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Executive summary 
This document summarizes the actions performed under T4.1 - “Personalized Health Modelling and 

Predictions” in the context of WP4 “Knowledge Management and Modelling in the iHelp Platform” at this 

phase of the project. The first version of this series of deliverables, i.e., D4.1 - “Personalised health 

modelling and predictions I”, provided an extended description of the mechanisms and Artificial Intelligence 

(AI) models that will be implemented for the realisation of personalised health and risk prediction models. 

The implementation of the ΑΙ algorithms that are being created during the project’s lifecycle highly depend 

on the provided datasets on which they are trained. At the previous phase of the project, the description 

of the datasets that are going to be used, drove the actions under this Task towards a concrete description 

and specification of the AI algorithms and models that will be utilized.  

In this updated version D4.2 - “Personalised health modelling and predictions II”, the primary data were 

available for two out of five pilots -namely UNIMAN and MUP- and a sample dataset was provided by the 

FPG pilot. In this respect, an initial approach of the development of the AI models and some preliminary 

results are provided in the corresponding sub-sections of Section 6.  As in the previous version, this 

document encapsulates the necessary and relevant information that was researched from recent 

bibliography to facilitate the manipulation of the available datasets, setting the basis for the design and 

implementation of the models. Finally, in this deliverable are analysed the main concepts behind the 

models, also in compliance with an analysis of the importance of known and unknown risk factors based on 

the description of the clinical/primary data.  
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1 Introduction 
Over many decades, massive effort from numerous experts has been devoted to cancer research globally. 

Despite notable progress in this field, specific cancer types -such as Pancreatic Cancer- are highly associated 

with poor prognosis and low survival rates. In Pancreatic Cancer, symptoms typically occur late in the course 

of the disease, so early detection can result not only to a more accurate diagnosis but also in increased the 

survival rates of the patients (K., C., K., + 21).  

Among other technologies, current applications of AI, Machine Learning (ML) and Deep Learning (DL) in 

cancer research and clinical care, have emerged as highly successful tools for early cancer detection and 

risk identification. The applications of AI/ML in cancer research and care are already highly diverse and will 

continue to expand. Data modelling tools and techniques allow advanced AI algorithms to develop 

personalised health models that enable the identification of pancreatic cancer, the relevant contributing 

factors and the associated risks.  The validity of AI models highly depends on the datasets on which they 

are trained, however, the extraction of high-quality data for research uses from real-world sources has 

proven complex. Applying AI approaches to real world data - such as Electronic Health Records (EHRs) or 

Holistic Health Records (HHRs), clinical notes, -omics and patient generated health data from wearables, 

smart phones, and social media- require a very careful and well-organized pre-processing of data.  

For the case of Pancreatic Cancer, several risk factors have been identified either they are modifiable (i.e., 

smoking, alcohol, obesity, dietary factors) or non-modifiable (such as gender, age, ethnicity, diabetes 

mellitus, family history). iHelp, focusing on the modifiable risk factors, aims to make use of the applications 

of the AI algorithms in combination with the benefits of mobile and wearable technologies, for improving 

individuals’ adherence to risk mitigation strategies, delivery of targeted health advice and even supporting 

lifestyle changes. The personalized healthcare and the identification of high-risk individuals for early 

detection, via the AI algorithms that will be implemented under iHelp, is of huge importance, not only for 

the possible patients themselves, but also for the Health Care Professionals (HCPs) and policy makers.  

1.1 Scope of the document  
D4.2 - “Personalised health modelling and predictions II” is developed under T4.1 “Personalized Health 

Modelling and Predictions”, with the main goal to further update the deliverable of previous version (D4.1 

