

Personalised Health Monitoring and Decision Support Based

on Artificial Intelligence and Holistic Health Records

D4.10 – Big data platform and knowledge

management system II
WP4 Knowledge Management and Utilisation in the

iHelp Platform

Dissemination Level: Public
Document type: Report

Version: 1.0
Date: October 31, 2022

The project iHelp has received funding from the European Union’s Horizon 2020 Programme for

research, technological development, and demonstration under grant agreement no 101017441.

GA-101017441

D4.10 – Big data platform and knowledge management system II 1

Document Details

Project Number 101017441

Project Title
iHelp - Personalised Health Monitoring and Decision
Support Based on Artificial Intelligence and Holistic Health
Records

Title of deliverable Big data platform and knowledge management system II

Work package
WP4 Knowledge Management and Utilisation in the iHelp
Platform

Due Date October 31, 2022

Submission Date October 31, 2022

Start Date of Project January 1, 2021

Duration of project 36 months

Main Responsible Partner LXS

Deliverable nature Report

Authors names
Pavlos Kranas, Javier Pereira, Alejandro Ramiro, Rogelio
Rodriguez, Pablos Spencer, Jesus Manuel Gallego (LXS)

Reviewers names Pencho Stefanov (KOD), Ainhoa Azqueta (UPM)

Document Revision History

Version History

Version Date Author(s) Changes made

0.1 2022-09-01 Pavlos Kranas (LXS) Initial ToCs

0.2 2022-09-20 Pavlos Kranas, Javier Pereira,
Alejandro Ramiro, Rogelio
Rodriguez, Pablos Spencer,
Jesus Manuel Gallego (LXS)

Section 4, 5

0.3 2022-09-27 Pavlos Kranas, Javier Pereira,
Alejandro Ramiro, Rogelio
Rodriguez, Pablos Spencer,
Jesus Manuel Gallego (LXS)

Additions in section 6

0.4 2022-09-29 Pavlos Kranas (LXS) Updates on the plan

0.5 2022-09-30 Pavlos Kranas (LXS) Updates on
intro/conclusions

0.6 2022-09-30 Pavlos Kranas (LXS) Submission for internal
review

0.7 2022-10-20 Pencho Stefanov (KOD) 1st Internal review

0.8 2022-10-22 Ainhoa Azqueta (UPM) 2nd Internal review

GA-101017441

D4.10 – Big data platform and knowledge management system II 2

0.9 2022-10-25 Pavlos Kranas (LXS) Revision and updates based
on the internal reviews.
Quality review

1.0 2022-10-31 Dimosthenis Kyriazis (UPRC) Final version

GA-101017441

D4.10 – Big data platform and knowledge management system II 3

Table of Contents
Executive summary ... 6

1 Introduction... 7

1.1 Objectives of this deliverable ... 8

1.2 Insights from other tasks and deliverables ... 8

1.3 Structure ... 9

1.4 Changes from previous version .. 9

2 The iHelp Big Data Platform .. 10

2.1 Internal Architecture .. 10

2.2 OLAP Queries .. 14

2.3 iHelp Integrated Solution ... 17

3 Polyglot Query Processing ... 21

4 HHR relational schema .. 25

5 Additional functionalities .. 27

5.1 iHelp-Store-Rest.. 27

5.1.1 Interface ... 28

5.2 User Enrolment ... 29

5.2.1 Design ... 30

5.2.2 Interface ... 30

6 Deployment and use ... 32

6.1 Big Data Platform .. 32

6.1.1 Local installation using docker ... 32

6.1.2 Remote installation using Kubernetes ... 33

6.1.3 Examples of use .. 36

6.2 Kafka Broker ... 43

6.2.1 Local installation using docker ... 43

6.2.2 Remote installation using Kubernetes ... 45

6.2.3 Configuring the Kafka Connector ... 47

6.3 Big Data Platform microservices ... 52

6.3.1 iHelp REST Interface ... 52

7 Next Steps and Roadmap .. 56

8 Conclusions.. 58

Bibliography .. 60

GA-101017441

D4.10 – Big data platform and knowledge management system II 4

List of Acronyms .. 61

GA-101017441

D4.10 – Big data platform and knowledge management system II 5

Table of Figures
Figure 1: Architectural layer of the datastore .. 10

Figure 2: Transaction phases ... 12

Figure 3: Transaction Manager ... 13

Figure 4: DQE Distributed Architecture ... 15

Figure 5: Query processing in parallel mode ... 16

Figure 6: iHelp Big Data Platform .. 17

Figure 7: iHelp peered deployments ... 22

Figure 8: Polyglot Access on Peer Deployments ... 22

Figure 9: HHR relational schema ... 26

Figure 10: iHelp Identifier.. 30

GA-101017441

D4.10 – Big data platform and knowledge management system II 6

Executive summary
The iHelp integrated solution aims at providing personalised health monitoring and decision support based

on artificial intelligence using datasets coming from a variety of different and heterogeneous sources that

will be integrated into a common data model: the Holistic Health Records (HHRs). The integrated solutions

consist of various technology building blocks that are related firstly with the data ingestion process that is

responsible to capture data from external sources, transform them and store them to the Big Data Platform.

Secondly with the data analytics layer that makes use of these data to feed their internal AI algorithms.

Finally, with the platform level components that provide the runtime execution environment and the data

management activities of the integrated solution. As a result, the last category of building blocks is central

to the iHelp platform and interacts with all other components.

This deliverable reports the work that has been recently carried out under the scope of T4.4 – “Big Data

Platform and Knowledge Management System”, which is responsible for the data management activities of

the platform. The outcome of this task, the Big Data Platform of iHelp will be used from i) the data ingestion

processes that store data and ii) the data analytics functions that read data. As a result, it firstly needs to

allow for data ingestion in very high rates and at the same time, to enable data analytics over the

operational data that are being ingested at the same time. Moreover, the Big Data Platform needs to be

integrated with various popular processing frameworks that are being used by the iHelp or the analytical

functions, like Apache Spark or Apache Kafka Therefore, it provides various means of data connectivity

mechanisms. Both the runtime execution environment and the data ingestion pipelines make use of

intermediate Kafka queues, while Apache Spark is the popular analytical processing framework used by

many developers of analytical tools.

Another important requirement for the Big Data Platform is its ability to combine and aggregate data

coming from different data sources. An important requirement however is the need for the data not to be

moved from outside the organisation they belong to, due to EU and country level regulations. The Big Data

Platform provides support for polyglot query processing, which will be a key factor on the implementation

of this requirement.

At this phase of the project, a prototype of the outcome of this task has been provided and made available

to project partners. It includes the Big Data Platform itself along with the definition of the HHR relational

schema, an enhanced Kafka Broker that is currently being used by the data ingestion pipelines It includes

also the datastore connector, and a set of several microservices that have been developed during the

second phase of the project. This deliverable includes a separate section that demonstrates the

deployment, installation, and use of each of the aforementioned components, giving concrete examples

with code snippets that can be used by all partners of the project as development and operational

guidelines.

The T4.4 – “Big Data Platform and Knowledge Management System” has three development phases, and

this deliverable reports the work that has been carried out until the second phase of the project (M22).

Therefore, it also includes a section with next steps and a roadmap for the implementation and prototype

delivery of the Big Data Platform until the end of the project. The last version of this report is planned to be

delivered in M32.

GA-101017441

D4.10 – Big data platform and knowledge management system II 7

1 Introduction
The Big Data Platform and Knowledge Management System of iHelp is the central data repository of the

overall integrated solution and provides all data management activities that are needed from it. It is based

on the LeanXcale’s database, which is a relational distributed database with advanced capabilities, bringing

a list of interesting innovations that are relevant to the requirements of the project. It is а central building

block of the overall integrated solution, as it will be used during the data ingestion process, where data are

being collected, assured their quality, transformed to the common data model of iHelp, the HHR, and

eventually persistently to be stored by other components for further processing. When stored, the

analytical functions hosted by the platform need to efficiently retrieve and process this data, while also

store intermediate or final results that will be later visualized by the Clinical DSS Suite and its Visual Analytic

Tools. Therefore, the Big Data Platform interacts with the majority of the building blocks offered by the

iHelp platform. This introduces a number of challenges that need to be tackled by the Big Data Platform

and will be reported in this document.

The common data model of iHelp, the HHR, consist of various entities along with their relations. Its

conceptual model is given as an E-R (Entity-Relational) diagram, while analytical tools will need to make use

of different entities. As a result, a relational data management system is required to store this information

and retrieve data efficiently. This introduces a great challenge, as traditional relational database systems,

in order to ensure database transactions, often implements a mechanism that is commonly known as the

two phase locking protocol. It makes use of shared and exclusive locks over the data items of a data table.

Shared locks are being put when a read operation access a data item, allowing other read operations to

perform in parallel, but forbids write operations to access shared locked items concurrently. On the other

hand, exclusive locks prevent any other operation to access the specific item that has been previously

exclusively locked. This happens in order to avoid data access anomalies raised by the phenomena that

occur when concurrent transactions try to access the same data items. The result of this protocol is that

write transactions block read-only ones, as the latter usually need to perform a full scan over a data table,

but they cannot, as many data items are exclusively locked. On the other hand, a last-running read

transaction will eventually put shared locks all records of a data table, which will prevent any write

operation to perform on that table. As a result, it is evident that read and write transactions are competitive

and one block the other. In order to apply data analytics, data engineers often migrate periodically the

latest snapshot of the operational data to a data warehouse and use the latter to perform analytics. The

drawback of this architecture is that data that feed the analytical algorithms are outdated and analytics

cannot rely on fresh or live operational data. This is important in the healthcare domain, where the

healthcare professional might need to have the current picture of how a disease is being developing at a

current point in time.

To avoid this issue, the Big Data Platform of iHelp makes use of a different approaches: it relies on the

implementation of the snapshot isolation paradigm, that instead of shared and exclusive locks, it maintains

different versions of the data items. Now, each transaction has the visibility of a specific version of each

data item, and concurrent transactions can access the same data items, without blocking each other. This

is crucial, as it allows the data analysts to execute their AI algorithms on the fresh data, that is the initial

requirement. Moreover, due to its scalable transactional manager and the internal data structure used by

its storage engine, it allows for data ingestion on very high rates, thus combining the benefits of both words:

the SQL and the NoSQL ecosystem.

GA-101017441

D4.10 – Big data platform and knowledge management system II 8

This section introduces the document. We first provide the main objectives of this deliverable (§1.1). Next,

we describe how the work that has been carried out under the scope of T4.4 – “Big Data Platform and

Knowledge Management System” is strongly related with the majority of the technical tasks of the iHelp

project, and provide insights into the dependencies with all related activities performed under these tasks

(§1.2). Finally, the overall structure of this deliverable is given (§1.3), while at the end we provide

information about what additional content has been included in this second version of the deliverable.

1.1 Objectives of this deliverable
The objective of this deliverable is to report on the work that has been recently done under the scope of

the T4.4 – “Big Data Platform and Knowledge Management System” at this phase of the project (M22). The

main focus of this work at this phase was to provide the design principles and capabilities of the Big Data

Platform and the design and requirements for the development and implementation of federated scenarios

involving different instances of the platform itself. Then, examples of how to deploy and make use of the

platform have been provided, along with code snippets highlighting the different data connectivity

mechanisms that are provided and allow the integration of the datastore with popular processing

frameworks used by the iHelp integrated solution. Additionally, a set of newly developed microservices

have been documented, which were needed for the integration of the Big Data Platform with other

components of the iHelp solution that are now delivered, in order to implement the remaining of the

identified scenarios. Finally, a list of next steps and roadmap for implementation for the next period is

described, highlighting the status at this phase and the basic design principles that will guide our work in

the last period of the project.

1.2 Insights from other tasks and deliverables
The work that has been carried out under the scope of the T4.4 – “Big Data Platform and Knowledge

Management System” has dependencies with the activities of WP2, WP3 and WP5 and other tasks of WP4.

In fact, the Big Data Platform is a central building block of the overall integrated solution of iHelp and

interacts with the majority of the components in the platform. More specifically, it gets input from T2.1 –

“Requirements, State of the Art Analysis and User Scenarios in iHELP” and has dependencies with T2.2 –

“Reference Architecture Specifications” and T2.3 – “Functional and Non-Functional Specifications”. Then,

it has dependencies with WP3, in particular T3.1 – “Data Modelling and Integrated Health Records” as this

task defines the common conceptual data model of iHelp, the HHR, which needs to be translated into the

corresponding relational schema. T3.2 – “Primary Data Capture and Ingestion” defines the data ingestion

pipelines that eventually will interact with the Big Data Platform to store the data, using the Kafka queues.

From what concerns WP4, this work has dependencies with the technology provided by T4.2 – “Model

Library: Implementation and Recalibration of Adaptive Models” as the latter will provide the runtime

execution environment for the analytic tools. It makes use of Kafka queues to interact with the datastore

and will make use of the Big Data Platform to store data models provided by T4.1 – “Data Modelling and

Integrated Health Records” and intermediate or final results by tools provided by T5.1 – “Techniques for

Early Risk Identification, Predictions and Assessment”. These results will be further visualized by the tools

developed in T4.3 – “Clinical DSS Suite with Visual Analytic Tools”. These tools will also need to interact with

the Big Data Platform, as they provide UI tools for the data analysts to explore the data stored into the

datastore. Finally, it also interacts with various components developed under the scope of WP5 – “AI for

Early Risk Assessment and Personalised Recommendations” via the newly developed microservices.

GA-101017441

D4.10 – Big data platform and knowledge management system II 9

As it is evident, the work that is being carried out under this task and reported in this document is strongly

related with the majority of the technical tasks of the project.

1.3 Structure
This document is structured as follows: Section 2 gives the overview of the Big Data Platform focusing on

its internal architecture, its parallel OLAP engine and how it is being integrated with the overall solution of

the iHelp platform. Section 3 gives insights about its polyglot query processing engine andhow it works. The

polyglot capabilities will be used when a data user will need to combine data coming from different sources

that cannot be moved outside the premises of an organization. It will allow the data analyst to make use of

federated queries in order to feed his or her AI algorithms with aggregated information. The newly added

Section 4 describes the HHR relational schema of the datastore, while Section 5 documents the newly

implemented microservices that supports various scenarios and interacts with other components of the

overall iHelp solution. Section 6 has been now extended and demonstrates the installation, deployment

and use of the Big Data Platform, along with the additional microservices and the enhanced Kafka broker.

Section 7 has been updated in order to describe the next steps and the roadmap for implementation for

the final phase. Finally, Section 8 concludes the document.

