − ρA)e− ρyT e

+
ρ

2
yT y + αT (e− Φw − b1M ), (6)



with Karush-Kuhn-Tucker (KKT) optimality conditions

given by:










































∂L

∂w
= 0 → w = ΦTα

∂L

∂e
= 0 → α = (γD−1 − ρA)e+ ρy

∂L

∂b
= 0 → 1TMα = 0

∂L

∂α
= 0 → e = Φw + b1M ,

(7)

after eliminating the primal variables w and e, the following

dual problem is obtained:
(

IM −
(

γD−1 − ρA
)

MSΩ

)

α = ρMT
S y, (8)

where IM is the M ×M identity matrix and MS ∈ R
M×M

is a centering matrix defined as:

MS = IM −
1

c
1M1TM (γD−1 − ρA),

and c = 1TM (γD−1 − ρA)1M . The dual problem (8) cor-

responds to a linear system to be solved in α. Note that,

the primal problem (5) is in general non-convex due to the

minus sign in the objective function. This means that the

KKT optimality conditions characterize the stationary points

of the Lagrangian of (5). The linear system (8) has a unique

solution when the left-hand size matrix is full-rank which

is dependent on the regularization parameters γ and ρ. The

choice of these parameters will be discussed later. The bias

term becomes:

b = −
1

c

(

1TM (γD−1 − ρA)Ωα+ ρ1TMy
)

. (9)

The latent clustering model for training points can now be

written in terms of the dual variables α:

e = Φw + b1M = MSΩα−
ρ

c
1M1TMy, (10)

and the binary cluster membership is determined by sign(e).

B. Out-of-Sample Extension

The clustering membership of an arbitrary data point x can

be determined by first computing its out-of-sample extension:

ê(x) = wTϕ(x) + b

=
(

θ(x)T −
1

c
1TM (γD−1 − ρA)Ω

)

α−
ρ

c
1TMy, (11)

where θ : Rd → R
M , θ(·) = [K(x1, ·), . . . ,K(xM , ·)]T and

then binarizing it: sign(ê(x)).

C. Properties of the solution vector α and choice of γ, ρ

Consider now for simplicity, the proposed formulation (5)

without a bias term. In this case, the simplified dual becomes:
(

IM −
(

γD−1 − ρA
)

Ω

)

α = ρy.

Rewriting it leads to:

α = γD−1Ωα− ρAΩα+ ρy,

assuming that α is piecewise constant with respect to the

underlying partitioning of the data allows us to write:

α = γα− ρAe+ ρy

since any piecewise constant vector is an eigenvector of

D−1Ω with eigenvalue 1. Writing the last equation in terms

of block matrices:
[

αU

αL

]

= γ

[

αU

αL

]

− ρ

[

0
eL

]

+ ρ

[

0
yL

]

,

which leads to:
{

αU = γαU

αL = γαL − ρ(eL − yL),
(12)

where αU is the block of α corresponding to the unla-

beled data points: αU = [α1, . . . , αN ]T . Likewise, αL =
[αN+1, . . . , αM ]T corresponds to the labeled information of

α, eL = [eN+1, . . . , eM ]T and yL = [yN+1, . . . , yM ]T . This

result means that α is a piecewise constant vector and a

solution to the simplified dual linear system, if γ = 1 and

eL = yL. For this reason, we fix the value of γ to 1 and

do not tune this parameter at the model selection stage. We

also restrict the range of ρ to 0 < ρ ≤ 1 to keep in line

with equation (12) discouraging a change of sign in αL. This

analysis also holds for the original dual problem with bias

(5), since the only effect of the bias term is to induce a

special centering matrix causing that the solution vector α
has zero mean as can be seen in the second KKT optimality

condition (7). Thus, to summarize, γ is fixed to 1 and the

user-defined ρ ranges between 0 and 1. An algorithm for the

proposed method is presented in Algorithm 1.

Algorithm 1 A semi-supervised formulation to kernel spec-

tral clustering

Input: Training dataset X , labels Y , RBF kernel function

K(xi, xj), clustering parameters σ2, ρ, validation set Dval =
{xval

t }Nv

t=1.

Output: Partition {A−,A+}

1: Solve the dual linear system (8) to obtain α and compute

the bias term b by (9).

2: Compute the projections for training data e using (10).

3: Binarize e to find the cluster membership for training

data points.

4: ∀i, assign xi to A−,A+ depending on the sign of ei.
5: Compute the projections for validation data êval using

(13).