- “Personalised health modelling and predictions I”). More specifically, the scope of this document is to 

provide description of the mechanisms that are being implemented to realise the creation of personalised 

health and risk prediction models. The approaches, the techniques and the AI algorithms that are - and will 

continue to be - realized during the iHelp project, will be described in this series of deliverables. This series 

of deliverables, started with D4.1 - “Personalised health modelling and predictions I”, which is followed by 

this updated version II, while one third version will follow on M32.  On the one hand, the majority of the 

context of this document is based on the available retrospective primary and secondary data, that the Pilots 

have shared before sharing the “real” prospective data. On the other hand, the algorithms created 

specifically for MUP pilot, are based on their real data. As the project progresses and more real data are 

becoming available, the deliverable will be updated as it will evolve and follow the directions of iHelp 

project on cancer risk assessment.  
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1.2 Structure of the document  
This document is divided into seven main sections structured as follows: 

▪ Section 1 includes a short introduction, the main description of this document, a reference to the 

relevance of this task with other WPs in the iHelp project, as well as the updates since the D4.1 – 

“Personalised health modelling and predictions I”. 

▪ Section 2 gives an overview of the advances of ML in the domain of healthcare, with special focus 

on the approach of “Federated Learning (FL)”, “clustering analysis” and their importance in 

healthcare systems.   

▪ Section 3, summarizes the procedure of the pre-processing of data, including methods for data 

cleaning, initial feature selection, imputation, and labelling annotation techniques.  

▪ Section 4, refers to the risk factors importance, including a description of the Interpretable models 

and the model agnostic interpretation methods among others. 

▪ Section 5 discusses the risk predictions including the SotA algorithms, the relevant hyperparameter 

optimization and the models evaluation. 

▪ Section 6 introduces the iHelp pilot cases and aims to describe the work done, before the initiation 

of this project. More specifically, all pilots, (namely: UNIMAN, FPG, HDM, MUP and TMU), present 

their connection to T4.2 “Personalized Health Modelling and Predictions”, via describing in general 

the data that they are going to share, any pre-existing algorithms and their results, and their 

specific needs. Moreover, updates and new algorithms have been described for UNIMAN, FPG and 

MUP pilots.  

▪ Finally, Section 7 highlights the main outcomes and concludes this report. 

1.3 Relevance with other Work Packages  
This report summarizes the approaches, the techniques and the AI algorithms that will be realized during 

the iHelp project, for the creation of the risk prediction models. The data that will be imported to the initial 

algorithms in T4.1 - “Personalized Health Modelling and Predictions”, will be derived from WP3 – 

“Personalised Holistic Health Records”, after the mapping activities into HHR format and the respective 

storage in the HHR platform. The models that will be produced here, will be further developed, and 

specified under T5.1 - “Techniques for Early Risk Identification, Predictions & Assessment”, under WP5 – 

“AI for Early Risk Assessment and Personalised Recommendations”. After that, specific recommendations 

and proposed Intervention measures will be drafted in WP5 - “AI for Early Risk Assessment and Personalised 

Recommendations”.  

1.4  Background 
iHelp project builds upon the innovations coming out of previous EU projects such as CrowdHEALTH 

(https://www.crowdhealth.eu/), where the concept of HHRs was firstly investigated.  CrowdHEALTH is 

an international research project partially funded by the Horizon 2020 Programme of the European 

Commission that worked on integrating high volumes of health-related heterogeneous data from multiple 

sources with the aim of supporting policy making decisions. The project started in March 2017 and finished 

in February 2020. Today’s rich digital information environment is characterized by the multitude of data 

sources. There are extremely large amounts of medical data. But currently collected data are 

heterogeneous, spread across different health care providers and systems that operate independently. Due 

https://www.crowdhealth.eu/
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to this fact it is quite common that important events related to health are missed. CrowdHEALTH delivered 

a secure ICT platform that was able to collect and aggregate high volumes health data from multiple 

information sources in Europe. CrowdHEALTH also proposed the evolution of Patient Health Records 

(PHRs) towards HHRs enriched to become more “Social HHRs” to capture the clinical, social and human 

factors.  

In addition, ATC brings the experience on Health-related Big Data Analytics, from BD2Decide project (PHC-

21-2015 call). More specifically, prediction models have been published for head-and-neck cancer cases, 

while the innovation that will be utilized via this project includes the incorporation of adaptive learning to 

update, improve and refine the models using routinely collected data. 