1.4 Changes from previous version
In this second version of this deliverable, we introduced Section 4 that defines the current HHR relational

model. We also added Section 5 to document the newly designed and implemented microservices that

supports various scenarios and interacts with other components of the overall iHelp solution. Section 6 has

been extended to include the installation, deployment and use of the enhanced Kafka Broker and the new

microservices, while the plan and roadmap for the last phase of the project has been updated accordingly

and included in Section 7.

GA-101017441

D4.10 – Big data platform and knowledge management system II 10

2 The iHelp Big Data Platform
The iHelp Big Data Platform is the central data management system of the overall integrated solution. It is

a relational distributed database with extended and innovative capabilities that has been built upon the

LeanXcale datastore. The following sections will give a wide overview of the background technology and

how the iHelp project will benefit from it.

2.1 Internal Architecture
The Big Data Platform is a scalable distributed SQL database management system with OLTP and OLAP

support and full ACID capabilities. The overall architecture of this database solution is depicted in Figure 1

and can be considered as having three main subsystems: the relational query engine, the transactional

manager, and the storage engine which provides multi-versioning, all three can be deployed in a distributed

manner and can be highly scalable independently (i.e., to hundreds of nodes).

Figure 1: Architectural layer of the datastore

The system applies the principles of Hybrid Transactional and Analytical Processing (HTAP) and addresses

the hard problem of scaling out transactions in mixed operational and analytical workloads over big data,

possibly coming from different data stores (HDFS, SQL, NoSQL, etc.). LeanXcale solves this problem through

its patented technology for scalable transaction processing. The transactional engine provides snapshot

isolation by scaling out its components, the ensemble of which guarantees all ACID properties: local

transaction managers (atomicity), conflict managers (isolation of writes), snapshot servers (isolation of

reads), and transaction loggers (durability).

Let’s first focus on the transactional engine of LeanXcale. This ensures online transactional processing

(OLTP) and enforces database transactions, but being able to scale out efficiently to hundreds of nodes. The

main differentiator that allows this component to scale horizontally is a novel distributed algorithm for

transactional processing. Scaling out database transactions is a problem that has been more than three

decades without being solved. The reason for this is that traditional relational database management

systems often rely on the two-phase commit protocol (2PL) to ensure transactions. This protocol requires

the use of shared and exclusive locks on data items according to the selected granularity. This means that

locks can be put on a data table level, on a leaf node of the index tree or to the data items itself. Read

operations places shared locks on the data items that are trying to access, while data modification

operations places exclusive locks on their corresponding accessed data rows. Using shared and exclusive

GA-101017441

D4.10 – Big data platform and knowledge management system II 11

locks, the transactional engine can ensure the desired level of isolation, the ‘I’ property of the ACID. For

instance, putting shared locks forbids the concurrent modification of the value of a data item that has been

previously accessed by a read operation, and therefore, removes the anomaly of non-repeatable reads. At

the same time, putting exclusive locks, the transactional engine forbids a read operation to access a data

item whose value has been recently modified, but the transaction that modified this value has not yet been

committed. This removes the anomaly of dirty reads.

The adaptation of the two-phase commit paradigm enables the transactional engines of traditional

relational datastores to ensure ACID properties as it guarantees the desired levels of isolation. However,

this comes with two important drawbacks: The implementation requires a specific process or component

to manage the distribution and the acquirement of such locks. This process or component must be

centralized by design and therefore, it is very hard to efficiently scale horizontally the corresponding

transactional managers. Most implementations only allow vertical scalability, which requires very powerful

and thus expensive computer mainframes that also have a specific limitation and not endless computational

power. The latter is required in modern ecosystems where most application components have been moved

to the cloud.

Another drawback of the two-phase commit paradigm is that read locks, being placed by analytical queries,

will block exclusive locks that are being placed by operational workloads and vice versa. In fact, those two

different types of workloads are competitive and the one blocks the other. An analytical query will most

likely involve a full scan operation over a data table, which would have placed shared locks over the whole

dataset, thus blocking all other data modification operations on that table until the analytical query

finished. To make things worse, data modification operations from on-going concurrent transactions would

have already placed exclusive locks over this data table, thus blocking the execution of the analytical query.

As result, OLTP and OLAP workloads are very difficult to be supported at the same time, and modern

integrated data management systems tend to use traditional operational datastores for OLTP processing

and periodically migrate data to analytical data warehouses or data lakes that will provide OLAP support.

The drawback of such solutions is that the data users will perform their analysis over obsolete and outdated

data.

On the other hand, the transactional engine of the LeanXcale database is based on a different approach: it

implements the snapshot isolation paradigm which removes the need for placing shared and exclusive locks

over data items and instead, relies on the use of versioned data items. Using this approach, a concurrent

transaction that includes data modification operators, adds newer versions of data item using

monotonically incremented timestamps. On-going read operations on the other hand will access the last

committed version of data items before the time that the corresponding transactions began. As a result,

read and write operations cannot block each other now, as each one access different versions of data items

and Hybrid Transactional and Analytical Processing (HTAP) can be supported. This is crucial as it enables

analytical query processing over real data, as being concurrently modified in the operational data store and

removes the constraint of migrating data to external data warehouses where the analytical processing

would have been applied over obsolete and outdated data.

A consequence of the fact that the transaction protocol of LeanXcale does not rely on a central component

to manage the shared and exclusive locks is that the lifecycle of the transaction can be split in various

phases, as it can be depicted from Figure 2. When a transaction starts, it receives the current timestamp in

GA-101017441

D4.10 – Big data platform and knowledge management system II 12

order to read the most recent versions of the data items. While committing, it sends a request to the

transaction manager, and the latter stores the updates in its persistent logs, so that updates can be

recovered in case of failures, thus enforcing the durability property of the transactions. When the durability

is being confirmed, the transaction finally finishes, while in parallel, the transaction manager of LeanXcale

increments the value of the timestamps so that the forthcoming transactions can now have the visibility of

the newly modified data items. It is important to be mentioned that each of these phases is being resolved

by different components, which allows to decouple them and instead of having a centralized mechanism

for managing transactions, the distributed approach allows for the components to be scaled out

independently.

Figure 2: Transaction phases

The transactional engine of the LeanXcale database has been designed in such a manner that can be

horizontally scalable. The differentiator of other approaches is that the enforcement of the ACID properties

has been split into independent components that are responsible for them. For instance, the responsibility

to ensure atomicity, the A property, has being moved to the client level, and therefore, it can be scaled out

as much as the client application does. The durability, the D property has been implemented by the

corresponding loggers that can be scale horizontally, while the enforcement of the consistency, the C

property, has been moved to the storage layer and the relational query engine. Finally, the isolation, the I

property, is being implemented by the following components: the snapshot server that is responsible to

distribute the corresponding timestamps to be used by the read operations, the conflict managers that

checks for write-write conflicts by concurrent transactions that contain data modification operations, and

the commit sequencer that is responsible to advance and distribute new timestamps during the commit

phase. Both the snapshot server and the conflict managers are solving problems that can be solved in a

distributed manner, while the commit sequencer is the only component that must be centralized. However,

the amount of work that requires is very low as it only needs to periodically increment a counter, and as

such, it cannot be a bottleneck even in a vast amount of millions of concurrent transactions. As a result, the

whole transactional engine can scale out to hundreds of nodes, while allowing on the same time for hybrid

transactional and analytical processing.

The architecture of the transactional manager of LeanXcale can be depicted in Figure 3. Each instantiation

of the query engine creates its own instance of the local transaction manager, whose role is to ensure the

atomicity and communicates with the transaction manager. It is evident that the local transaction manager

can scale out to as many instances of the query engine are necessary. The transaction manager also contains

the conflict manager whose role is to ensure that there are no write-write conflicts while two concurrent

transactions try to update the same data item. As it keeps only the list of data identifiers that are being

currently accessed, it can be distributed. Both the local transaction and conflict managers make use of

loggers which can be also distributed. The only components that must be centralized, are the ones that are

included in the Mastermind. However, the unit of work that needs to execute is minimum as they hold

information about the configuration of the current deployment, they increment a counter or they

GA-101017441

D4.10 – Big data platform and knowledge management system II 13

periodically distribute the current timestamp. Therefore, the Mastermind cannot be considered as a

bottleneck.

Figure 3: Transaction Manager

The second important architectural component of the LeanXcale database is its internal storage engine,

which is called KiVi. KiVi can be considered as a standalone relational key-value store that provides an

additional set of innovative features. It manages all operations that are related with the storage level, like

persistently store data items to the storage medium, provide data access, and make use of data structures

for indexing that allows for efficient query processing. KiVi is a distributed datastore, and consists of a data

meta-server node and a list of data server nodes. It allows for you to split data tables in various data regions,

move these data regions to other data nodes and finally merge the data regions. The split, move and merge

operations over data regions can be executed in real-time, under heavy operational processing. This allows

the elastic scalability of the storage engine itself. Under heavy workloads, KiVi allows the deployment of

additional data nodes. Once the new nodes are available, a load balancing algorithm solves the resource

allocation problem and decides how to redistribute the data regions across the data nodes, by splitting and

moving these regions if necessary. This can happen in real time, ensuring database transactions as these

actions take place. As a result, this removes the two important obstacles when scaling out a database that

can be found by traditional solutions: NoSQL solutions can scale out in real time, but they lack of database

transactions, while SQL solutions cannot scale online, and they have to suffer from a period of downtime

during the data movement required by the scalability action. On the contrary, the storage engine of

LeanXcale provides the benefits of the two worlds.

GA-101017441

D4.10 – Big data platform and knowledge management system II 14

As it has been already mentioned, KiVi is a relational key-value datastore that provides a rich interface,

which supports all relational algebra operations but the join operation. It allows for the definition of a

schema that supports all SQL data types, and in fact, the values of the data items can have multiple columns.

It allows scan operations, with or without filters, projections, ordering operations over indexed columns

and aggregation operations. This allows to the third important component of the LeanXcale database, its

relational query engine, to interact with the storage engine using its native interface and push down query

operations down to the storage level. As a result, the query processing can be executed more efficiently as

it does not have to access and transmit the whole data items to the level of the query engine. By doing the

filtering on the storage level, pushing down projections and even aggregations, it minimizes the overall size

of the data that need to be transmitted and processed in the upper level. What is more, the distributed

nature of the KiVi also allows parallel processing of queries, intra-operator parallelism, which will be

explained in the following section. As it has been mentioned, data tables can be split to a number of data

regions, and the scan operator can be executed in parallel. Moreover, aggregation operators can be also

supported by KiVi and implemented in a distributed manner: for instance, having the count operator as an

example, each data region calculates its local count and the final result that will be sent to the relational

query engine will be the summary of all local counts. The minimum, maximum and summary operators can

be also implemented in a distributed manner, while the average operator is transformed to the overall

summary divided by the overall count, and both of those can be executed in parallel.

Finally, the LeanXcale database consists of a third component that is the relational query engine that

provides support for analytical processing. The query engine has derived its OLAP query engine from Apache

Calcite1, a Java-based open-source framework for SQL query processing and optimization. LeanXcale’s

distributed query engine (DQE) is designed to process OLAP workloads over the operational data, exploiting

the capabilities of its transactional engine, so that analytical queries are answered over real-time data. This

enables to avoid ETL processes to migrate data from operational databases to data warehouses by

providing both functionalities in a single database manager. The parallel implementation of the query

engine for OLAP queries follows the single-program multiple data (SPMD) approach, where multiple

symmetric workers (threads) on different query instances execute the same query/operator, but each of

them deals with different portions of the data. In the next section a brief overview of the query engine

distributed architecture will be provided.

2.2 OLAP Queries
In this subsection, additional information will be given regarding the background technology that this work

was based upon, the parallel query engine of the LeanXcale’s database that allows for the parallel execution

of analytical queries over real operational data.

Figure 4 illustrates the architecture of LeanXcale’s Distributed Query Engine (DQE). Applications connect to

one of the multiple DQE instances running, which exposes a typical JDBC interface to the applications, with

support for SQL and transactions. The DQE executes the applications’ requests, handling transaction

control, and updating data, if necessary. The data itself are stored on a proprietary relational key-value

store, KiVi, which allows for efficient horizontal partitioning of LeanXcale tables and indexes, based on the

primary key or index key. Each table partition corresponds to a range of the primary/index keys and it is the

unit of distribution. Each table is stored as a KiVi table, where the key corresponds to the primary key of

1 https://calcite.apache.org/

GA-101017441

D4.10 – Big data platform and knowledge management system II 15

the LeanXcale table and all the columns are stored as they are into KiVi columns. Indexes are also stored as

KiVi tables, where the index keys are mapped to the corresponding primary keys. This model enables high

scalability of the storage layer by partitioning tables and indexes across KiVi Data Servers (KVDS). KiVi

implements all relational operators but the join operator, so any relational operator below a join can be

pushed down to KiVi. However, as this is a limitation of the storage engine, join operators can be only

supported by the relational query engine of the Big Data Platform.

Figure 4: DQE Distributed Architecture

This architecture scales by allowing analytical queries to execute in parallel, based on the master-worker

model using intra-query and intra-operator parallelism. For parallel query execution, the initial connection

(which creates the master worker) will start additional connections (workers), all of which will cooperate

on the execution of the queries received by the master.

When a parallel connection is started, the master worker starts by determining the available DQE instances,

and it decides how many workers will be created on each instance. For each additional worker needed, the

master then creates a thread, which initiates a transmission control protocol (TCP) connection to the

worker. Each TCP connection is initialized as a worker, creating a communication endpoint for an overlay

network to be used for intra-query synchronization and data exchange. After the initialization of all workers

the overlay network is connected. After this point, the master is ready to accept queries to process.

The master includes a state-of-the-art [19] query optimizer that transforms a query into a parallel execution

plan. The transformation made by the optimizer involves replacing table scans with parallel table scans, and

adding shuffle operators to make sure that, in stateful operators (such as Group By, or Join), related rows

are handled by the same worker. Parallel table scans will divide the rows from the base tables among all

workers, i.e., each worker will retrieve a disjoint subset of the rows during table scans. This is done by

scheduling the obtained subsets to the different DQE instances. This scheduling is handled by a component

in the master worker, named DQE scheduler. The generated parallel execution plan is broadcast to be

processed by all workers. Each worker then processes the rows obtained from subsets scheduled to its DQE

instance, exchanging rows with other workers as determined by the shuffle operators added to the query

plan.

GA-101017441

D4.10 – Big data platform and knowledge management system II 16

Let us consider the query Q1 below, which we will use as a running example throughout the paper to

illustrate the different query processing modes. The query assumes a TPC-H2 schema.

