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Abstract—We present a visual system for a humanoid robot
that supports an efficient online learning and recognition of
various elements of the environment. Taking inspiration from
child’s perception and following the principles of developmental
robotics, our algorithm does not require image databases, prede-
fined objects nor face/skin detectors. The robot explores the visual
space from interactions with people and its own experiments.
The object detection is based on the hypothesis of coherent
motion and appearance during manipulations. A hierarchical
object representation is constructed from SURF points and color
of superpixels that are grouped in local geometric structures and
form the basis of a multiple-view object model. The learning
algorithm accumulates the statistics of feature occurrences and
identifies objects using a maximum likelihood approach and
temporal coherency. The proposed visual system is implemented
on the iCub robot and shows 85% average recognition rate for
10 objects after 30 minutes of interaction.

I. INTRODUCTION

For robots to be useful at home, to help people in their
activities and domestic services, they will require among many
things a very strong capability to detect and recognize objects.
As it is difficult to imagine that a robot will know in advance
all possible objects, it should be able to learn new objects
at any time. Ideally, it should obtain all information needed
for that without any complex training stage for the user, but
simply from interactions with people or with the object itself.

Most of existing computer vision approaches for object
detection and recognition are based on initial image databases,
various form of prior knowledge or narrow-purpose detectors
such as skin/face detectors. These approaches usually do not
allow robots to be autonomous in an open-ended scenario. In
contrast, our goal is to develop a system based on incremental
online learning following the principles of developmental
robotics, where robots start with a few core capabilities
and acquire new skills of increasing difficulty [1]. In our
application scenario, people show different objects and interact
with them in front of a robot in a similar way they would
do in front of a child to teach him object. In this situation,
our system should be able to learn and recognize any kind
of objects, as well as adapt to the environment, background,
lighting conditions and camera motion.

The idea of a humanoid robot acquiring knowledge from
gradual exploration and interaction with the environment is
inspired by the way children learn objects. Indeed, most of
perceptual challenges that exist in computer vision are solved
in the vision of infants during the first year of their life [2].

Starting with little or no knowledge about the surrounding
world, children retrieve all information from light intensities
and sounds. They learn from the iterative accumulation of data,
associations and results of actions. The self-experimentation
starts from the exploration of own body, like an association of
the arms with their visual appearance and motion behavior.
This process is called ’body babbling’ and it is aimed to
tune up the predictability of own movements [3]. When a
certain progress is reached, the self-learning stage is overlaid
by the exploration of the external world, surrounding objects
and people [4]. The interaction with objects is important
as it enhances its exploration, provides additional physical
properties and allows to learn its overall appearance from
different perspectives. During object manipulation, infants dis-
cover and adjust so-called ’affordances’ - actions available in
the environment and dependent on individual capabilities [3].

In this paper, we describe a perception system which
is to be included in a general approach reproducing the
aforementioned developmental steps. This system is able to
incrementally detect and learn objects, without supervision. In
future work, these objects are going to be classified into own
robot’s body, human and manipulable objects, using people’s
feedback and experiments. We therefore designed our system
by analogy with the human perceptual learning in terms of
input data and general organization, but without trying to
reproduce precisely brain inner functioning. Following general
principles used by human, we segment the visual space into
proto-objects based on visual attention, and learn the corre-
sponding objects, characterizing them by hierarchical visual
representation constructed from a set of complementary low-
level features, their relative location and motion behavior. The
proposed approach is implemented on an iCub robot.

In section 2, we present a short review of related object
detection and recognition algorithms. The proposed approach
is detailed in section 3. Experimental results are reported
in section 4, and last section is devoted to discussion and
conclusion.

II. RELATED WORK

The computer vision community provides a large amount of
object detection and recognition approaches which are mostly
based on prior knowledge. This knowledge is often represented
as labeled samples, which corresponds to pairs of a sensory
input with an interpretation [2]. In the image processing field,
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Fig. 1. Proto-object segmentation and intermediate results of the image processing.

prior knowledge takes the form of algorithm choices or image
databases, where each object is associated with several images
or visual properties encoded by descriptors. In this case, object
recognition relies on the similarity with existing database
entities; it is fast and reliable, but it is not easily applicable
for autonomous learning, where robots should construct object
representations adaptable to an environment. This can be
achieved by using dedicated interfaces, like the one proposed
in [5] that allows a user to provide learning examples to the
robot.