1.5 Updates since D4.1 - “Personalised health modelling and 
predictions I” 

The updates since D4.1 - “Personalised health modelling and predictions I” resulted in the creation of D4.2 

- “Personalised health modelling and predictions II” that incorporates all the work done during the second 

year of the project. The changes concerning the structure of the document include: 

▪ the transfer of Section 3 “Connection with the Pilots: State of the art” to the end of the document, 

named Section 6 “Connection with the Pilots: State of the art”. 

▪ the additions on the updated version were made in (new) Section 6 and specifically in sub-sections 

6.1, 6.2 and 6.4 that are related to UNIMAN, FPG and MUP pilots respectively. Therein, is presented 

the pre-processing of the data, the development of the AI algorithms that were utilized for the 

predictions of each requirement as well as the corresponding evaluation methods and related 

results. Moreover, methods and tools in the context of eXplainable AI (XAI) are provided in an effort 

to interpret these research outcomes.  
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2 Machine Learning in Healthcare 
Machine Learning (ML), simply put, is a type of AI in which computers are programmed to learn information 

without human intervention. In ML, the development of the underlying algorithms relies on computational 

statistics. Computers are provided data and then the computers “learn” from that data. The data actually 

“teaches" the computer by revealing its complex patterns and underlying algorithms. The larger the sample 

of data the “machine" is provided, the more precise the machine's output becomes. 

The AI technologies are steadily being applied to the healthcare domain. The use of AI in healthcare has the 

potential to assist healthcare providers and professionals in many aspects of patient care, especially for 

illness detection and treatment selection. Most AI and healthcare technologies have strong relevance to 

the domain, where they can perform just as well or better than humans at certain procedures. ML is one of 

the most common forms of AI in healthcare. It is a broad technique at the core of many approaches to AI 

and healthcare technology and there are many versions of it. 

Using AI in healthcare, the most widespread utilisation of traditional ML is precision medicine, where the 

algorithms are able to predict what treatment procedures are likely to be successful with patients based on 

their make-up and the treatment framework is a huge leap forward for many healthcare organisations. In 

this sense, the precision medicine uses algorithms that fail under supervised learning, where at the training 

stage, the results are known so the algorithm is able to know which is the expected result. 

Diagnosis and treatment of diseases have been at the core of AI in healthcare for the last 50 years. Early 

rule-based systems had potential to accurately diagnose and treat disease but were not totally accepted 

for clinical practice. They were not significantly better at diagnosing than humans, and the integration was 

less than ideal with clinician workflows and health record systems. 

But whether rules-based or algorithmic, using AI in healthcare for diagnosis and treatment plans can often 

be difficult to integrate with clinical workflows and EHR systems. Integration issues have been a greater 

barrier to widespread adoption of AI in healthcare when compared to the accuracy of suggestions. Much 

of the AI and healthcare capabilities for diagnosis and treatment from medical software vendors are 

standalone and address only a certain area of care. Some EHR software vendors are beginning to build 

limited healthcare analytics functions with AI into their product offerings but are in the elementary stages. 

To take full advantage of the use of AI in healthcare using a standalone EHR system providers will either 

have to undertake substantial integration projects themselves or leverage the capabilities of third-party 

vendors that have AI capabilities and can integrate with their EHR. 

2.1 Federated Learning  
Standard ML approaches require centralizing the training data on one machine or in a data centre. However, 

for models trained from distributed datasets or user interaction with mobile devices, we're introducing an 

additional approach: Federated Learning. 

FL enables IoT devices (such as wearables or mobile phones) to collaboratively learn a shared prediction 

model while keeping all the training data on device, decoupling the ability to do ML from the need to store 

the data in the cloud. This goes beyond the use of local models that make predictions on these devices by 

bringing model training to the device as well and then distributing the computation efforts across different 

computation agents. 
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The overall functionality can be described as follows. The device downloads the current model, improves it 

by learning from data gathered by the device, and then summarizes the changes as a small focused update. 

Only this update to the model is sent to the cloud, using encrypted communication, where it is immediately 

averaged with other user updates to improve the shared model. All the training data remains on the device, 

and no individual updates are stored in the cloud. 