6: ∀t, assign xval
t to A−,A+ depending on the sign of êval,t

D. Out-of-Sample Localized Solution

Since the solution to the dual linear system (8) has piece-

wise constant properties when there is an underlying cluster

structure in the data, it becomes important for generalization,

model selection and visualization purposes to extend these

properties to out-of-sample data points. Estimation of out-

of-sample eigenvectors in kernel spectral clustering has been



discussed in [10] and we adopt a similar strategy here.

Consider a set of Nv validation data points Dval = {xval
t }Nv

t=1.

The latent variables of the clustering model are:

êval = Φvalw + bl1Nv
= Ωvalα+ b1Nv

, (13)

where Ωval = ΦvalΦ
T is the Nv×M validation kernel matrix

with tj-th entry Ωval,tj = K(xval
t , xj), t = 1, . . . , Nv, j =

1, . . . ,M , Φval = [ϕ(xval
1 )T ; . . . ;ϕ(xval

Nv
)T ] and 1Nv

is a

vector of Nv ones. The second KKT condition in (7):

α = (γD−1 − ρA)e+ ρy,

links the solution vector α and the projections for training

data e. The main idea is to extend this link to out-of-sample

projections, such that we obtain an out-of-sample solution

with localized (piecewise-constant) properties. The estimated

out-of-sample solution α̂val ∈ R
Nval becomes:

α̂val = (γD−1
val − ρAval)êval + ρyval, (14)

where D−1
val = diag([1/deg(xval

1 ), . . . , 1/deg(xval
Nv
)]) ∈

R
Nv×Nv is the inverse degree matrix for validation data and

deg(x) =
∑M

j=1 K(x, xj) extends the concept of degree to

out-of-sample data. Since Dval is unlabeled2, the matrix Aval

and the validation labels yval equal zero leading to

α̂val = γD−1
val

(

Ωvalα+ b1Nv

)

. (15)

If the validation dataset is sampled i.i.d. from the same

distribution as the training data points, then the estimated

out-of-sample solution α̂val will display localized cluster

structures.

E. Model Selection

Having a localized representation for out-of-sample so-

lutions allows us to perform model selection in a learn-

ing setting. The clustering parameters can be estimated by

optimizing a criterion on validation data. The proposed

criterion combines the Fisher criterion [11], [10] adapted to

binary clustering for the unlabeled part and the classification

accuracy on the labeled part of the dataset. The Fisher

criterion measures how localized the clusters appear in the

out-of-sample solution and is defined for binary clustering as

follows. Given α̂val and the clusters A−,A+ with member-

ship given by sign(α̂val), the Fisher criterion F (σ2, ρ) can

be defined as:

F (σ2, ρ) =
sB

sB + sW

, (16)

where sB = ζ−(µ̂− − µ̂)2 + ζ+(µ̂+ − µ̂)2, µ̂− and µ̂+ are

the cluster mean values for the negative and positive cluster

respectively, µ̂ is the mean of α̂val, sW = ς−+ ς+, ς− and ς+
are the cluster variance values for the negative and positive

cluster respectively. Note that, sB is the weighted sum of

the squared distances from each cluster mean to the global

mean with weights3 given by ζ− and ζ+, ζ− + ζ+ = 1.

2If there are labels available for some validation points, equation (14) is
applied instead.

3The weights can be set to ζ
−

= |A
−
|/Nv and ζ+ = |A+|/Nv to give

preference to balanced clusters.

(sW ) is a measure of cluster compactness with value 0
when the clusters in the out-of-sample solution are perfectly

localized (piecewise constant). Thus, the idea behind the

Fisher criterion is to look for clustering parameters σ2, ρ, γ
such that sB is maximized and sW is minimized. The Fisher

criterion is bounded between 0 and 1, taking its maximal

value in the clusters appear well-separated and localized

in the out-of-sample solution. The proposed criterion called

semi-supervised Fisher (SSF) then becomes a weighted sum

of the Fisher criterion and the classification accuracy for the

labeled data points used during training / validation:

SSF(σ2, ρ) =ηUF (σ2, ρ)

+ (1− ηU)accuracy(sign(eL), yL), (17)

where 0 ≤ ηU ≤ 1, is a user-defined weight controlling

the importance given to the unlabeled measure, eL are the

projections of the labeled data and yL are the corresponding

labels.