Fast and robust real-time object localization is also provided
by algorithms detecting artificial markers. As an instance, the
ARTag system that is widely used in virtual reality applica-
tions, creates and recognizes such markers [6]. However, this
requires object tagging. An efficient identification of specific
object categories is also possible by numerous narrow-purpose
detectors. Existing examples are the Face detector [7] that
works with the low-level Haar-like features, and the Human
skin detector [8] that processes the color of pixels. The last one
is also used to enhance the image segmentation, by subtracting
the regions of human hands holding objects [9].

The online object detection algorithm implemented in [10]
is close to our goal, since it learns objects by means of robot’s
actions and object manipulations. Regions of the visual space
that have ’objecthood’ characteristics are considered as proto-
objects [11] and segmented similar to a perceptual grouping
of visual information in human cortical neurons. Localization
of proto-objects is based on a saliency map. Salient regions
often contain most of the information about the visual space
[12]. These regions differs from their neighborhood in some
of physical properties, like color, intensity, texture, an effect
of the spatial orientation or shape. In addition, the ability
to stand out from the neighborhood proceeds from dynamic
object properties, such as motion trajectory, speed, changes in
size or appearance [13].

There are several methods to represent objects. In order to
process image faster and more efficiently than operating on
pixels intensities, local descriptors are often used to character-
ize stable image patches at salient positions. Thus, the visual
content is encoded to a significantly smaller amount of data.
A good descriptor should be balanced between robustness,

sparseness and speed. Among the variety of existed descrip-
tors, some of them are computed around key-points, like scale-
invariant SIFT [14] and SURF [15], on the extracted bound-
aries, like straight edge segment EDGE [16], on junctions like
scale-invariant SFOP [17], on corners like HARAF [18] and
on Good features to track [19]. In order to achieve an efficient
object learning and recognition, the completeness (an ability
to preserve information) of various feature combinations [20]
can be considered, and complementary features, which allow
to process various image types, can be chosen.

III. PROPOSED METHOD

Our algorithm is based on online incremental learning,
and it does not require image databases, artificial markers
nor face/skin detectors. We acquire all knowledge iteratively
during interactions with objects, by analyzing low-level image
features. In our setup, we use a robot placed in front of the
table, and we take the visual input from a Kinect camera
instead of stereo vision, since it is an easy way to obtain
the depth information. Our main processing steps include
detection of proto-objects as units of attention, characterization
of their visual appearance and learning them as perspectives
of real objects, which we call views.

A. Proto-object segmentation

Our proto-object detection algorithm is based on visual
attention; the main steps and the intermediate results of the
image processing are shown in the Fig. 1. According to our
scenario, people in front of the robot interact with objects
to produce observed motion, which encourages the robot to
focus on it. We assume, that the robot is attracted by motion;
therefore we compute a saliency map based on the optical
flow.

The motion is detected by computing the running average of
consecutive images, subtracting it from the current image and
thresholding it to a binary mask. Random noise is removed by
erosion and dilation operators.

The visual scene is rarely stable, since the optical flow
includes both the real motion of external factors in that we
are interested in, and the global flow caused by the camera
motion. Furthermore, motion artifacts, like blur, accompanied



by changes in pixel intensities and color values, make difficult
to match key-points, determine the correspondence between
consecutive images and identify contours. Thus, we omit
the global optical flow and concentrate on the meaningful
information from stable images, by analyzing the camera
motion from commands sent to robot’s head, neck or torso.
Additionally, the depth data obtained from a Kinect camera by
the RGB Demo software1, is used to filter the visual input. We
discard the regions, which are relatively far from the robot, and
we keep pixels within the distance suitable for object location,
considering the constraints of the robot’s working area.