Q1: SELECT count(*)

 FROM LINEITEM L, ORDERS O

 WHERE L_ORDERKEY = O_ORDERKEY

 AND L_QUANTITY = 5

This query is transformed into a query execution plan, where leaf nodes correspond to tables or index scans.

The master worker then broadcasts to all workers the generated query plan, with the additional shuffle

operators (Figure 5a). Then, the DQE scheduler assigns evenly all database shards across all workers. To

handle the leaf nodes of the query plan, each worker will do table/index scans only at the assigned shards.

Let us assume for simplicity that the DQE launches the same number of workers as KVDS servers, so each

worker connects to exactly one KVDS server and reads the partition of each table that is located in that

KVDS server. Then, workers execute in parallel the same copy of the query plan, exchanging rows across

each other at the shuffle operators (marked with an S box).

To process joins, the query engine may use different strategies. First, to exchange data across workers,

shuffle or broadcast methods can be used. The shuffle method is efficient when both sides of a join are

quite big; however, if one of the sides is relatively small, the optimizer may decide to use the broadcast

approach, so that each worker has a full copy of the small table, which is to be joined with the local partition

of the other table, thus avoiding the shuffling of rows from the large table (Figure 5b). Apart from the data

exchange operators, the DQE supports various join methods (hash, nested loop, etc.), performed locally at

each worker after the data exchange takes place.

Figure 5: Query processing in parallel mode

2 http://www.tpc.org/tpch/

GA-101017441

D4.10 – Big data platform and knowledge management system II 17

2.3 iHelp Integrated Solution
Having described in the previous subsections the fundamentals of the Big Data Platform, this subsection

will give more details of the overall integrated solution for iHelp, which can be depicted in Figure 6.

Figure 6: iHelp Big Data Platform

As we can see, the Big Data Platform consists of various components and provides data connectivity

mechanisms, which allow the integration of the big data platform with different and diverse data providers,

data consumers or other analytical processing frameworks.

The key components of the Big Data Platform are the internal components of the LeanXcale distributed

datastore: its query engine, its storage engine and the transactional management. These components are

illustrated in Figure 6 as well. The distributed storage engine is depicted by the various data node

components of Figure 6 while the distributed query engine is depicted by the various query engine nodes

in the figure. A typical installation of the datastore will require one query engine to be responsible for

accessing a pair of data nodes, all deployed in the same physical or virtual machine. Moreover, the

transactional engine of LeanXcale can be considered as a vertical component that is accessible by both the

query engine and the storage element. It is deployed on separate machines and if needed, its internal

components can also scale out independently, as it has been described in detail in a previous subsection.

The Big Data Platform exposes various means for data connectivity; with the most important ones will be

the connection to the query engine itself and the direct connection to its internal storage. Regarding the

connection to the relational distributed query engine, the Big Data Platform provides support for the

following:

GA-101017441

D4.10 – Big data platform and knowledge management system II 18

▪ JDBC: This is the standard implementation of the Java’s JDBC interface, as defined by the Java JSR

2213 , which allows for java applications to establish data base connections with a relational

database. It is provided as a java library packaged in a jar file.

▪ ODBC: This is the open database connectivity standard that allows each application to connect to

a relational database. It is provided as a Ruby Gem package, while there is also the provision for

Microsoft Windows installation using an exe program.

▪ Python driver: This is a driver to be used by application developers or data analysts that make use

of python source code, with the use of SQLAlchemy4.

It is important to be mentioned that all these three means are connected to the distributed query engine

of the big data platform. The query engine itself is responsible for communicating with the transactional

manager of the datastore in order to ensure the data base transactions and the corresponding ACID

properties. This means that when a database transaction opens in the client level, it is always opened in

the scope of an existing connection. Therefore, by opening a database transaction in the client level, this is

being communicated via this open connection to the specific instance of the query engine, which will

request a new snapshot timestamp by the transactional manager. Upon commit, the client (the driver)

sends the commit request to the query engine, via the open connection, and the query engine forwards the

request to the transactional manager. The latter decides if and when it is possible for the transaction to be

safely and durably committed, and if this is the case, it informs the query engine. If the transaction fails to

commit, then the query engine will receive an exception from the transactional manager, which will be

further propagated to the driver as a SQLException, which will cause the client program to fail. The latter

now needs so wisely handle these exceptions and perform accordingly.

Apart from these three means of data connectivity, a client program or a data analyst can also connect

directly to the storage engine, using its direct API. The storage engine can be seen as a key value store, with

extended capabilities. It provides the majority of the operations defined in the relational algebra. Apart

from the support for selections (get or scan) and insertions (insert, update, delete or upsert), there is also

the support from more complicated operations like filters, orderings, projections, while there is also the

support for aggregations (min, max, sum, count, avg) under group by clauses. Only the join operation cannot

be executed by the direct api, as this is an operation that requires the combination of two different relations

(tables), and therefore, this can be executed only by the relational query engine of the big data platform.

The benefit for using the direct API of the platform instead of the query engine itself, is that the execution

completely bypasses the latter, and thus, it can be done much more efficiently. It completely avoids the

footprint of the query engine, while the connection targets the storage engine directly. This increases the

throughput of ingestion data workload that can be supported, allowing the big data platform to support

data ingestion in very high rates. The direct API also communicates with the transactional manager of the

big data platform when the user requests to start or commit/rollback a transaction, thus also ensuring

database transactions and ACID properties. In fact, the transactional manager ensures database

transactions even if two concurrent transactions occur from different means: one from the relational query

engine and the other from the direct API. This means that big data platform allows from one part to connect

to a high rate data ingestion pipeline, and on the other hand, for data analysts to execute sophisticated

3 https://jcp.org/en/jsr/detail?id=221
4 https://www.sqlalchemy.org/

GA-101017441

D4.10 – Big data platform and knowledge management system II 19

queries and do analytics using the relational query engine at the same time. The snapshot isolation and the

provision for Hybrid Transactional and Analytical Processing (HTAP) of the datastore allows the analytics to

be executed in the real data, without the need to migrate the data that is being ingested to a different

analytical database management system.

The drawback of using the direct API is that it cannot support all the operations of the relational algebra,

with most important the join operation, and therefore this must be implemented in the client application

level. Moreover, it does not implement a well-known standard, and therefore, it cannot be used by other

popular frameworks.

For popular frameworks to take advantage of the benefits of the direct API of the big data platforms, specific

connectors must be implemented for each of those. The big data platform implements connectors for the

following frameworks, which allows the use of the platform from a wide variety of different applications:

▪ Spark connector: This is the connector to the Apache Spark5, which is the world’s dominant parallel

analytical processing framework. The majority of AI algorithms are fed with analytics that make

use of this framework to do the data retrieval and pre-processing. Using the spark connector, the

Apache Spark can now push all its operations down to the storage engine, so it can retrieve the

minimum amount of data items that it needs.

▪ Kafka connector: This is the connector to the Apache Kafka6, which is the world’s dominant event

streaming platform. It allows data being pushed to a Kafka topic to be transparently stored into the

big data platform in a predefined data table, using this connector. Apache Kafka is an important

platform element of the overall iHelp integrated solution. In fact, the data ingestion pipelines

defined under the scope of the T3.2 – “Primary Data Capture and Ingestion” makes use of Kafka

topics to move data from one function to the following in the pipeline, and at the end, to store

them into datastore. Moreover, Apache Kafka is being used by the DRyICE serverless platform that

is the fundamental pillar of the iHelp integrated solution, provided by the T4.2 – “Model Library:

Implementation and Recalibration of Adaptive Models”. The serverless platform is responsible to

provide the execution environment of the data analytics and models defined under T4.1 –

“Personalized Health Modelling and Predictions” and T5.1 – “Techniques for Early Risk

Identification, Predictions and Assessment” and it makes use of Kafka topics to push data down to

the datastore.

▪ Flink connector: This is the connector to the Apache Flink7, which is the world’s dominant streaming

processing framework. It allows for data connections using standard JDBC in order to combine

streaming data with data at-rest, stored in a persistent medium like a database. Moreover, it also

provides its own interface to query data at-rest, and therefore, the Flink connector is the bridge

between the streaming processing framework and the distributed database of the big data

platform. This could be used in possible scenarios that would require streaming processing and rely

on the Apache Flink. Possible scenarios could be defined in T5.3 – “Delivery Mechanisms for

Personalised Healthcare and Real-time Feedback”, however, at this point, it has not been foreseen.

5 https://spark.apache.org/
6 https://kafka.apache.org/
7 https://flink.apache.org/

GA-101017441

D4.10 – Big data platform and knowledge management system II 20

▪ OData: This is an implementation of the Open Data Protocol8, which is an OASIS standard. It allows

data providers or consumers to connect to a database using a REST interface. This will allow data

connectivity with other types of applications that would require a direct access to the database,

like the visualization components of the query builders implemented under the scope of T4.3 –

“Clinical DSS Suite with Visual Analytic Tools”.

Apart from the aforementioned methods for data connectivity, the Big Data Platform includes a parallel

polyglot query engine that allows the query processing and combination of data that are stored externally

to the iHelp platform. This for instance would allow the query processing and combination of data stored

internally to the platform, as HHR records, and data that are stored in an external data lake. The benefit of

having this is that the data analyst can push down queries directly to the Big Data Platform and let the latter

execute them, instead of using an analytical framework like Apache Spark for that. Moreover, this will allow

the data exchange between different installations of the iHelp platform, as it will be explained in the

following section.

8 https://www.odata.org/

GA-101017441

D4.10 – Big data platform and knowledge management system II 21

3 Polyglot Query Processing
One of the key requirements for the integrated iHelp solution is to be portable and to be deployed in various

premises. At the very beginning of the project, a centralized environment was envisioned by the technical

partners of the consortium. This centralized environment would have stored all the data coming from the

various use cases: from the hospitals in Spain and Italy, the research institutions of UK and Sweden, and the

individual secondary data coming from the individual persons. These different datasets would have been

categorized per use case, so each AI algorithm could target the specific dataset that the data analyst is

interested in. The AI algorithms on the other hand would have been extendable and applicable to the

different datasets, which in fact would have been compliant to the common data model of the iHelp

integrated solution, the HHR.

This approach however was violated when the first discussions with the pilot use cases started in order to

collect the user requirements under the scope of T2.1 – “Requirements, State of the Art Analysis and User

Scenarios in iHELP” and to define the data management plan under the scope of T1.4 – “Data and Ethic

Management”. It was understood by the consortium that the data that will have to be stored and processed

by the iHelp platform and tools are related with clinicians and therefore, there are very sensitive. This makes

very difficult the deployment and maintenance of a centralized environment where all data could be

accessible by all tools that could be used by any data analyst. Moreover, specific pilots have put restrictions

on the movement of the data: data cannot be moved outside of the country, or the organization itself. This

means that the iHelp platform, along with its Big Data Platform, which is an integral part of the overall

integrated solution, must be deployed on premise, inside the organization, that will be responsible to

provide the corresponding infrastructure and resources.

When it comes to the tools or the building blocks of the solution, this can be facilitated with the use of

virtualization technologies: the platform components and AI tools can be containerized and the overall

integrated solution can be deployed and instantiated using virtualization deployment orchestrators like

Kubernetes or docker compose. However, the deployments cannot move data outside, and therefore,

restricts the applicability of the tools: even if an AI solution is generic and can be applicable both to a dataset

coming from UK or Spain, it cannot combine both datasets in order to get better insights. An example could

be the evolution of the pancreatic cancer on a population living in the northern parts of Europe (i.e., UK or

Sweden) compared to population living in the southern part of Europe (i.e., Spain or Italy). In such scenario,

the AI algorithm would need to access datasets coming from different sources. However, as there is no

centralized environment, and data cannot be moved from one place to another, this cannot be feasible.

The solution to this problem is given by the Big Data Platform and more precisely, by its polyglot query

processing engine. The Big Data Platform can be able to access data that are stored in other instances of

the platform. This will enable a peer deployment of the iHelp integrated solution, that each deployment

could access the other, as Figure 7 illustrates.

GA-101017441

D4.10 – Big data platform and knowledge management system II 22

Figure 7: iHelp peered deployments

It is important to highlight at this point that in the envisioned scenarios, when data can be accessed by

other deployments, the data itself will not be moved outside of the organization, and the organization itself,

as the data provider, can define the type of access is allowed to its data. To access data, as mentioned, we

will rely on the polyglot query engine of the Big Data Platform. As a result, taking into account what is

depicted in Figure 7, then Figure 6 can be extended as follows:

Figure 8: Polyglot Access on Peer Deployments

As depicted now in Figure 8, we can have different instances of the Big Data Platform, each one deployed

inside the premises of the organization as part of the corresponding peer. However, each big data platform

can communicate with each other execute remotely query statements. This makes use of the polyglot query

engine of the LeanXcale internal database. More technical details of the polyglot query engine can be found

in (P., P., K., +21). To summarize, each query engine takes a string as the query input and returns back data.

The input string is being parsed by the query compiler that transforms the input string into a data structure

that can be programmatically used by the query engine itself. The data structure is most often a data tree,

where each node of the tree is a query operator and each leaf of the tree corresponds to a scan operation.

The latter is the one responsible for the actual data access, which commonly requires an I/O operation to

the disk or the corresponding persistent storage medium.

The query operators in the Big Data Platform can be any of the relational algebraic operations and their

corresponding implementations by the platform’s query engine itself. What happens in practice is that after

GA-101017441

D4.10 – Big data platform and knowledge management system II 23

the compiler produces the query tree of operations, this is pushed to the query optimizer, which is

responsible for exploring the space of equivalent query execution plans in order to find a more efficient

plan. Internally, it uses a dynamic programic type of algorithm while investigating the space, while the space

has been generated by applying a set of query transformation rules. This process is out of the scope of this

report, however, the important outcome is that the query operations can be re-ordered and placed in any

level of the query execution plan. As a result, an important requirement for the query engine is that these

operators must be generic, and in fact, they need to implement a common interface. In most relational

query engines, and in fact, in the LeanXcale datastore, this interface extends an iterator, which will have to

return an array of objects. The array of objects can be seen as the data row of a dataset, and the iterator

iterates through dataset that needs to be returned by each operator. This leads to the volcano iterator

model where data is being pulled from the leaf of the data tree to the upper layers of the tree and finally,

to the data user.