IV. EXPERIMENTAL RESULTS

Simulation results are presented in this Section. All ex-

periments reported are performed in MATLAB 7.13 on a

2.2 GHz quad-core Intel i7, 4 GB, Mac OS X. For the

real-life and benchmark datasets, we used the Laplacian

SVM MATLAB code4 provided by the authors of [16] to

solve LapSVM in the primal. The original dual LapSVM

problem is solved via a MEX interface to libSVM [18].

In all cases, we subsample the full dataset to obtaining

training and validation sets and perform model selection

using the validation set and a grid search over the parameters.

For the proposed approach, we used the semi-supervised

Fisher criterion with weight ηU = 0.25 (thus, giving more

importance to classification accuracy) to obtain the clustering

parameters σ2 and ρ. We fixed γ to 1. For the Laplacian

SVMs, we tuned the kernel parameter and γA with respect to

the accuracy on the validation set. The remaining parameters

are set to their default values (γI = 1, NN = 6).

A. Toy Problems

The first toy problem consists of three well-separated

Gaussian clouds in 2D. The full dataset consist of 2, 000
data points. A training set of N = 600 data points is

subsampled randomly. The validation set is composed of

Nv = 800 points. We artificially introduced binary labels for

two data points. The proposed model was trained with tuned

parameters σ2 = 2.5, ρ = 0.9 using the semi-supervised

Fisher (SSF) criterion on validation data. The model was

tested on a uniform grid of data points to determine the

decision boundaries. The negative class is depicted in blue

and the positive class is depicted in green. The two labeled

data points are depicted as a blue square and a green circle

for negative and positive class respectively. Figure 2 shows

the simulation results for completely unsupervised kernel

spectral clustering (KSC) and the semi-supervised approach

(Semi-KSC). The eigenvector solution of KSC and the dual

4Available at http://www.dii.unisi.it/ melacci/lapsvmp/



linear system solution of Semi-KSC are also depicted. The

simulation results show good generalization performance

with only one labeled data point of each class. The out-of-

sample solution of Semi-KSC also displays a multi-cluster

structure which is not visible in the KSC eigenvector. A

piecewise constant solution is clearly visible in both methods

but Semi-KSC correctly detect the three clusters in data,

in spite of the fact that it is formulated to perform binary

clustering.
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Fig. 2. Toy problem 1 - Three Gaussians. The training scenario consists of
N = 600 data points for training and Nv = 800 for validation. The blue
square (negative class) and the green circle (positive class) represent the two
data points with labels. Top: Unsupervised results using KSC. The Gaussian
could on the right is discriminated with respect to the other two. The out-
of-sample eigenvector α display a strong piecewise constant structure of
two clusters. Bottom: Results with the semi-supervised proposed approach.
The labeled information propagates through the data points altering its
cluster/class membership in order to fit the imposed labels. The out-of-
sample localized solution displays a strong piecewise constant structure
together with correctly detecting the three Gaussian clouds.

The second toy problem consists of four Gaussian clouds

in 2D with some overlapping regions. The idea is to test

the proposed approach with respect to cluster/class overlap.

The training scenario is the same as in the first toy problem.

The model parameters were tuned using the SSF criterion on

validation data. In this case we used three labeled datapoints.

Figure 3 shows the results displaying good generalization

capabilities as in the previous toy example. The incorpora-

tion of few labeled information propagates in the Gaussian

clouds fulfilling the desired requirements. The out-of-sample

solution of Semi-KSC also displays a multi-cluster structure

not present on KSC. The four clouds are correctly detected

by Semi-KSC.
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Fig. 3. Toy problem 2 - Four Gaussians with some overlap. The training
scenario consists of N = 600 data points for training and Nv = 800 for
validation. The blue square (negative class) and the green circle (positive
class) represent the two data points with labels. Top: Unsupervised results
using KSC. The out-of-sample eigenvector α display a strong piecewise
constant structure of two clusters. Bottom: Results with the Semi-KSC.
The cluster/class membership is altered accordingly in order to fulfill the
few imposed labels. The out-of-sample localized solution displays a strong
piecewise constant structure and correctly detects the four clouds.