In the filtered moving areas of the visual space we search for
proto-objects and isolate them based on the motion behavior
of key-points. We extract the GFT (Good Features to Track)
key-points inside moving regions and track them by the KLT
algorithm [21], which computes the displacement of the key-
points between consecutive images. The tracked key-points
are grouped by agglomerative clustering. Initially, each key-
point composes its own cluster. Then, we iteratively merge two
clusters with a smallest difference in the speed and distance;
the process continues until the certain threshold is reached.

Each obtained group of coherent key-points gives an idea
about possible objects, but its envelope rarely corresponds
to real object contours; it can capture the background or
surrounding items. In order to obtain more precise proto-object
boundaries, we refine contours extracted from the original
RGB image by contours obtained from the depth information.
In both cases, the Sobel operator based on the first derivative,
is used to detect horizontal and vertical edges. Then, we apply
a threshold and define the proto-object borders by continuous
contours. These isolated regions are learned and recognized in
the following processing.

B. View encoding

The Bag of Visual Words (BoW) approach with incremental
dictionaries [22] forms the basis of our object representation
model. In general, BoW [23] is used to encode images as
a set of visual words represented by quantized descriptors
characterizing image patches.

The robot should be able to deal with various kinds of
objects, ranging from simple objects with few features, to
complex and highly textured objects. For this purpose, a single
descriptor is not enough. Thus, we combine complementary
features, providing different visual characteristics and maxi-
mizing the amount of encoded information. SURF detector is
chosen as a good solution for objects with a large amount of
details. The key-points neighborhoods are encoded by 64D-
vector, but they are isolated and sparse. SURF alone does
not perform well for homogeneously colored areas. So, we
developed an additional descriptor operating on the level of
regularly segmented image regions. The similar adjacent pixels
are grouped by a superpixels algorithm [24], that performs the
watershed segmentation on LoG (Laplacian of Gaussian) with
local extrema as seeds. Then, each superpixel is described by

1Software Kinect RGB Demo v0.6.1 available at http://nicolas.burrus.name
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Fig. 2. View encoding and construction of a hierarchical object model.

the HSV model (hue, saturation and value) [25]. We chose
this color space, because its dimensions are conceptualized
in terms of perceptual attributes and they don’t change to-
gether with light intensity (as happens with RGB values). Our
combined descriptor is therefore robust to object texture level,
illumination and scale variations.

All extracted descriptors are quantized to visual words and
stored in vocabularies, if their dissimilarity with existing items
exceeds a given threshold [22]. To avoid rapid and continuous
growth of SURF dictionary, we implemented a short- and long-
term memory. The short-term stack is filtered according to
feature co-occurrence over consecutive frames. The relevant
visual words fi build the long-term vocabulary, that is used in
the following processing as a ground level of the hierarchical
object representation, as shown in the Fig. 2.

Initial BoW approach does not take into account any spatial
relation between visual words inside images. This limitation
is resolved in several BoW variations, like the Constellation
model [26] that considers the geometrical relationship between
image patches, but requires a long computation time. Our goal
is an efficient object representation that takes advantage of
multiple features, their relative location and coherent motion
behavior. We group the closest SURF points and superpixels
into mid-features mi = (fi1, fi2), relying on their distance
in the visual space. Each feature forms a pair with its 5
closest neighbors. This middle level incorporates local object
geometry in terms of relative position of colors and key-
points. The mid-features are quantized to visual words, stored
in vocabularies and used to encode the appearance of views
Vj = {mi}.

C. View recognition

The object learning and recognition algorithm is based on a
voting method using the TF-IDF (Term-Frequency - Inverse-



Document Frequency) and maximum likelihood approach. TF-
IDF was initially used in text retrieval, where each document
was described by a vector of words frequencies [23]. We
adapted this theory to describe each view by a vector of mid-
features frequencies, as shown in the Fig. 3. The statistical
measure evaluates the importance of mid-features with respect
to segmented views. The recognition decision depends on a
product of the mid-feature frequency and the inverse view
frequency:

tf − idf(mi, vj) = tf(mi) ∗ idf(mi), (1)

where tf(mi) is a frequency of the mid-feature mi, and
idf(mi) is an inverse view frequency for the same mid-feature
mi.