In the polyglot query engine, data needs to be accessed by both the internal I/O of the storage engine of

the Big Data Platform, and the external data source. Due to the volcano iterator model, it is irrelevant from

where the data will be retrieved from. For the query engine perspective, everything is an operator. As a

result, the polyglot query engine needs to implement specific operators for accessing data from the

corresponding type of data source. This means that in the scope of the iHelp integrated solution, an

operator needs to be implemented that can submit statements from other instances of the Big Data

Platform. As it accesses data, this operator will always be in the leaf of the query execution tree. However,

it can be able to accept a query statement that will be pushed down to the external datastore.

As it has been described in the previous section, the Big Data Platform provides JDBC connections.

Therefore, the operator that will enable the de-centralized access will open JDBC connections and submit

relational SQL statements. The result of a query execution in JDBC is a ResultSet, which in fact, extends the

Iterator. So, it perfectly fits to our design.

At this point, we need to highlight the fact that the important requirement from the pilot use cases is that

data must not be moved outside of the organization. With our approach, data indeed remain stored at

where each instance of the big data platform is deployed. External instances only access data of other peers,

but they never move this data. However, there is a tricky point that needs to be further clarified. Let’s

assume that the data user is allowed to execute the following statement:

Q2: SELECT *

 FROM Patients

This will open a remote JDBC connection to the target datastore, will execute this statement and will

retrieve the results by iterating over the returned dataset. This implies that all data stored in the Patients

data table, can be available to the instance of the query engine of the data user that submitted this

statement. In correspondence, all data of this data table can be available now to the data user. And this

implies that one person is capable of executing such a statement, access the data that are stored externally,

retrieve everything and finally store this information elsewhere. At the end, even if the Big Data Platform

only accesses but never moves data, the data in fact can be moved by exploiting the capabilities and

functionalities of the Big Data Platform. This means that these types of queries must be forbidden.

GA-101017441

D4.10 – Big data platform and knowledge management system II 24

To solve this issue, we go back to the basics of the relational database management systems. We need to

recall that the Big Data Platform is a relational database itself, and therefore, it provides the support of

relational views. A view is a virtual data table whose rows, at one point in time, are the result of the

execution of a predefined query statement at that time. This allows the data owner to define such views

and only allow remote data access via these views. As each view is the result of the execution of a predefine

query statement, these statements could only expose aggregated information of the data, and not the raw

data themselves. In fact, the Big Data Platform will request data from external deployments via only these

views, which resembles the pushing of a query statement down to the target data source. Each Big Data

Platform can create specific users that can access these data and prohibit the access to all other data tables.

Each user is authenticated via a token that is provided to the datastore through the corresponding

connection URL, each time the client application or data analyst tries to open a connection. Then, the Big

Data Platform checks if the user is authorized to access the data sources, which in our case will be the views,

and if yes, it will execute the corresponding query and return the aggregated information that will be further

processed by the query engine of the client.

At this phase of the project, the polyglot query engine and the remote data access has been currently

designed, but the implementation has not started yet, as it is not the main focus of for the first prototype

of the overall solution. The third version of this report will provide more details about the implementation

of the aforementioned operation. At this phase, the target is only on the implementation of the operation.

We will assume that the data user or analyst knows beforehand where to connect. In a more sophisticated

scenario, we might need to introduce an additional centralized service, which will act as a broker. The latter

will publish to each of the deployments the available instances so that they can connect automatically.

However, this mechanism will be defined and designed at a later phase, if needed.

GA-101017441

D4.10 – Big data platform and knowledge management system II 25

4 HHR relational schema
One of the outcomes of WP3 – “Personalised Holistic Health Records” and more precisely of T3.1 – “Data

Modelling and Integrated Health Records” is the definition of the Holistic Health Record (HHR). This has

been documented in D3.1 – “Data Modelling and Integrated Health Records I” and it is currently under

further development.

The D3.1 – “Data Modelling and Integrated Health Records I” defines the entity-relational (E-R) model of

the HHRs. For all of the available datasets coming from the different pilot use cases, an extensive analysis

has been performed in order to map the raw datasets to HHR entities. This is still work in progress for all

datasets, however, an initial version of this model has been defined based at this phase of the project and

it has been validated based on the dataset coming from the “Study of Lifestyle Choices on Elevating the Risk

Factors for Pancreatic Cancer” scenario of the Hospital de Dénia-MarinaSalud.

According to this scenario, there have been identified 7 distinctive entities: i) patient, ii) encounter, iii)

procedure, iv) medication and medication statements, v) observation, vi) measurements and vii) conditions.

These entities are dependent to others with the E-R model to define several one-to-many relationships.

One of the responsibilities of this T4.4 – “Big Data Platform and Knowledge Management System” is to

define the equivalent relational schema for the HHR. As a result, T4.4 – “Big Data Platform and Knowledge

Management System” was waiting for input coming from T3.1 – “Data Modelling and Integrated Health

Records” that defines the E-R model of the HHR, and provides output to T3.2 – “Primary data capture and

ingestion”, in order for the later task to develop the HHR Importer. This component is responsible for

receiving HHR resources from the data ingestion pipelines, and needs to store them to Big Data Platform.

As the datastore is a relational database, the HHR Importer, as also described in D3.4 – “Primary data

capture and ingestion II”, needs to transform these HHR resources to data beans or POJOs, that are mapped

to the data tables of the relational schema. As a result, T3.2 – “Primary data capture and ingestion” was

waiting for the definition of the relational schema to be able to proceed with its implementation.

The process for transforming an E-R model to a relational schema is the following: for each of the entities

in the E-R model, we need to create a new data table. Then, for each one-to-many relations in the E-R

model, we need to define a foreign key relationship, from the child table (the many in the relation) to the

parent table (the one in the relation). Then, for all many-to-many relations, we need to create a new data

table, and to create two foreign key relationships to the two tables involved in the many-to-many relation

of the E-R model. According to the definition of the HHR and its validation and after its validation with the

“Study of Lifestyle Choices on Elevating the Risk Factors for Pancreatic Cancer” scenario of the Hospital de

Dénia-MarinaSalud, the relational schema for the HHR which is equivalent to the E-R model defined under

T3.1 – “Data Modelling and Integrated Health Records” is depicted in the following Figure 9:

GA-101017441

D4.10 – Big data platform and knowledge management system II 26

Figure 9: HHR relational schema

In the above figure we can see seven data tables that correspond to the seven entities that we observed in

the E-R model of the HHR. Following the procedure previously described, we created all foreign key

relationships for the one-to-many relations found in the E-R model. At this phase of the project, no many-

to-many relation has been identified, and therefore, there was no need to define additional data tables

that can break these relations.

In the next phase of the project, as new datasets will be eventually incorporated into the overall HHR model,

the latter is expected to be further extended adding new entities or extending the attributes of the existing

ones. Therefore, in the last version of this deliverable, we will include all the final description of the

relational schema of the HHR, as the work that is currently being developed under T3.1 would have been

finished by then.

GA-101017441

D4.10 – Big data platform and knowledge management system II 27

5 Additional functionalities
The main outcome of the work that has been carried out under the scope of the T4.4 – “Big Data Platform

and Knowledge Management System” is the delivery of the first version of the Big Data Platform of the

overall integrated iHelp solution. Its core functionalities and innovations have been described under section

2, while section 3 describes its polyglot capabilities and these can be brought and provide added value to

the overall solution. Moreover, as the big data platform is a relational database where the raw data

transformed to HHR need to be stored, we put some additional effort to define this relational schema of

the HHR that will be provided with the installation and deployment of the Big Data Platform.

Apart from the work that has been performed to implement these activities, there has been the need to

implement additional functionalities in order to support other use cases and scenarios. These use cases and

scenarios require the implementation of a set of functionalities to be provided by the iHelp platform. Thus,

at most of the cases, these components require the interaction with the Big Data Platform in a non-

standardized manner, or at least, in a way that is not supported by the datastore. For instance, an

intermediate functionality might be needed between the big data platform and the core component of a

scenario, or, as in the case of the DSS Suite, the component cannot interact via standard database

connectivity mechanisms and requires the provision of a set of REST APIs. As a result, some additional

activities are required by the T4.4 – “Big Data Platform and Knowledge Management System” which are not

direct related with the big data platform, however, they are supportive activities for the latter to be

integrated with other components into the overall iHelp solution.

For each functionality required, a new microservice has or will be designed and implemented, as a java

process to be deployed using the Kubernetes container orchestrator platform. As a microservice, each of

these components will expose a set of REST APIs, or a later phase an additional set of websockets, to allow

the communication among the various subcomponents of the platform.

At this phase of the project, we have developed a microservice needed for the DSS Suite, to integrate its

SQL Node Pallet with the big data platform, and additionally, use the same API to retrieve information

regarding the patients. We have also design the user enrolment scenario, along with its extensions in the

relational schema and the definition of the interfaces required by the microservice that is supposed to be

implemented under the scope of this task in the forthcoming period. For the last version of this deliverable,

all other functionalities and microservices will be included in this section.

5.1 iHelp-Store-Rest
The first microservice developed under this task is the one that is currently known as ihelp-store-ret. This is

consumed by the DSS Suite and its SQL Node Pallet to allow the end-users to define from a graphical

interface relational algebraic operations, and combine them to produce a query execution tree that will be

translated to a complicated SQL statement. The latter will be sent to the database and it will return back

the results. As such, we named this microservice as ihelp-store-rest due to the fact that it exposes a REST

API to access the raw data stored into the big data platform, allowing the end users to explore them.

This microservice defines two different REST resources, each one of those defines a set of different web

methods. The first REST resource is used by the SQL Node Pallet to retrieve meta-information regarding the

relational schema definition provided by the big data platform. This is used to illustrate to the end user the

GA-101017441

D4.10 – Big data platform and knowledge management system II 28

name of the existing data tables, their columns etc. That way the end-user can use the Pallet to start

designing his or her relational algebraic operations.

The second REST resource is responsible for the query processing of the incoming SQL statement. It returns

back a list of the values related with the result of this execution.

Their interfaces are defined in the following subsection.

5.1.1 Interface

5.1.1.1 MetaInfoResource

1. GET /metainfo: Returns a list of table names

Example of response:

[

 "tableA", "tableB", "tableC"

]

2. GET /metainfo /{table}/columns: Returns a list of columns along with their types

Example of response:

[

 {

 "name": "string",

 "type": "string"

 }

]

3. GET /metainfo/{table}/indexes: Returns a list of indexes along with their types

Example of response:

[

 {

 "name": "string",

 "unique": true,

 "fields": [

 {

 "name": "string",

 "type": "string"

 }

]

 }

]

4. GET /metainfo/{table}/primaryke: Returns a list of fiels along with their types that consists the

table's primary key

Example of response:

[

 {

 "name": "string",

GA-101017441

D4.10 – Big data platform and knowledge management system II 29

 "type": "string"

 }

]

5.1.1.2 Process

1. GET: /process?query={query}: Returns a list of data rows according to the input query

Example of response:

[

 {

 "row": [

 {

 "name": "string"

 }

]

 }

]

2. POST: /process: Returns the data row with its id. It is used to additionally store data items, but it

has been deprecated at the current version of this microservice

Example of response:

{

 "ihelpID": 0,

 "gender": "string",

 "date": "string",

 "pilotID": "string",

 "healthentiaID": "string"

}

5.2 User Enrolment
This microservice is needed for the DSS Suite to implement the dashboards to allow the clinicians to enrol

patients into the system. We have distinguished raw data into two major categories: primary and secondary

data. Primary data are usually provided by the hospitals and include clinical information of a patient.

Secondary data are usually provided by external applications, like the Healthentia, which collects

behavioural information from individuals, like habits, food consumption etc.

During the data ingestion pipelines, there is no distinction if the incoming data are primary or secondary,

as the process is the same. Eventually, raw data are transformed to HHR resources which will be persistently

stored to the big data platform, following the HHR relational schema that was described in a previous

section. According to the definition of the relational schema, there is the data table called Patient, where

the information related with the individuals (being patient or not) will be stored. The primary keys of this

table are the patient ID, as produced by the external provider of the dataset, and the name of this provider.

This is due to the fact that data coming from different providers might have the same identifier, as its

uniqueness is ensured by the provider. However, if we put data from different providers into the same data

table, this might create a conflict on the uniqueness of the key. That is why we used a multi-column primary

key in that table, which is composed by the identifier and the name of the provider.

GA-101017441

D4.10 – Big data platform and knowledge management system II 30

Let’s consider now the Interventional Monocentric Study based on Patient Reported Outcomes scenario of

the Agostino Gemelli University Policlinic in Italy. Primary data exported by the hospital are being ingested

into the Big Data Platform. At the same time, the patients are also using the Healthentia application to

participate to its studies, so daily, secondary data produced by the individuals are also being stored. Both

data are stored into the patient data table, with a different provider name and their associated identifier.

However, with this design of the schema, it is impossible to correlate a patient’s primary data with his or

her secondary, unless this information is somehow provided.

We define the user enrolment use case, that allows clinicians to enrol patients to the iHelp platform, thus

being assigned a unique identifier of the platform that will correlate all data coming from the different

sources.

5.2.1 Design
In order to support such scenario, we need firstly to extend our relational schema to be able to hold this

type of information. As it is depicted from our relational schema, data concerning an individual will be

entered as much times as the individual is included in the ingested datasets. That is, for our Interventional

Monocentric Study based on Patient Reported Outcomes scenario, it will appear twice. This is valid, as the

individual might have different information coming from the primary data ingestion and other information

coming from the secondary data ingestion. In any case, there are two distinct identifiers that are related to

the two different data source providers.

In order to correlate these data records that relevant to the same individual, we will include an additional

table for this purpose. The ihelpidentitu data table will have a foreign key relationship to patient, as the

following Figure 10 depicts.

Figure 10: iHelp Identifier

With this design, we allow the data ingestion pipelines defined under the scope of T3.2 – “Primary data

capture and ingestion” to remain the same. In fact, as data is being ingested, it will be added in the patient

table as previously. However, the clinician now has the ability to correlate this information that might be

ingested from different sources. For this, a new microservice has been designed with the interfaces that

are documented in the following subsection.

5.2.2 Interface
The definition of the interface of this microservice is currently in progress, at the time that this report was

written. We include here its initial version, however, it is expected that it might be modified. The final

version of the interface will be documented at the third version of this deliverable.