B. Real and Benchmark Problems

We used the benchmark datasets g241c, g241d,

Digit1, USPS, BCI and Text for semi-supervised learn-

ing described in [12]. All datasets have a total of 1, 500
data points and the dimensionality is 241 (except for Text

which has 11, 960 sparse discrete dimensions). The first three

datasets were artificially generated while USPS, BCI and

Text were derived from real data. All datasets have binary

labels. We compare the proposed approach with respect to the

Laplacian support vector machine (LapSVM) introduced in

[15] and its more recent extension to provide a solution in the



TABLE I
AVERAGE TEST ERROR ×100% OF 4 BENCHMARK DATASETS DESCRIBED IN [12]. THE NUMBER OF UNLABELED TRAINING POINTS IS SET TO

N = 600 EXCEPT FOR BCI WHERE N = 150 WAS USED. NL INDICATES THE NUMBER OF LABELED EXAMPLES. THE METHODS ARE THEN

EVALUATED ON THE FULL DATASETS TO CALCULATE THE TEST ERROR. THE PROPOSED METHOD IS COMPARED AGAINST LAPLACIAN SVM SOLVED

IN THE DUAL [15] AND SOLVED IN THE PRIMAL [16]. SEMI-KSC COMPARES FAVORABLY WITH RESPECT TO THE LAPLACIAN SVM WITH RESULTS

SIGNIFICANTLY BETTER ON THE TEXT DATASET.

g241c g241d BCI Text

LapSVM 0.48± 0.02 0.42± 0.03 0.48± 0.03 0.37± 0.04
NL = 10LapSVMp 0.49± 0.01 0.43± 0.03 0.48± 0.02 0.40± 0.05

Semi-KSC 0.42± 0.03 0.43± 0.04 0.46± 0.03 0.29± 0.06

LapSVM 0.40± 0.06 0.31± 0.03 0.37± 0.04 0.27± 0.02
NL = 100LapSVMp 0.36± 0.07 0.31± 0.02 0.32± 0.02 0.32± 0.02

Semi-KSC 0.29± 0.05 0.28± 0.05 0.28± 0.02 0.22± 0.02
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Fig. 4. Test error for benchmark datasets Digit1 (top row) and USPS (bottom row) of [12]. The number of unlabeled training points is N = 600. The
proposed method performs consistently good with reduced variability with respect to the number of labeled examples NL.

primal [16]. The datasets contain already 12 randomizations

of the labeled data points and all reported results indicate

the variability with respect to these randomizations. For each

randomization of the labels, a training subset of N = 600
unlabeled data points is selected for all datasets (except for

Text for which N = 150). A validation set of Nv = 600
unlabeled examples is also drawn at random. The parameters

of the Laplacian SVMs are determined by maximizing the

classification accuracy on 10 randomizations of the validation

set. The parameters of the proposed approach are calculated

in a similar fashion but maximizing the semi-supervised

Fisher criterion instead. The test results are shown in Table

I and in Figure 4. The proposed approach has a consis-

tently good performance, outperforming in most cases the

Laplacian SVMs. Figure 5 shows the training computation

times with respect to an increasing number of training points.

Although all methods perform quite fast, Semi-KSC showed

a considerably reduced computation times. These results are

expected since the Laplacian SVMs lead to solving more

complex optimization problem than Semi-KSC which is a



linear system.
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Fig. 5. Training time in seconds for the Text dataset with an increasing
number of unlabeled training points and fix NL = 100. All methods perform
quite fast but Semi-KSC takes less time than the Laplacian SVMs.

V. CONCLUSIONS AND FUTURE WORK

A semi-supervised formulation to binary kernel spectral

clustering called Semi-KSC is presented. The primal for-

mulation takes the binary core model for kernel spectral

clustering and incorporates the available labeled information

by an additional term in the objective function and a regular-

ization constant. This extension transform the original dual

eigenvalue problem of kernel spectral clustering into a lin-

ear system. The proposed formulation allows out-of-sample

extensions giving the possibility to obtain cluster/class mem-

bership for unseen data. A model selection criterion suitable

for semi-supervised problems is also proposed. The proposed

criterion extends the Fisher criterion used for measuring clus-

ter by adding an extra term measuring classification accuracy

on the available labeled information. The applicability of

the proposed framework is shown on illustrative toy exam-

ples and on real and benchmark datasets popular in semi-

supervised learning applications. Semi-KSC is also compared

with respect to the Laplacian SVM in its primal and dual ver-

sions. The proposed approach outperforms Laplacian SVM

in most cases in term of classification accuracy together

with reduced training times. As future work, we will further

investigate the intriguing results shown in the toy examples

where the out-of-sample dual solution vector display a multi-

cluster structure, despite the fact than the formulation is for

binary clustering. Another direction worth investigating is

a formulation for multi-class classification and multi-group

clustering and the role of encoding/decoding schemes.
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