The mid-feature frequency accumulates the occurrence of a
mid-feature in a view, and it is calculated as:

tf(mi) =
nmivj

nvj

, (2)

where nmivj
is the number of occurrences of the mid-feature

mi in the view vj , and nvj
is the total number of mid-features

in the view vj .
The inverse view frequency is related to the presence of a

mid-feature in the past. It is used to decrease the weight of
mid-features, which present often in different views, and it is
equal to:

idf(mi) = log
N

nmi

, (3)

where nmi
is the number of views in which the mid-feature

mi has been found, and N is the total number of seen views.
During the recognition, we compute the likelihood of the

current set of mid-features being one of already learned
views, using a voting method. In case of high recognition
likelihood, we update the identified view by a set of found
mid-features; otherwise, we store this view with a new label.
While presenting different objects to the robot, the weights
of relevant features for each object grow proportionally to the
number of occurrences.

D. Object model

At this level, the learned views describe objects from a
single perspective. In order to construct a multi-view model,
we accumulate the object appearance from different viewing
points On = {vj}. During manipulations, we track an object
using KLT algorithm and associate each detected view vj
with the tracked object label, like in the Fig. 4. If tracking
fails, we compute the likelihood of the current view being one
of already known objects, using the occurrence frequency of
the view among learned objects. In case of low recognition
likelihood, we create a new object label. Besides that, the
tracking process is also used to facilitate object recognition,
as we identify tracked objects without analyzing their visual
appearance.
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Fig. 3. View recognition through the voting method.

Fig. 4. Object model: object views from different perspectives are recognized
as the same object.

Fig. 5. Connected objects: an object occluded by a human hand on 10, 25,
50, 75% (from left to right, top to bottom) is detected in a single moving
blob with a human hand, but recognized as a separate object.



E. Connected objects

Object manipulations introduce additional difficulties in the
image processing. When the human or the robot’s hand holds
an object, they compose a single moving blob (like in the
Fig. 5), and multiple occlusions divide an object into parts.
This problem requires an object segregation, as it is called
in psychology; and this ability is trained up by infants in 5
months of a life [2]. The real borders between objects are
distinguished from the similarity of properties and from the
’key events’, which imply previously seen images with clear
object boundaries. Following this idea of the prior experience,
we learn human and robot’s hands before presenting objects;
then we identify the presence of connected objects into a single
moving blob, using a two-stage object recognition demon-
strated in the Fig. 6. During the first stage, we identify the most
probable object based on the similarity with already known
objects. For example, if a human hand has ever appeared
before, it will be recognized. Then, we eliminate the features
that belong to the identified item from the processing area;
and the remaining features are used in the second identical
recognition stage to check, if there is enough evidence of a
presence of another object inside the same moving blob.

IV. EXPERIMENTAL RESULTS

Our perception system is implemented on the iCub robot.
The experimental setup was organized as follows: the iCub
was localized in front of the table, the Kinect was mounted
over the robot’s head at a distance of 75 cm from the table,
that allows to perceive objects on the table, robot’s hands and
people in front of the robot.

The vision system was examined on an image sequence pre-
recorded during 30 minutes. Ten objects, shown in the Fig. 7,
were presented to the robot; each object was manipulated by
a person for several minutes. An object was considered as de-
tected, when it was segmented as a proto-object. The detection
rate was about 98.8%. The detection algorithm includes both
stages: motion-based detection and segmentation from depth
contours. During the motion-based detection stage, 15% of
proto-objects were falsely groupped from KLT-tracked points
(that corresponds to the clustering error) and re-segmented
correctly by processing depth information.

The object recognition was evaluated a posteriori, by hand-
labeling the image sequence. For each object, we defined one
major label as the most frequently assigned by the robot,
several pure labels, which were never given to other objects,
and noisy labels, which were associated with several objects.
An object was considered as recognized, when it was assigned
to a pure label. The recognition rate, presented in the Table
I, was calculated as a ratio of the number of images, where
object was recognized, to the total number of images with this
object.

The learning process stabilized within several minutes,
and labels associated with detected objects remained nearly
constant. The recognition rate reached 72% - 93%, depending
on objects. An example of the multi-view object recognition is
given in the Fig. 4. In 65% of cases, objects were recognized

Fig. 6. Two-stage object recognition: mid-features shown by the green color
correspond to the human hand recognized on the first stage (left image) and
the rest of features shown by the red color correspond to the object recognized
on the second stage (right image).