1. POST: /userenrolment: It creates a new iHelp identifier for the specific patient

GA-101017441

D4.10 – Big data platform and knowledge management system II 31

Example of response:

{

 "ihelpID": 0,

 "patientID": "string",

 "provider": "string"

}

2. PUT: /userenrolment: It adds a new patient record to be assigned with the given iHelpID

3. GET: /userenrolment?id={id} It returns the list of all patient records related with this iHelpID

Example of response:

[

 {

 "patientID": 0,

 “provider” : “string”

 "gender": "string",

 "active": true,

 "birthdate": "string",

 }

]

4. GET: /userenrolment?id={id}&provider={provider} It returns the patient record from the given

provider having the given iHelpID

Example of response:

{

 "patientID": 0,

 “provider” : “string”

 "gender": "string",

 "active": true,

 "birthdate": "string",

}

GA-101017441

D4.10 – Big data platform and knowledge management system II 32

6 Deployment and use
In this section we will discuss the deployment and run-time phase of the Big Data Platform and its additional

microservices that have been developed under the scope of this task, along with some examples for its use.

We will give examples on how to install and deploy in a local machine for testing purposes and how we can

use a container orchestration platform like Kubernetes to facilitate the deployment of the Big Data Platform

to different infrastructures. Finally, example of its use will be given at the end of this section.

6.1 Big Data Platform
In this subsection, we will give information about the core component provided by this task: the big data

platform. This section remains the same as of the first version of this document.

6.1.1 Local installation using docker
Firstly, the released distribution for the iHelp project has been uploaded to the project’s private Gitlab9.

Each member of the consortium should have access to this code repository and can issue the following

command, adding his or her username and password in order to download the Big Data Platform locally:

git clone https://gitlab.ihelp-project.eu/pkranas/ihelp-store.git

This GitLab project contains all binaries, scripts and additional configuration files, along with a Dockerfile,

which allows the data administrator to build a docker image locally that can be later used to deploy and

install the Big Data Platform in a containerized environment. In order to build the image locally, having

already cloned the GitLab project, the data administrator needs to execute the following command:

docker build –t ihelp-store .

This will take some time as the Dockerfile is using the base Ubuntu 20.04 image and needs to pre-installed

firstly various packages that are necessary for the Big Data Platform to run. At the end of the process, the

docker image is built and available locally at the machine where this command was issued. In order to

deploy and run the Big Data Platform, the data administrator needs to issue the following command:

docker run -d -p 2181:2181 -p 1529:1529 --name datastore --env KVPEXTERNALIP='datastore!9800' ihelp-
store

This command creates a container that will start in the background, giving the name datastore while it

exposes the ports 2181 and 1529. This is necessary, as these are the ports that are being targeted by the

data connections, when the data user or application developer needs to connect to the query engine of the

datastore in order to submit and execute SQL statements. The data administrator can also connect to the

container from a command line tool, by executing the following:

docker exec –it datastore bash

This command will open an interactive secure shell that will remain opened and will execute the bash script.

The latter will allow him or her to issue any command is provided by the Ubuntu Linux distribution on the

9 https://gitlab.ihelp-project.eu/pkranas/ihelp-store

GA-101017441

D4.10 – Big data platform and knowledge management system II 33

container, thus, he or she can navigate and monitor the status or the various logs of the installation of the

Big Data Platform.

6.1.2 Remote installation using Kubernetes
As we have previously mentioned, at the very beginning of the project, the technical partners of the

consortium had foreseen the need for a centralized deployment of the integrated iHelp solution in a

common infrastructure. This means that there would have been the need for only one instance of the Big

Data Platform to be deployed that would store all datasets coming from the different pilot use cases of the

project, at the place where the infrastructure is available. A centralized deployment can be achieved by

installing all different building blocks of the integrated iHelp solution one by one. As a result, the process

described in the previous subsection with the use of a docker container would have been sufficient.

However, the fact that the data are related with clinical information of patient, which characterizes them

as very sensitive, along with the EU and each country’s regulations prohibit the movement of these data

outside the country or even the organization that owns these data. As a result, the integrated iHelp solution

needs to be deployed in different premises, following a peer approach. This increases the level of difficulty

for deploying all building blocks and makes more complex its overall maintenance. It is now required by

each technology provider to manually install and deploy his or her components to each pilot organization,

apart from only having the centralized environment. To make things worse, it would be required for the

technology providers to be granted access inside the network and infrastructure of each of these pilot

organizations, which is not always feasible and usually requires a heavy bureaucracy procedure to be

followed.

In order to tackle this problem, we have decided to force the use of a container orchestration tool to handle

the deployment. All components that consist of the iHelp platform need to be containerized and be

available as docker images. Then, Kubernetes, as the container orchestration tool, will be responsible to

deploy all necessary components one by one and establish network connectivity among them. Having done

this, each system administrator inside the organization can now follow a typical procedure and deploy

everything on his or her own. In this subsection, we will give details on the steps that need to be followed

in order to install and deploy the Big Data Platform using Kubernetes.

Firstly, as the Big Data Platform is a stateful component that needs to store data to a persistent storage

medium, we will need to define a persistent volume claim that will be later mounted to the running

container of the datastore. The following code snippet requests from the infrastructure 100GB of storage

space to be available, so that it can be later mounted. We give the name of datastore-datasets-pvc to this

persistent volume claim that will be later used by the datastore.

apiVersion: v1

kind: PersistentVolumeClaim

metadata:

 name: datastore-datasets-pvc

spec:

 accessModes:

 - ReadWriteOnce

 storageClassName: ebs-sc

 resources:

 requests:

 storage: 100Gi

GA-101017441

D4.10 – Big data platform and knowledge management system II 34

Secondly, in order for the Big Data Platform to be reachable by other components inside the network that

will be established by the Kubernetes, we will also need to define a service that will be responsible for this.

This service will expose the various ports that need to be accessible by other components. We can do this

as follows:

apiVersion: v1

kind: Service

metadata:

 name: ihelp-store-service

 labels:

 app: ihelp-store

spec:

 ports:

 - name: "2181"

 port: 2181

 targetPort: 2181

 - name: "1529"

 port: 1529

 targetPort: 1529

 - name: "9876"

 port: 9876

 targetPort: 9876

 - name: "9992"

 port: 9992

 targetPort: 9992

 - name: "14400"

 port: 14400

 targetPort: 14400

 - name: "9800"

 port: 9800

 targetPort: 9800

 selector:

 app: ihelp-store

Here, we defined the ihelp-store-service kind that lists a number of ports that need to be opened and

exposed, namely the 2181, 1529 that we saw previously, along with 9876, 9992, 14400 and 9800 that are

needed in cases where the direct API of the datastore will be used instead of the standard JDBC. This is the

cases for instance where an analytical tool will make use of the Apache Spark analytical processing

framework, which in fact will make use of the direct Spark Connector, as we described in a previous section.

An important thing to highlight at this code snippet is the definition of the selector application that will

make use of this service, named ihelp-store. This will be the name of the actual deployment of the Big Data

Platform that will see right next.

Having now the basic elements defined, our persistent volume claim and service, we now need to define

the Big Data Platform deployment. The latter, as a stateful component, will make use of a Stateful Set. The

reason for this is that it consists of various internal components that need to maintain some attributes like

IP address etc, in cases of restarts. The following code snippet illustrates the definition of such a stateful

set that can be used as a guideline for the deployments:

apiVersion: v1

kind: StatefulSet

metadata:

 name: ihelp-store

 labels:

GA-101017441

D4.10 – Big data platform and knowledge management system II 35

 app: ihelp-store

spec:

 serviceName: ihelp-store-service

 replicas: 1

 selector:

 matchLabels:

 app: ihelp-store

 updateStrategy:

 type: RollingUpdate

 podManagementPolicy: OrderedReady

 template:

 metadata:

 labels:

 app: ihelp-store

 spec:

 initContainers:

 - name: ihelp-store-home-fix

 image: busybox:1.30.1

 command: ["/bin/sh", "-c", "chown -R 999:999 /datasets"]

 volumeMounts:

 - name: datastore-datasets-storage

 mountPath: /lx/LX-DATA

 containers:

 - image: {name of the docker registry}/ihelp-store:latest

 name: infinistore

 ports:

 - containerPort: 2181

 - containerPort: 1529

 - containerPort: 9876

 - containerPort: 9992

 - containerPort: 14400

 - containerPort: 9800

 volumeMounts:

 - name: datastore-datasets-storage

 mountPath: /lx/LX-DATA

 startupProbe:

 exec:

 command:

 - /bin/sh

 - -c

 - python3 /lx/LX-BIN/scripts/lxManageNode.py check QE

 timeoutSeconds: 5

 failureThreshold: 30

 periodSeconds: 10

 resources:

 limits:

 cpu: 4000m

 memory: 8Gi

 requests:

 cpu: 2000m

 memory: 4Gi

 env:

 - name: USEIP

 value: "yes"

 - name: KVPEXTERNALIP

 value: "ihelp-store-service!9800"

 restartPolicy: Always

 imagePullSecrets:

 - name: registrysecret

 volumes:

 - name: datastore-datasets-storage

GA-101017441

D4.10 – Big data platform and knowledge management system II 36

 persistentVolumeClaim:

 claimName: datastore-datasets-pvc

Here there are various things that need some special attention. Firstly, we gave the name ihelp-store to our

stateful set, which must be the same as the selector application name in the definition of our service. Also,

in our stateful set we reference this service giving its name, ihelp-store-service. Secondly, we did make use

of the datastore-datasets-pcv, which we defined earlier, and we mounted this to the /lx/LX-DATA folder of

the created container. The incoming data and all meta-information that needs to be persistently stored will

be found. We give the resource requirements for our deployments, which in this example will require at

minimum 2 virtual CPUs and 4GB of memory. These values can be further increased in case we need a

deployment with more powerful resources, in cases we need distributed deployments that must be able to

handle a significant volume of data. Last but not least, we need to provide the URL of the docker image that

Kubernetes will make use in order to grab the docker image that we built earlier and create the

corresponding container. We left this value generic in our example on purpose, as a centralized private

docker registry has not been yet deployed for the needs of the project, when this document was firstly

written.

Having these three elements applied using Kubernetes tools, we can now have a running deployment of

the Big Data Platform of iHelp inside the organization’s premises. The Big Data Platform however can only

be accessed from within the internal network established by Kubernetes, and not from other tools or

application deployed on premise, but outside the internal Kubernetes network. In case the data

administrator wants to allow this, we would also need to define a nodeport that will expose a list of our

desired ports outside the internal network. The following code snippet illustrates how to do this:

apiVersion: v1

kind: Service

metadata:

 name: ihelp-store-np

spec:

 type: NodePort

 selector:

 app: ihelp-store

 ports:

 - name: "1529"

 protocol: TCP

 port: 1529

 targetPort: 1529

 nodePort: 30201

Here, we expose the 1529 of the ihelp-store selected application to the outside 30201. This means that the

data user or application developer will need to connect to the public URL of the Kubernetes deployment

and target 30201 port. Then the Kubernetes will forward this request to the pod named ihelp-store, our Big

Data Platform, to its internal 1529 port that has been opened by defining previously the corresponding

service.

6.1.3 Examples of use
Having the Big Data Platform up and running, in these subsections we will provide examples of its use. We

will focus on three different data connectivity mechanisms: using standard JDBC, using the direct API and

using Apache Spark along with the provided Spark Connector. In the next versions of this deliverable,

GA-101017441

D4.10 – Big data platform and knowledge management system II 37

additional examples will be given using Apache Kafka queues. As the integration with Kafka and the

implementation of the corresponding data connectors are currently in progress, this information will be

given in the second version.

6.1.3.1 Using standard JDBC

JDBC is a standard connectivity mechanism for java application, and as such, it is out of scope of this report

to describe its use. It allows the data user or application developer to submit SQL statements via standard

interfaces. The Big Data Platform is based on the LeanXcale datastore which supports an SQL dialect that is

very similar to the one supported by PostGres. However, there is a complete documentation10 for what is

currently supported. As it is out of the scope of this report the complete description of how to connect

using JDBC, we will only provide an indicative example in the following code snippet:

String connectionString = "jdbc:leanxcale://127.0.0.1:1529/IM;user=APP"

Properties props = new Properties();

try {

 Class.forName("com.leanxcale.client.Driver").newInstance();

 Log.info("Loaded the appropriate driver");

} catch (ClassNotFoundException | InstantiationException | IllegalAccessException cnfe) {

 cnfe.printStackTrace(System.err);

 throw cnfe;

}

try(Connection conn = DriverManager.getConnection(connectionString, props);

 PreparedStatement statement = conn.prepareStatement("SQL STATEMENT");) {

 ResultSet resultSet = statement.executeQuery();

 while(resultSet.next()) {

 //do stuff

 }

 resultSet.close();

}

6.1.3.2 Using the Direct API

The Direct API is a secondary data connectivity mechanism, which allows the data user or application

developer to direct connect and interact with the storage engine of the Big Data Platform. The following

code snippets will illustrate some examples of its use. Firstly, we need to open a session which will keep a

connection open. The data user needs to define the connection url, the name of the logical database and

the user credentials:

import com.leanxcale.kivi.database.Database;

import com.leanxcale.kivi.database.Index;

import com.leanxcale.kivi.database.Table;

import com.leanxcale.kivi.session.Session;

import com.leanxcale.kivi.session.SessionFactory;

import com.leanxcale.kivi.session.Credentials;

import com.leanxcale.kivi.session.Settings;

Settings settings = new Settings()

.credentials(user, pass, "tpch")

Session session = SessionFactory.newSession("kivi:lxis//lxserver:9876", settings);

Database database = session.database();

10 https://docs.leanxcale.com/leanxcale/1.5/apis/sql-api.html

GA-101017441

D4.10 – Big data platform and knowledge management system II 38

The result is an instance of the database that we need to interact. Now, let’s try to add a new row (tuple).

We assume we have defined a table named Persons. We need to create a tuple for this table, and interact

with the table’s interface to insert the new record, as the following code snippet illustrates:

Table people = database.getTable("person");

Tuple person = people.createTuple();

//Fill in tuple fields

person.putLong("id", 1L).