FL allows for smarter models, lower latency, and less power consumption, all while ensuring privacy. And 

this approach has another immediate benefit: in addition to providing an update to the shared model, the 

improved model on the device can also be used immediately, powering experiences personalized by the 

way the device is used. 

2.1.1 Scalability 
Producing a scalable federated learning approach currently depends on how the partitions are partitioned 

and by looking at optimisations in the sometimes-high communications overhead of FL algorithms. Works 

reported at (Y., K., L., + 21) and (Z., W., B., 21) explore the scalability for FL although the examples described 

there are from other than healthcare domains. 

2.1.2 Security  
FL is preferred in use-cases where security and privacy are the key concerns, and certainly healthcare 

domain is one of these. Having a clear view and understanding of risk factors enable an 

implementer/adopter of FL to successfully build a secure environment and gives researchers a clear vision 

on possible research areas. 

Moreover, it enables clients to collaboratively learn a shared global model without sharing their local 

training data with a cloud server. However, malicious clients can corrupt the global model to predict 

incorrect labels for testing examples. Existing defences against malicious clients leverage Byzantine-robust 

FL methods. However, these methods cannot provably guarantee that the predicted label for a testing 

example is not affected by malicious clients. The latter is addressed through the utilization of ensemble FL. 

In particular, given any base FL algorithm, we use the algorithm to learn multiple global models, each of 

which is learnt using a randomly selected subset of clients. When predicting the label of a testing example, 

we take majority vote among the global models. 

2.2 Clustering 
Cluster analysis, or clustering, is an unsupervised ML task. It involves automatically discovering natural 

grouping in data. Unlike supervised learning (like predictive modelling), clustering algorithms only interpret 

the input data and find natural groups or clusters in feature space. 

It can be defined as “A way of grouping the data points into different clusters, consisting of similar data 

points to a given feature. The objects with the possible similarities remain in a group that has less or no 

similarities with another group”. 

The algorithm tries to find similar patterns in the unlabelled dataset such as shape, size, colour, behaviour, 

combination of these, or other factors such as %-presence of a given protein, etc., and divides them as per 

the presence and absence of those similar patterns. By being an unsupervised learning method, it deals 

with the unlabelled dataset. After applying this clustering technique, each cluster or group is provided with 
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a cluster-ID for further processing. ML system can use this id to simplify the processing of large and complex 

datasets. 

 

 

 

Figure 1: Examples of grouping the data points into different clusters 

The main algorithm going to be used within iHelp of all the families that belong to Clustering is K-Means, 

which is of Partioning Clustering type, and it is useful when it is not 100% sure what we are looking for. 

Partitioning Clustering divides the data into non-hierarchical groups. It is also known as the centroid-based 

method. Within K-Means, the dataset is divided into a set of k groups, where K is used to define the number 

of pre-defined groups (K=2 means there will be 2 clusters, K=3 means 3 clusters, etc.). The cluster center is 

created in such a way that the distance between the data points of one cluster is minimum as compared to 

another cluster centroid. By being an iterative algorithm, the data is initially divided in the past clusters and 

then the different data is being accommodated to one cluster or another depending on their distance to 

the different centroids of the clusters.  

One of the typical uses of clustering algorithms within the healthcare domain is in the identification of 

Cancer Cells where they are widely used. The algorithm divides the cancerous and non-cancerous data sets 

into different groups to assess the likeliness of a cell being affected by cancer. In this sense, the information 

from the patients is stored in the EHRs so it should be possible to create clusters based on the information 

present there to learn about the progression of the diseases. 

2.2.1 Scalability 
Scalability in clustering means that as you increase the number of data objects, the time to perform 

clustering should roughly scale to the order of complexity of the algorithm. For example, if you perform K-

means clustering, we know it is O(n), where n is the number of data objects. If you increase the number of 

data objects 10 folds, then the time to cluster them should also 'roughly' increase 10 time i.e. there should 

be a linear relationship.  