Fig. 7. Experimental objects O1 −O10 from top-left to bottom-right.

TABLE I
RECOGNITION RATE

Object Presented
in
# images

Recognized
by a pure
label

Recognized
by a major
label

Amount
of pure
labels

Recognition
rate, %

O1 109 99 98 2 91

O2 139 114 87 2 82

O3 73 68 68 1 93

O4 86 71 71 1 83

O5 54 43 33 3 80

O6 60 46 39 2 77

O7 106 99 99 1 93

O8 36 26 18 2 72

O9 64 51 32 3 80

O10 53 49 34 2 92

iCub
left
hand

357 315 267 4 88

iCub
right
hand

357 325 313 2 91

human
hand 61 43 28 5 70

from tracking, in the rest from their appearence. The system
distinguished well between two identical octopuses that differ
only by color, but some confusions occured between lego-toy
and lego-cars that have similar colors and SURF-points (at the
place of block attachements).

Our system is invariant to scale and rotations, since it uses
SURF and color as low-level features. Various manipulations
with objects confirmed the resistance of our system to motion
artifacts and to the visual clutter. Only rapid actions caused
some difficulties, which were resolved by manipulating an
object for a longer time. The system was able to track,
segment and recognize all 10 objects simultaneously on the
same image, shown the Fig. 8. We analyzed the recognition



Fig. 8. Simultaneous traking: 10 objects on the same image are successfully
segmented (right image) and recognized (left image).
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Fig. 9. Mean recognition rate of the system, learning different number of
objects.

TABLE II
THE IMPACT OF OCCLUSION ON THE RECOGNITION RATE OF THE SYSTEM

Amount of
occlusion,
%

Detection rate,%
connected objects
[+ single objects]

Recognition rate,%
connected objects
[+ single objects]

Total
detection/
recognition
rate,%

10 54 [+25] 23 [+2] 79/25

25 63 [+7] 32 70/32

50 47 [+6] 18 53/18

75 38 0 38/0

90 33 0 33/0
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Fig. 10. The growth of the vocabularies: a) SURF and SURF mid−features,
b) HSV and HSV mid−features, c) views and objects.

rate of the system with different amount of objects presented
during experiments. As we see from the Fig. 9, the recognition
rate based on pure labels slightly decreases with a number of
objects; the recognition rate based on one major label grows
significantly up to 4 objects and then remains nearly stable.

The average processing time was about 0.2 sec per image

in case of one object. The use of several objects tends to
increase computation time. In the case of 10 objects (Fig. 8)
processing time reached 1.5 sec. The recognition of connected
objects took 0.36 sec in average. Objects occluded up to 75%
were detected in a single moving blob with a human hand
and recognized as connected objects due to two-stage object
recognition explained in the section III.E and illustrated in
the Fig. 5. The increasing amount of occlusion decreases the
recognition rate, as detailed in the Table II.

The number of mid-features, labeled views and objects are
displayed in the Fig. 10. Once the vocabularies have reached a
sufficient amount of knowledge, the robot was able to reliably
recognize objects, human and own hands.

V. DISCUSSIONS AND FUTURE WORK

Concluding from our work, the proposed system enables a
robot to autonomously explore the visual space in an open-
ended scenario, detect and learn objects during interactions
with humans.

The solution proposed in this paper is based on online
incremental learning. The presented algorithm is able to learn
objects while not requiring image databases, nor skin/face
detectors. We acquire all knowledge by analyzing the visual
space and constructing hierarchical object representations.

In future work, this system will be used as the basis for
object categorization through robot experiments and affor-
dance learning. We are going to improve the processing time
by optimizing dictionaries. Then we are planning to use the
mutual information between the data from robot’s motors and
the behavior of moving regions in the visual space, by analogy
with [27]. In case of high correlation between motors and
observed motion, the moving region will be identified as own
robot’s body, otherwise, as a human. The kinematic model can
be used to improve categorization by predicting the position
of robot’s parts.
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