 .putString("name", "John")

 .putString("lastName", "Doe")

 .putString("phone", "555333695")

 .putString("email", "johndoe@nowhere.no")

 .putDate("birthday",Date.valueOf("1970-01-01"))

 .putInt("numChildren", 4);

//Insert tuple

people.insert(person);

//Tuples are sent to the datastore when COMMIT is done

session.commit();

In case the table has an auto-generated primary key, we need to get first the corresponding sequence that

generates these values for us and use this instead. The previous code needs to be slightly changed as

follows:

Table people = database.getTable("person");

Tuple person = people.createTuple();

long personId = database.getSequence("personId").nextVal();

person.putLong("id", personId)

 .putString("name", "John")

 .putString("lastName", "Doe")

 .putString("phone", "555333695")

 .putString("email", "johndoe@nowhere.no")

 .putDate("birthday",Date.valueOf("1970-01-01"))

 .putInt("numChildren", 4);

people.insert(person);

session.commit();

In order to read records from the database, there are two different options, whether we need to do a get

operation over the primary key or perform a scan operation over the table. In case we need to get a tuple

using the get operation over the primary key, we first need to define a TupleKey that will guide the storage

engine to get the corresponding row, having this key, from the corresponding data table as follows:

import com.leanxcale.kivi.tuple.Tuple;

import com.leanxcale.kivi.tuple.TupleKey;

Table table = database.getTable("person");

Tuplekey key = table.createTupleKey();

key.putLong("id", 0L);

Tuple tuple = table.get(key);

GA-101017441

D4.10 – Big data platform and knowledge management system II 39

In case we need to perform a scan, we can do it like this:

import static com.leanxcale.kivi.query.aggregation.Aggregations.*;

import static com.leanxcale.kivi.query.expression.Constants.*;

import static com.leanxcale.kivi.query.expression.Expressions.*;

import static com.leanxcale.kivi.query.filter.Filters.*;

import static com.leanxcale.kivi.query.projection.Projections.*;

Table people = database.getTable("person");

TupleKey min = people.createTupleKey();

min.putLong("id", 20);

TupleKey max = people.createTupleKey();

max.putLong("id", 30L);

people.find()

 .min(min)

 .max(max)

 .foreach(tuple->processTuple(tuple));

// Max 20 results

people.find()

 .first(20)

 .foreach(tuple->processTuple(tuple));

Here, we performed a scan over a primary key. We first defined the boundaries of the range that we need

to scan, by defining two TupleKey objects, and then we invoked the find operation using those two keys. It

is important to highlight that the actual retrieval of the data will happen when the foreach method will be

invoked.

Now, the following examples show how to define a set of filters that will be pushed to the storage engine

of the datastore to get a result matching a set of conditions.

import static com.leanxcale.kivi.query.aggregation.Aggregations.*;

import static com.leanxcale.kivi.query.expression.Constants.*;

import static com.leanxcale.kivi.query.expression.Expressions.*;

import static com.leanxcale.kivi.query.filter.Filters.*;

import static com.leanxcale.kivi.query.projection.Projections.*;

Table people = database.getTable("person");

// Basic comparisons

people.find()

 .filter(gt("numChildren", 4).and(eq("name", string("John"))))

 .foreach(tuple->processTuple(tuple));

// Between

Date minDate = Date.valueOf("1900-01-01");

Date maxDate = Date.valueOf("2000-01-01");

people.find()

 .filter(between("birthday", date(minDate), date(maxDate))

 .foreach(tuple->processTuple(tuple));

// Using a Expression with operators

people.find()

 .filter(gt("numChildren",sub(field("numRooms"),int(1))))

 .foreach(tuple->processTuple(tuple));

GA-101017441

D4.10 – Big data platform and knowledge management system II 40

Then, the concept of the projection is the set of fields from the table that you want to get from the table.

The project may also include operations over the fields to be retrieved:

import static com.leanxcale.kivi.query.aggregation.Aggregations.*;

import static com.leanxcale.kivi.query.expression.Constants.*;

import static com.leanxcale.kivi.query.expression.Expressions.*;

import static com.leanxcale.kivi.query.filter.Filters.*;

import static com.leanxcale.kivi.query.projection.Projections.*;

Table people = database.getTable("person");

// Basic inclusion

people.find()

 .project(include(asList("name", "lastName", "birthdate")))

 .foreach(tuple->{

 String name = tuple.getString("name");

 String lastname = tuple.getString("lastName");

 Date date = tuple.getDate("birthdate");

 });

// SELECT name, Lastname, weight/height^2 AS imc FROM person

// Alias and expression usage

people.find()

 .project(compose(Arrays.asList(

 alias("name"),

 alias("lastName"),

 alias("imc",div(field("weight"),pow(field("height"),2)))

)))

 .foreach(tuple->{

 String name = tuple.getString("name");

 String lastName = tuple.getString("lastName");

 float imc = getFloat("imc");

});

Finally, the Direct API provides a rich interface that allows the data user or application developer to perform

aggregation operators over a data table. We need to define a first array with the fields to be used as the

group by key (if any), and then a list of aggregation expressions over some fields, as the following code

snippet illustrates:

import static com.leanxcale.kivi.query.aggregation.Aggregations.*;

import static com.leanxcale.kivi.query.expression.Constants.*;

import static com.leanxcale.kivi.query.expression.Expressions.*;

import static com.leanxcale.kivi.query.filter.Filters.*;

import static com.leanxcale.kivi.query.projection.Projections.*;

// Simple aggregation

int numPeople =

 people.find()

 .aggregate(emptyList(), count("numPeople"))

 .iterator.next().getLong("numPeople");

// Group By aggregation

people.find()

 .aggregate(.asList("name"),.asList(

 count("numPeople"),

 avg("averageHeight", field("height"))

 avg("averageIMC",div(field("weight"),pow(field("height"),2)))

GA-101017441

D4.10 – Big data platform and knowledge management system II 41

))

 .foreach(tuple->{

 String name = tuple.getString("name");

 long numPeople = tuple.getLong("numPeople");

 float avgHeight = tuple.getFloat("averageHeight");

 float avgIMC = tuple.getFloat("averageIMC");

 });

// Filtering before aggregate

Date date = Date.valueOf("1970-01-01");

people.find()

 .filter(gt("birthdate", date(date)))

 .aggregate(.asList("name"),.asList(

 count("numPeople"),

 avg("averageHeight", field("height"))

 avg("averageIMC",div(field("weight"),pow(field("height),2)))

))

 .foreach(tuple->{

 String name = tuple.getString("name");

 long numPeople = tuple.getLong("numPeople");

 float avgHeight = tuple.getFloat("averageHeight");

 float avgIMC = tuple.getFloat("averageIMC");

 });

//Filtering after aggregate

people.find()

 .aggregate(.asList("name"),.asList(

 count("numPeople"),

 avg("averageHeight", field("height"))

 avg("averageIMC",div(field("weight"),pow(field("height),2)))

))

 .filter(gt("averageIMC",float(26)).or(ge("numPeople",100)))

 .foreach(tuple->{

 String name = tuple.getString("name");

 long numPeople = tuple.getLong("numPeople");

 float avgHeight = tuple.getFloat("averageHeight");

 float avgIMC = tuple.getFloat("averageIMC");

 });

6.1.3.3 Using Apache Spark

The Big Data Platform provides additional means for data connectivity, having been integrated with popular

frameworks used by data analysts or data engineers. One of the most common analytical processing

frameworks is the one provided by Apache Spark. This allows the data analysts to create data frame from

a target datastore and then apply relational algebraic operations using Spark’s native interface. Having a

relational datastore, as the Big Data Platform, one can use a standard JDBC mechanism to connect to the

datastore, submit relational queries that Spark pushes them down to the database and retrieves the results.

Having however our direct API, Spark can avoid using the relational query engine of the Big Data Platform,

and instead, connecting directly to the storage engine of the integrated solution. In order to do this, the

data user or application developer will additionally need to import the corresponding Spark Connector

implementation, which serves as the bridge between the direct API and the Spark processing framework

itself. In fact, the Spark Connector implements the Spark’s interface for driving Spark on how to use the API.

However, from the data user or application developer point of view, everything is being done transparently

for him or her. It is the implementation of the Spark Connector that is being provided by this task and the

GA-101017441

D4.10 – Big data platform and knowledge management system II 42

Big Data Platform that does all the necessary work. The following code snippet illustrates the use of Apache

Spark with the Direct API:

import com.leanxcale.spark.LeanxcaleDataSource;

import java.io.IOException;

import java.util.List;

import org.apache.spark.SparkConf;

import org.apache.spark.sql.Column;

import org.apache.spark.sql.Dataset;

import org.apache.spark.sql.Row;

import org.apache.spark.sql.SparkSession;

import org.apache.spark.sql.functions;

public class TestSpark {

 public static final String SPARK_APP = "sparkApp";

 public static final String CONNECTION_URL = "
kivi:lxis//lxserver:9876/tpch@APP;KVPROXY=datastore!9800";

 public static final String TABLE_NAME_SIMULATION = "PERSONS";

 public static void main(String [] args) throws IOException {

 SparkConf conf = new SparkConf().setAppName(SPARK_APP).setMaster("local[*]");

 SparkSession spark = SparkSession.builder()

 .appName(SPARK_APP)

 .config("spark.master", "local")

 .config(conf)

 .getOrCreate();

 //connect and get load from table " PERSONS "

 Dataset<Row> simulationDF = spark.read()

 .format(LeanxcaleDataSource.SHORT_NAME)

 .option(LeanxcaleDataSource.CONNECTION_PROPERTIES, CONNECTION_URL)

 .option(LeanxcaleDataSource.TABLE_PARAM, TABLE_NAME_SIMULATION)

 .load()

 .repartition(5);

 //print the schema and show data

 simulationDF.printSchema();

 simulationDF.show();

 //do a scan and project the column PERSON_NAME

 System.out.println("Testing");

 Dataset<Row> result = simulationDF.select(functions.col("PERSON_NAME"));

 result.printSchema();

 result.show();

 }

}

In this code snippet, we create a Spark session and then we define our data frame. It is important to mention

here that the format of the data frame will not be “JDBC”, but instead, the name of our Spark Connector,

as it has been highlighted. Spark will use Java reflection to instantiate the corresponding class, which means

that the connector must be available in the classpath of the java process. Then, we put the corresponding

parameters as the connection URL, the table name etc. Finally, we use the Spark’s interface for do a scan

over the table and project the corresponding columns that we are interested.

GA-101017441

D4.10 – Big data platform and knowledge management system II 43

6.2 Kafka Broker
One of the requirements for the design of the data ingestion pipelines of the overall integrated iHelp

solution, documented in D3.4 – “Primary data capture and ingestion II”, is the use of the service

choreography pattern. This requires the developed functions and microservices to be loosely coupled and

exchange messages via data queues. As a result, it was decided to use Kafka broker to provide these types

of data queues to be used by the functions and microservices involved in the data ingestion pipelines.

On the other hand, as it has been mentioned in subsection 2.3, the Big Data Platform itself comes with a

variety of different connectors to popular tools and frameworks. One of those is the Kafka, by providing a

specific Kafka connector, allowing the direct ingestion of data coming from a specific topic to the

corresponding data table using the Big Data Platform’s direct API. This could facilitate the data ingestions

developed and provided by the work that has been carried out under the scope of T3.2 – “Primary Data

Capture and Ingestion”. At the end of such pipelines, it is requested that the data coming as HHR resources

to be transformed to data beans or POJOs relevant with the equivalent relational schema of the HHR, as

described in a previous section. Those POJOs must now be persistently stored to the Big Data Platform.

Instead of having to develop a new functionality that would take care of opening and maintaining data base

connections, and store the data in an efficient way, we decided to take advantage of the Kafka connector

of the Big Data Platform, and instead, serialize and send these POJOs to a specific Kafka topic, letting the

connector itself to take care of the final ingestion to the datastore. This has been also described in the HHR

Importer, documented in the aforementioned D3.4 – “Primary data capture and ingestion II”.

As a result, it was finally decided that the delivery of the Kafka broker would be the responsibility of this

T4.4 – “Big Data Platform and Knowledge Management System”, as the integrated iHelp solution does not

only need the common distribution of the Kafka broker, but instead, an enhanced distribution that contains

the connector to the Big Data Platform. Due to this, a demonstration of its installation, deployment and use

is included in this document.

6.2.1 Local installation using docker
Firstly, the released distribution for the iHelp project has been uploaded to the project’s private Gitlab11.

As explained in the previous subsection, each member of the consortium should have access to this code

repository and can issue the following command, adding his or her username and password in order to

download the Kafka Broker locally:

git clone https://gitlab.ihelp-project.eu/pkranas/ihelp-kafka.git

This GitLab project contains all binaries, scripts and additional configuration files, along with a Dockerfile,

which allows the data administrator to build a docker image locally that can be later used to deploy and

install the Kafka Broker in a containerized environment. In order to build the image locally, having already

cloned the GitLab project, the data administrator needs to execute the following command:

docker build –t ihelp-store .

11 https://gitlab.ihelp-project.eu/pkranas/ihelp-store

GA-101017441

D4.10 – Big data platform and knowledge management system II 44

This will take some time as the Dockerfile is using the base Ubuntu 20.04 image and needs to pre-installed

firstly various packages that are necessary for the Kafka broker to run. At the end of the process, the docker

image is built and available locally at the machine where this command was issued. In order to deploy and

run the Kafka Broker, we would also need an instance of the Big Data Platform to be previously deployed,

as our enhanced Kafka would try to connect to that instance. Due to this, we will make use of the docker

compose that allows us to create an environment with 2 or more containers and establish network

connectivity among them.

For this, we have created a docker-compose.yml file that will drive the deployment of both the big data

platform and our enhanced Kafka broker. This configuration is depicted in the following code snippet

version: '3.1'

services:

 ihelp-store-service:

 image: gitlab.ihelp-project.eu:5050/pkranas/ihelp-store:latest

 container_name: ihelp-store-service

 restart: unless-stopped

 ports:

 - 9876:9876

 - 9992:9992

 - 14400:14400

 - 1529:1529

 - 8900:8900

 environment:

 - KVPEXTERNALIP=ihelp-store-service!9800

 - USEIP=yes

 ihelp-kafka:

 image: gitlab.ihelp-project.eu:5050/pkranas/ihelp-kafka:latest

 container_name: ihelp-kafka

 restart: unless-stopped

 ports:

 - 8081:8081

 - 9092:9092

 depends_on:

 - ihelp-store-service

 links:

 - ihelp-store-service

 environment:

 - advertised_url=192.168.2.5

 - advertised_port=9092

The important thing to be highlighted is the environment variable of the ihelp-kafka. When connecting to

Kafka, the latter advertises to its client a list of its deployed brokers, so that the client may choose where

to connect. This includes their URL, and as a fact, we need to explicitly define this advertised url. For local

installations and deployments, in the configuration file, the system administrator needs to put there the IP

of the machine where the deployment will take place.

Now the data administrator needs to issue the following command:

docker-compose up

This command will create the two containers that will start in the background, giving them the names ihelp-

store-service and ihelp-kafka, while exposing the corresponding ports. For Kafka, the 9092 is used to

GA-101017441

D4.10 – Big data platform and knowledge management system II 45

connect to its brokers, while 8081 is used to connect to the Apache Avro Registry that is included in the

container. The data administrator can also connect to the container from a command line tool, by executing

the following:

docker exec –it ihelp-kafka bash

This command will open an interactive secure shell that will remain opened and will execute the bash script.