2.3 Combination of Algorithms 
Sometimes the solution to a given problem cannot be assessed by using one single ML algorithm; instead, 

a combination of algorithms might be more appropriate rather than using one. A recent work published by 

JAMA Oncology (YAN, 21) in one of his journals, showed how combining ML algorithms with Behavioural 

Nudges was beneficial to increase rates of serious illness conversations in patients with cancer 
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3 Pre-processing of data  

3.1 Initial feature selection  
A common belief among the researchers is that more features equals better model performance, however, 

this is far from being true. Less features usually means faster training models: for parametric models like 

linear or Logistic Regression (LR), it means there are less weights to calculate, and for non-parametric 

models like Random Forest (RF) of DT, it means there are less features to evaluate at each split. 

Feature selection consists of automatically selecting the best features for our models and algorithms, by 

taking these insights from the data, and without the need to use expert knowledge or other kinds of 

external information. Automatically means that we do not handpick the features, but instead we use some 

algorithm or procedure that keeps only the most important features for our model and its application 

domain. 

Nevertheless, it is important to know here that expert knowledge of the application domain that the model 

is being built for is very important, as it allows us to better understand the data that is going to be used, 

and therefore gain some intuition about which features will probably be important, and which features 

should probably be discarded. 

The study of features to eliminate from our models is very important, since we can remove irrelevant 

features that would not be affecting or changing the output of our model. If for example, we try to predict 

the survival rate of breast cancer in females between 20-30 years old, using variables that include the traffic 

accident, these variables will probably not be very useful. These kinds of irrelevant features can actually 

decrease the performance of your model by introducing noise. 

In the context of iHelp, the clinicians in close consultation with the data scientists (see also Figure 2) will 

decide which features can be considered relevant in the corresponding pilots’/use cases. It will be the first 

level of feature selection/elimination and it will help significantly to boost the process since many irrelevant 

features can lead to significant delays.   

3.2 Imputation  
Clinical trials and studies may concern diseases with low incidence rates and different types of exams, which 

lead to medical datasets with low prevalence categories and various features that are missing because the 

people involved were never subjected to the corresponding exams. Such datasets are problematic for ML 

because most data processing techniques and algorithms require a complete dataset in order to yield 

results. Therefore, it is important to handle missing data in order to ensure good performance of the 

models.  

Missing data can be categorized into 3 types according to the underlying mechanism: Missing completely 

at random (MCAR), Missing at random (MAR) and Missing not at Random (MNAR). When the mechanism 

that is causing the missingness is irrelevant to the observed and the missing data we have MCAR. In this 

case the missingness does not cause any bias, only larger errors. When the mechanism only depends on 

the observed data and not on the missing data then we have MAR. In this case it is possible to predict the 

missing data based on other data which are filled. Finally, when the mechanism depends on the missing 

data itself, we have MNAR.  
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The suggested solutions to the missing data problem depend on the type of data that is missing. Since data 

MCAR does not introduce bias, it is possible to use the subset of the dataset that does not contain missing 

data. This is advised to be applied only when missingness does not exceed 10~15%. However, in datasets 

with low prevalence classes this may cause the loss of critical information. It is thus better to try to estimate 

the missing values or replace them with a specific value. 

  

 

Figure 2: Data missingness in UCI Cervical cancer Data Set.  
  

In the above figure (Figure 2), we visualize the missing data of a dataset regarding cervical cancer. Rows 

represent observations columns represent features. White spaces denote missing features from 

observations. The plot on the right side shows the total available features for each observation. Each 

column represents the feature that is written above the column and each row represents a patient’s data. 

White colour denotes that a feature is missing for that patient and on the right, we see the total available 

features for each patient. As we can see a patient only has 9 out of 32 features and features like time since 

STD tests are missing even though patients have had the relevant STD tests. In such a case it may be more 

convenient to drop the features all together. However, it might be important to keep patients who are 

missing some features since their available information may prove important to the analysis.  