The latter will allow him or her to issue any command is provided by the Ubuntu Linux distribution on the

container, thus, he or she can navigate and monitor the status or the various logs of the installation of the

Kafka broker.

6.2.2 Remote installation using Kubernetes
As already explained in a previous subsection, apart from a centralized deployment of the integrated iHelp

solution, due to data sensitivity and privacy constraints, we identified that there will be the need for

installations and deployments of the iHelp solution to the premises of each of the hospital or clinical

organization of the project. Due to this, we would need our solution to be portable, so that the system

administrators and operation managers can be facilitated to do this process. As a result, we decided to

make use of Kubernetes for the container orchestration system in order to automate the software

deployment, scaling, and management.

To do so, firstly we would need to create the service kind, in order for Kubernetes to attach a network to

the container that will host Kafka, so that the latter can be accessible by other components. The following

code snippet illustrates how we can define this:

apiVersion: v1

kind: Service

metadata:

 name: ihelp-kafka-service

 labels:

 app: ihelp-kafka

spec:

 ports:

 - name: "9092"

 port: 9092

 targetPort: 9092

 - name: "8081"

 port: 8081

 targetPort: 8081

 selector:

 app: ihelp-kafka

We need to pay attention here that our selector will be named as ihelp-kafka, which will be the name of

the container that we will create soon after. We exposed the ports 9092 and 8081 for the Kafka broker and

the Avro Schema Registry.

Now, we need also to allow access from outside the cluster, and for this, we will create a node port for this

container, as the following code snippet illustrates:

apiVersion: v1

kind: Service

metadata:

GA-101017441

D4.10 – Big data platform and knowledge management system II 46

 name: ihelp-kafka-np

spec:

 type: NodePort

 selector:

 app: ihelp-kafka

 ports:

 - name: "9092"

 protocol: TCP

 port: 9092

 targetPort: 9092

 nodePort: 30003

 - name: "8081"

 protocol: TCP

 port: 8081

 targetPort: 8081

 nodePort: 30004

Same as before, our selector is named ihelp-kafka, that will be the name of the container that we will create

soon after, and we map the external ports 30004 and 30003 to the Avro Schema Registry (listening to port

8081) and to the Kafka Broker (listening to port 9092).

Now, before the definition for the deployment of our Kafka broker, we would need to define some

properties that will be injected to the container as environment variables. In order to do this, we create a

configuration mapping, known as configmap in Kubernetes terminology, as the following code snippet

illustrates:

apiVersion: v1

kind: ConfigMap

metadata:

 name: ihelp-kafka-configmap

data:

 advertised.url: 147.102.230.182

 advertised.port: "30003"

Here, we need to define the environment variables that were previously defined in the docker-

compose.yml file for local installations. In our example, we set the url to 147.102.230.182, which is the

external IP of our Kubernetes cluster. Moreover, we set the port to 30003, which is the port that is exposed

to the outside, as defined previously in our node port.

Finally, now we are ready to define our Stateful Set for the deployment of our enhanced Kafka. This is

defined as follows:

apiVersion: apps/v1

kind: StatefulSet

metadata:

 name: ihelp-kafka

 labels:

 app: ihelp-kafka

spec:

 serviceName: ihelp-kafka-service

 replicas: 1

 selector:

 matchLabels:

 app: ihelp-kafka

 updateStrategy:

GA-101017441

D4.10 – Big data platform and knowledge management system II 47

 type: RollingUpdate

 podManagementPolicy: OrderedReady

 template:

 metadata:

 labels:

 app: ihelp-kafka

 spec:

 containers:

 - image: gitlab.ihelp-project.eu:5050/pkranas/ihelp-kafka:latest

 name: ihelp-kafka

 ports:

 - containerPort: 8081

 - containerPort: 9092

 resources:

 limits:

 cpu: 2000m

 memory: 2Gi

 requests:

 cpu: 1000m

 memory: 1Gi

 env:

 - name: advertised_url

 valueFrom:

 configMapKeyRef:

 name: ihelp-kafka-configmap

 key: advertised.url

 - name: advertised_port

 valueFrom:

 configMapKeyRef:

 name: ihelp-kafka-configmap

 key: advertised.port

 restartPolicy: Always

 imagePullSecrets:

 - name: regcred

The important thing to be highlighted here is the definition of the environment variables. For instance, we

define the environment variable called advertised_url, whose value will be retrieved from the previously

defined configmap, and more precisely, from the one that we named ihelp-kafka-configmap, as of the

previous example, using the value of the attribute called advertised.url, which in our example is now

147.102.230.182.

Our Kafka broker is now up and running at this URL and we can now start experimenting by sending

messages to its topics and let the connector to store them transparently to the Big Data Platform. In order

to do so, we need to explicitly guide our connector on how to do so, using a set of configuration files, one

per each data table, as the next subsection will explain in more details.

6.2.3 Configuring the Kafka Connector
Inside the container/pod of the Kafka connector, there is a java process that takes the role of the Kafka

connector to the big data platform. It will listen to data items coming to a specific topic and will store them

to a data table inside the big data platform. Upon initialization, this process will read 1 or more

configuration files that will guide it how to do this. In the integrated iHelp solution, we need HHR resources

to be stored to specific tables. For that, we have defined the relational schema to be equivalent with the

HHR E-R model, as explained in a previous section.

GA-101017441

D4.10 – Big data platform and knowledge management system II 48

The HHR relational schema contains several data tables, each one of those has a list of columns and primary

keys. In this subsection, we will document how we can configure our connector to put data to each one of

those tables.

Patient

For the entity patient, we will use the following configuration:

name=hhr-patient

connector.class=com.leanxcale.connector.kafka.LXSinkConnector

tasks.max=1

topics=patient

connection.properties=lx://ihelp-store-service:9776/ihelp@APP;KVPROXY=ihelp-store-service!9800

auto.create=true

batch.size=500

connection.check.timeout=20

key.converter=io.confluent.connect.avro.AvroConverter

key.converter.schema.registry.url=http://localhost:8081

value.converter=io.confluent.connect.avro.AvroConverter

value.converter.schema.registry.url=http://localhost:8081

sink.connection.mode=kivi

sink.transactional=false

insert.mode=upsert

table.name.format=patient

pk.mode=record_key

pk.fields=patientid

fields.whitelist=gender, active, birthdate

Here we define that our connector will create a new thread called hhr-patient that will make the

LXSinkConnector class, to connect. It will listen for data items in the topic called patients and will rely on

the AvroConverter to deserialize the key and values of the data items placed under the topic patients. We

further need to provide the connection URL for the connector to know how to connect to the Big Data

Platform. This is the connection URL that the direct API will make use. We need to bear in mind here that

we used the ihelp-store-servive as the URL, which is the one we defined earlier using Kubernetes. Data

coming from this topic will be stored into the table called patient, whose primary key is the column

patientid, while it contains three additional columns: gender, active and birthdate. Finally, we won’t use

transactions here, as we only append new records, and we make use of the upsert instead of the insert

option. This allows us to update the records: newly added records will replace the old records that contain

the same primary key.

Condition

For the entity condition, we will use the following configuration:

name=hhr-condition

connector.class=com.leanxcale.connector.kafka.LXSinkConnector

tasks.max=1

topics=condition

connection.properties=lx://ihelp-store-service:9776/ihelp@APP;KVPROXY=ihelp-store-service!9800

GA-101017441

D4.10 – Big data platform and knowledge management system II 49

auto.create=true

batch.size=500

connection.check.timeout=20

key.converter=io.confluent.connect.avro.AvroConverter

key.converter.schema.registry.url=http://localhost:8081

value.converter=io.confluent.connect.avro.AvroConverter

value.converter.schema.registry.url=http://localhost:8081

sink.connection.mode=kivi

sink.transactional=false

insert.mode=upsert

table.name.format=condition

pk.mode=record_key

pk.fields=conditionid

fields.whitelist=abatementdatetime, onsetdate, category, encounterid, practitionerid, patientid

Encounter

For the entity encounter, we will use the following configuration:

name=hhr-encounter

connector.class=com.leanxcale.connector.kafka.LXSinkConnector

tasks.max=1

topics=encounter

connection.properties=lx://ihelp-store-service:9776/ihelp@APP;KVPROXY=ihelp-store-service!9800

auto.create=true

batch.size=500

connection.check.timeout=20

key.converter=io.confluent.connect.avro.AvroConverter

key.converter.schema.registry.url=http://localhost:8081

value.converter=io.confluent.connect.avro.AvroConverter

value.converter.schema.registry.url=http://localhost:8081

sink.connection.mode=kivi

sink.transactional=false

insert.mode=upsert

table.name.format=encounter

pk.mode=record_key

pk.fields=encounterid

fields.whitelist=status, periodstart, periodend, typesystem, typecode, typedisplay, serviceproviderid,
practitionerid, patientid

Measurement

For the entity measurement, we will use the following configuration:

name=hhr-measurement

connector.class=com.leanxcale.connector.kafka.LXSinkConnector

tasks.max=1

topics=measurement

connection.properties=lx://ihelp-store-service:9776/ihelp@APP;KVPROXY=ihelp-store-service!9800

GA-101017441

D4.10 – Big data platform and knowledge management system II 50

auto.create=true

batch.size=500

connection.check.timeout=20

key.converter=io.confluent.connect.avro.AvroConverter

key.converter.schema.registry.url=http://localhost:8081

value.converter=io.confluent.connect.avro.AvroConverter

value.converter.schema.registry.url=http://localhost:8081

sink.connection.mode=kivi

sink.transactional=false

insert.mode=upsert

table.name.format=measurement

pk.mode=record_key

pk.fields=measurementid

fields.whitelist=status, measurementcode, measurementsystem, measurementdisplay, effectivedatetime,
measurementcategorycode, measurementcategorysystem, measurementcategorydisplay, valuesystem, valuecode,
valueunit, valuequantity, valuesystemlow, valuecodelow, valueunitlow, valuequantitylow,
valuesystemhigh, valuecodehigh, valueunithigh, valuequantityhigh, encounterid, practitionerid,
patientid

Medication

For the entity medication, we will use the following configuration:

name=hhr-medication

connector.class=com.leanxcale.connector.kafka.LXSinkConnector

tasks.max=1

topics=medication

connection.properties=lx://ihelp-store-service:9776/ihelp@APP;KVPROXY=ihelp-store-service!9800

auto.create=true

batch.size=500

connection.check.timeout=20

key.converter=io.confluent.connect.avro.AvroConverter

key.converter.schema.registry.url=http://localhost:8081

value.converter=io.confluent.connect.avro.AvroConverter

value.converter.schema.registry.url=http://localhost:8081

sink.connection.mode=kivi

sink.transactional=false

insert.mode=upsert

table.name.format=medication

pk.mode=record_key

pk.fields=medicationid

fields.whitelist=status, medicationsystem, medicationcode, medicationdisplay, effectiveperiodstart,
effectiveperiodend, dosage, encounterid, practitionerid, patientid

Observation

For the entity observation, we will use the following configuration:

name=hhr-observation

connector.class=com.leanxcale.connector.kafka.LXSinkConnector

tasks.max=1

GA-101017441

D4.10 – Big data platform and knowledge management system II 51

topics=observation

connection.properties=lx://ihelp-store-service:9776/ihelp@APP;KVPROXY=ihelp-store-service!9800

auto.create=true

batch.size=500

connection.check.timeout=20

key.converter=io.confluent.connect.avro.AvroConverter

key.converter.schema.registry.url=http://localhost:8081

value.converter=io.confluent.connect.avro.AvroConverter

value.converter.schema.registry.url=http://localhost:8081

sink.connection.mode=kivi

sink.transactional=false

insert.mode=upsert

table.name.format=observation

pk.mode=record_key

pk.fields=observationid

fields.whitelist=status, observationcode, observationsystem, observationdisplay, effectivedatetime,
observationcategorycode, observationcategorysystem, observationcategorydisplay, valuesystem, valuecode,
valueunit, valuequantity, valuesystemlow, valuecodelow, valueunitlow, valuequantitylow,
valuesystemhigh, valuecodehigh, valueunithigh, valuequantityhigh, encounterid, practitionerid,
patientid

Procedure

For the entity procedure, we will use the following configuration:

name=hhr-procedure

connector.class=com.leanxcale.connector.kafka.LXSinkConnector

tasks.max=1

topics=procedure

connection.properties=lx://ihelp-store-service:9776/ihelp@APP;KVPROXY=ihelp-store-service!9800

auto.create=true

batch.size=500

connection.check.timeout=20

key.converter=io.confluent.connect.avro.AvroConverter

key.converter.schema.registry.url=http://localhost:8081

value.converter=io.confluent.connect.avro.AvroConverter

value.converter.schema.registry.url=http://localhost:8081

sink.connection.mode=kivi

sink.transactional=false

insert.mode=upsert

table.name.format=procedure

pk.mode=record_key

pk.fields=procedureid

fields.whitelist=status, procedurecode, proceduresystem, proceduredisplay, procedurecategorycode,
procedurecategorysystem, procedurecategorydisplay, patientid

GA-101017441

D4.10 – Big data platform and knowledge management system II 52

6.3 Big Data Platform microservices
As it has been already described in a previous section, apart from the delivery of the Big Data Platform of

the iHelp integrated solution, along with the Kafka Broker enhanced with the data connector of the

datastore, the role of this task T4.4 (“Big Data Platform and Knowledge Management System”) is also to

provide some additional functionality that is required by other components of the platform. Such

functionalities have been developed as independent microservices that implement a set of REST APIs to be

accessible. In this subsection will give information about how to install locally or remotely using Kubernetes.

6.3.1 iHelp REST Interface
This microservice exposes a set of REST APIs to the DSS Suite, and most precisely to its SQL Node Palette.

This will allow the end-user to define using a graphical interface algebraic relational operations, combine

them and finally produce a complicated SQL statement, without actually having to by a data user.

6.3.1.1 Local installation using docker

Firstly, the released distribution for the iHelp project has been uploaded to the project’s private Gitlab12.

As explained in the previous subsection, each member of the consortium should have access to this code

repository and can issue the following command, adding his or her username and password in order to

download the iHelp rest locally:

git clone https://gitlab.ihelp-project.eu/pkranas/ihelp-store-rest.git

This GitLab project contains the source code and various scripts and additional configurations files. The

source code has been developed in Java and the user would additionally need the installation of the maven

software project management and comprehension tool. Having everything in place, the user firstly needs

to compile the source code using the following command:

mvn clean install

Maven will download all dependencies, compile the source code a create a fat jar container all

dependencies. Having done that, we should make use of the provided Dockerfile, which allows the data

administrator to build a docker image locally that can be later used to deploy and install the microservice

in a containerized environment. In order to build the image locally, having already complied the GitLab

project, the data administrator needs to execute the following command:

docker build –t ihelp-store-rest .

This will take some time as the Dockerfile is using the base Ubuntu 20.04 image and needs to pre-installed

firstly various packages that are necessary for microservice to run. At the end of the process, the docker

image is built and available locally at the machine where this command was issued. In order to deploy and

run the microservice, we would also need an instance of the Big Data Platform to be previously deployed,

as our microservice would try to connect to that instance. Due to this, we will make use of the docker

12 https://gitlab.ihelp-project.eu/pkranas/ihelp-store

GA-101017441

D4.10 – Big data platform and knowledge management system II 53

compose that allows us to create an environment with 2 or more containers and establish network

connectivity among them.

For this, we have created a docker-compose.yml file that will drive the deployment of both the big data

platform and our microservice. This configuration is depicted in the following code snippet

version: '3.1'

services:

 datastore:

 image: gitlab.ihelp-project.eu:5050/pkranas/ihelp-store:latest

 container_name: datastore

 restart: unless-stopped

 ports:

 - 2181:2181

 - 1529:1529

 environment:

 - KVPEXTERNALIP=datastore!9800

 backend:

 image: gitlab.ihelp-project.eu:5050/pkranas/ihelp-store-rest:test

 container_name: datastore-rest

 restart: unless-stopped

 ports:

 - 54735:54735

 depends_on:

 - datastore

 links:

 - datastore

 environment:

 - DATASTORE_HOST=datastore

 - swagger_path=/tmp/

 - USEIP=yes

Now the data administrator needs to issue the following command:

docker-compose up

This command will create the two containers that will start in the background, giving them the names

datastore and datastore-rest, while exposing the corresponding ports. The data administrator can also

connect to the container from a command line tool, by executing the following:

docker exec –it ihelp-store-rest bash

This command will open an interactive secure shell that will remain opened and will execute the bash script.

The latter will allow him or her to issue any command is provided by the Ubuntu Linux distribution on the

container, thus, he or she can navigate and monitor the status or the various logs of the installation of the

microservice.

GA-101017441

D4.10 – Big data platform and knowledge management system II 54

6.3.1.2 Remote installation using Kubernetes

The use of Kubernetes was decided to be necessary, as it will facilitate the portability of our integrated

solution. For this, we first need to create the network that will be attached to the container, using the

following code snippet:

apiVersion: v1

kind: Service

metadata:

 name: ihelp-store-rest-service

 labels:

 app: ihelp-store-rest

spec:

 ports:

 - name: "54735"

 port: 54735

 targetPort: 54735

 selector:

 app: ihelp-store-rest

As always, we need this microservice to be accessible from outside of the cluster, so we will also need to

create a node port for this:

apiVersion: v1

kind: Service

metadata:

 name: ihelp-store-rest-np

spec:

 type: NodePort

 selector:

 app: ihelp-store-rest

 ports:

 - name: "54735"

 protocol: TCP

 port: 54735

 targetPort: 54735

 nodePort: 30005

Here, we will map the external port 30005 of our cluster to the internal one, 54735, which we have exposed

with our service. Finally, the following configuration will create our container. As our microservice is

stateless, we will use a Deployment kind, instead of a Stateful Set that we were using before:

apiVersion: apps/v1

kind: Deployment

metadata:

 name: ihelp-store-rest

 labels:

 app: ihelp-store-rest

spec:

 replicas: 1

 selector:

 matchLabels:

 app: ihelp-store-rest

 template:

 metadata:

 labels:

 app: ihelp-store-rest

GA-101017441

D4.10 – Big data platform and knowledge management system II 55

 spec:

 containers:

 - image: gitlab.ihelp-project.eu:5050/pkranas/ihelp-store-rest:latest

 imagePullPolicy: Always

 name: ihelp-store-rest

 env:

 - name: DATASTORE_HOST

 value: "ihelp-store-service"

 - name: swagger_path

 value: "/tmp/"

 ports:

 - containerPort: 54735

 resources:

 limits:

 cpu: 500m

 memory: 512Mi

 requests:

 cpu: 500m

 memory: 512Mi

 restartPolicy: Always

 imagePullSecrets:

 - name: regcred

GA-101017441

D4.10 – Big data platform and knowledge management system II 56

7 Next Steps and Roadmap
The main objective of this report is to present the current status of the work that has been carried out in

the scope of the T4.4 – “Big Data Platform and Knowledge Management System” at this phase of the project

(M22) and to give technical details about the background technology that has been adopted, its

advancements and the design of the overall solution related with the Big Data Platform of the iHelp

integrated solution. This section describes the next steps and open issues that currently are under

investigation, and they will be tackled and reported in the final version of this deliverable.

Firstly, the definition of the common data model of the iHelp took place while this document was initially

written and is currently further developed and extended. The HHR is being developed under the scope of

T3.1 – “Data Modelling and Integrated Health Records”. This provides the entity-relational (E-R) conceptual

model of the holistic health records, which are the raw data that will be stored into the datastore. After the

delivery of its first version, the role of the T4.4 – “Big Data Platform and Knowledge Management System”

was to define the corresponding relational schema in the database, which will store the actual data.

Regarding the current version, this has been documented in the respective section of this document. The

relational schema will be updated in the forthcoming period of the project, following the outcomes of the

work that is currently being done under the scope of T3.1 – “Data Modelling and Integrated Health Records”

and it will be reported in the final version of this document. At this final phase, the corresponding data

ingestion functions will be also extended to support the final version of the HHR relational schema. As

described in the D3.4 – “Primary data capture and ingestion II”, these are responsible to transform data

coming as HHR resources, into the corresponding relational entities that will be pushed to the Kafka data

queue. From there, the Kafka connector transparently adds the data into the Big Data Platform, as explained

in the previous section. The need for this functionality has been defined under the corresponding

deliverables of the T3.2 – “Primary Data Capture and Ingestion”, however, it is the responsibility of T4.4 –

“Big Data Platform and Knowledge Management System” to provide the Kafka broker and its configuration,

as explained in the previous section.

Secondly, another important activity that currently takes place is the integration of the Big Data Platform

with the Analytical Workbench, which is being developed under the scope of T4.2 – “Model Library:

Implementation and Recalibration of Adaptive Models”. The latter provides the runtime execution

environment that all analytical AI algorithms and models will run and use to exchange data with the

datastore. The Analytical Workbench uses internally a database to store meta-information related with the

execution of the models and the models themselves. The objective is to replace its internal database with

the Big Data Platform of the overall iHelp solution.

Another important objective of the T4.4 – “Big Data Platform and Knowledge Management System” is to

provide the necessary functionalities for the data visualization components of the DSS suite and other

components developed under the scope of WP5 – “AI for Early Risk Assessment and Personalised

Recommendations”. At this phase of the project, we have developed a set of microservices to the SQL Node

Pallet of the DSS to use and for the latter to be able to retrieve base raw information (primary data) of a

selected patient. Moreover, we have designed and define the interfaces for the user enrolment scenario.

For the next period, its implementation will take place, along the design and implementation of all other

microservices needed to provide the functionalities for the remaining scenarios: the i) communication of

risk, the ii) risk mitigation/treatment planning, the iii) plan a visit or control, (iv) advice review and (v) risk

GA-101017441

D4.10 – Big data platform and knowledge management system II 57

mitigation. The implementation of these scenarios took place during the first half of the project, and now,

during its second half, the integration with the overall iHelp solution is planned to take place. Therefore,

this integration requires the development of this series of microservices under the scope of this task that

will be documented in the last version of this deliverable.

Moreover, following the need for visualizing the results of a polyglot query that targets different peers of

Big Data Platform deployments, the corresponding query operator needs to be implemented. At this phase,

the consortium has foreseen the need to combine data coming from different sources and the prohibition

for moving sensitive data outside of an organization. The result is for T4.4 – “Big Data Platform and

Knowledge Management System” to propose the solution described in a previous section. The overall

design and definition of the programming interfaces has been started, and in the forthcoming period, the

implementation of the corresponding operators and its validation will follow, if there is such a need from a

pilot use case.

Finally, after the delivery of the first prototype of the iHelp integrated solution along with the Big Data

Platform and the validation of its functionality, the next focus can be the provision of a secure access to the

data user. Regarding the security aspects, there are two ways for secure access:

▪ Encrypt the data transmission over the network

▪ Encrypt the data themselves when stored in the database

Regarding the first aspect, this is currently supported by the Big Data Platform. A broker mechanism in order

to discover other peers and automatically handle the corresponding tokens when connecting to an external

datastore might be needed, however this is not yet a requirement for the Big Data Platform. Regarding the

second aspect, this is currently under validation: we test that the query processing over encrypted and non-

encrypted data return always equivalent results. The second phase of the validation will be to benchmark

the performance overhead when querying data that are encrypted in the disk. Currently, as data will be

stayed inside the premise of the organization, it seems that this functionality is not of a high priority, so the

focus has been given in other activities of this task.

GA-101017441

D4.10 – Big data platform and knowledge management system II 58

8 Conclusions
This deliverable reports the work that has been currently done under the scope of the T4.4 – “Big Data

Platform and Knowledge Management System” at this phase of the project (M22). The main objective of

this task is to provide a big data platform to efficiently manage the data generated by different sources and

provide the ground for the envisioned HHRs and iHelp analytics. Towards this direction, we relied on the

background technology of the LeanXcale database, which offers a list of innovative characteristics. First, it

allows for hybrid transactional and analytical processing that allows firstly data ingestion on very high rates

and secondly for performing data analytics over the same dataset. This removes the need to migrate data

to different analytical datastores and thus allows to perform analytics over the operational data. The Big

Data Platform also provides a parallel OLAP engine that will be exploited by the data analytics.

In the scope of the iHelp, the background technology is being further developed to support the needs of

the integrated solution. Firstly, it has defined a first version of the relational schema of the HHR records

that will be used to import raw data coming from the pilot use cases, transformed to the conceptual

common model. After being ingested, the parallel engine and advanced capabilities of its internal storage,

will allow the data analytic tools to efficiently retrieve and process data stored into the database. What is

more, the Big Data Platform provides various needs for data connectivity and is being integrated with

popular frameworks used by data analysts and data engineers. For instance, it has been integrated with

Apache Kafka that will be used in various cases in the iHelp platform. Regarding the data ingestion, data

analytical functions deployed into the data ingestion pipelines communicate using Kafka queues. At the

end, data will be pushed to a data queue that will make use of the Kafka connector of the Big Data Platform

to transparently store data to the database. Moreover, the Big Data Platform is being integrated with

Apache Spark, the dominant analytical processing framework often used by many data analysts. The Spark

connector of the Big Data Platform allows for efficient data retrieval, bypassing and removing the integral

overhead of the footprint of its query engine.

Another important feature of the Big Data Platform necessary for the needs of the project, is its polyglot

query processing capabilities. This allows the data user to submit a query statement to the database, that

will be further sent to an external data source in order to retrieve data from a remote data provider. The

Big Data Platform then will combine and join the results and return them back to the user via the single

opened connection. Having the restriction from the data owners not to move data outside of their

institutions and the requirement of the project to combine data from various sources, this feature is a

catalyst and enables the combination of data without moving them. We envisioned peer deployments of

the integrated iHelp solution, where each instance of the Big Data Platform can remotely connect to

another and grab aggregated information, without actually moving the raw data themselves. Then, it can

combine the aggregated results retrieved remotely with the internal data. This can be used by analytical

tools to get more insights by using aggregated datasets.

What is more, during this second phase of the project, additional activities needed to be performed by this

task, in order to support the integration of the other components of the overall iHelp platform with the Big

Data Platform. As a result, a set of different functionalities have been designed and implemented, as

microservices, that will allow the communication of the currently delivered components with the datastore.

Towards this direction, a microservice that provides a REST API to the SQL Node Pallet of the DSS Suite has

been delivered, while currently under development is a novel microservice responsible to support the user

GA-101017441

D4.10 – Big data platform and knowledge management system II 59

enrolment process. Additional microservices are planned to be designed and implemented during the last

phase of the project and will be documented in the last version of this deliverable.

After a successful demonstration of the outcomes of this task during the first Project Review, we decided

to include an additional section in this deliverable that can serve the purposes of a demonstrator, giving

guidelines and examples on how to install and deploy the artefacts of this tasks, both in a local environment

for testing purposes, or in a distributed environment with the use of Kubernetes. The use of Kubernetes

facilitate the portability of our solution that is necessary, as we need to deploy the overall iHelp integrated

solution to the premises of each of the hospital or clinical organizations of the project.

The progress of the task at this phase is as planned, with the design of the Big Data Platform delivered,

along with the implementation of its prototype, the definition of the HHR relational schema and the design

and implementation of a set of additional microservices, while we have identified the goals and next steps

that need to be done in the next phase. This document also reports a demonstrator of its use, having

examples on how to deploy and install all involved components locally, or in a virtualized environment using

container orchestrator tools like Kubernetes. Then, examples of its use have been given, based on different

data connectivity mechanisms: JBDC, the Direct API and Apache Spark. The next version of this document

is planned to be released in M32 and will include additional information regarding the implementation of

the next items identified in our roadmap that is presented in this document.

GA-101017441

D4.10 – Big data platform and knowledge management system II 60

Bibliography
P. Kranas, B. Kolev, O. Levchenko, E. Pacitti, P. Valduriez, R. Jiménez-Peris, and M. Patiño-Martinez,

“Parallel query processing in a polystore.”, Distributed and Parallel Databases (2021): 1-39.

GA-101017441

D4.10 – Big data platform and knowledge management system II 61

List of Acronyms
2PL 2 Phase Locking

ACID Atomicity, Consistency, Isolation, Durability

API Application Interface

CPU Central Processing Unit

DQE Distributed Query Engine

DSS Decision Support System

ETL Extract, Transform, Load

EU European Union

HDFS Hadoop Distributed FileSystem

HHR Holistic Health Record

HTAP Hybrid Transactional Analytical Processing

I/O Input/Output

JDBC Java Database Connectivity

KOD KODAR Systems

LXS LeanXcale

NoSQL Non Structured Query Language

ODBC Open Database Connectivity

OLAP Online Analytical Processing

OLTP Online Transactional Processing

REST Representational State Transfer

SQL Structured Query Language

TCP Transmission Control Protocol

UI User Interface

UPM Universidad Politécnica de Madrid

UPRC University of Piraeus Research Centre

URL Uniform Resource Locator

WP Work Package