Since medical datasets contain a variety of diseases, conditions and test results it is only natural that many 

fields are missing from most patients and thus most rows will have missing data. Furthermore, it is not 

possible to estimate the type of missingness for the data because each field derives from a different exam 

or process at a different time and perhaps even a different hospital. Especially in the case of diseases with 

low incidence, rates or different examinations compared to others there are going to be significantly fewer 

examples and they will have missing values. By dropping the data with missing values, it is thus more 

probable to throw away such data which hold significant information.  For the above reasons the complete 

case analysis may be practically impossible when handling medical data. 

https://archive.ics.uci.edu/ml/datasets/Cervical+cancer+%28Risk+Factors%29
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Thus, it is important in the scope of this project to have some techniques that estimate and replace missing 

values. Such techniques are generally split into two categories: 

▪ univariate imputation 

▪ multivariate imputation 

▪ multiple imputation 

Univariate imputation techniques generally replace a feature’s missing values using only non-missing 

values of that feature. In such cases all missing values are replaced with the same value (usually mean, 

median or mode) depending on the type of the feature. Since all the missing values will be replaced with 

the same value, if the amount of missing data is high, such techniques have a great impact on the 

distributions of the features. 

Multivariate imputation estimating the missing values of a feature using the entire set of available features. 

Such imputation techniques utilize classical ML regression, classification or clustering algorithms to 

estimate the missing values. For example, the missing values may be filled as a function of the k nearest 

neighbours or with the value of a centroid of a clustering technique. It is also possible to apply more 

sophisticated techniques that estimate each next missing feature from the already imputed features. Such 

algorithms iterate over the features and use a classical ML technique, such as Logistic Regression or Random 

Forests, to impute each feature. They then loop over the dataset and try to make better estimations of the 

missing values based on their previous iteration’s results until a convergence criterion is met. 

Finally, multiple imputation is the process of using an imputation algorithm that contains stochasticity (s.a. 

iterative imputation) to input the dataset multiple times. Each of the resulting datasets is analyzed so that 

the final analysis can yield better results since it accounts for the stochasticity introduced by the missing 

data. 

Compared to Single imputation, ML approaches may lead to more realistic results as they take into 

consideration the available features when estimating the missing ones. In the context of the iHelp project 

that would mean that a patient’s missing feature’s value would be influenced by that patient’s available 

data instead of relying only on the general population’s characteristics. It is however very important not to 

ensure that the models do not interfere too much with the original data and does not introduce too much 

bias to the dataset. 

In the figure below (Figure 3) we see the results of some implemented imputation algorithms when trying 

to estimate a feature of the dataset plotted against the patient’s age. Mean imputation and Iterative 

imputation which did not converge, heavily influence the distribution of the data. However, KNN and MICE 

with RF Kernel manage to perform better.  

 

Figure 3: Plots of imputation technique results. 
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For practical reasons we split the implemented imputation methods according to the type of the data. For 

categorical data we need imputation to give discrete values and mode imputation and kNN with discrete 

values is more suited. For numeric data we can use mean, median, iterative imputation and kNN. The 

proposed imputation procedure in case it is needed is first dropping features with a high amount of 

missingness (e.g., 40%). The dataset will be split into train and test datasets, making sure that no patients 

are common between the datasets to avoid data leaking. It is also important to keep the prevalence of the 

categories in the two datasets as close as possible to have valid predictions. The remaining features will be 

imputed according to their type using the exact same method for both datasets. The imputed train dataset 

will be used to fit models to make risk predictions and the test dataset will be available for evaluation.  
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4 Risk factors importance  
The cancer risk predictive analytics models will be used by HCPs in the iHelp pilots and therefore there is 

the need that they can understand the cause of a prediction. A clear requirement from the clinical pilot’s 

perspective is to provide ways to understand the knowledge extracted from the models developed 

regarding relationships either contained in data or learned by the model.  

In summary, there are model specific, and model agnostic interpretation methods based on whether the 

explanations are separated by the model itself. The former approach has the disadvantage that it binds the 

explanations to a specific model type, and it is difficult to switch to another to evaluate. The latter approach 

results in more flexibility since it can be applied to any model. Finally, there are models that provide a native 

way to explain their results/predictions. An overview of the various approaches follows. 

4.1 Interpretable models 
The Logistic Regression (LR) algorithm, a quite commonly used method in the medical AI area, belongs to 

the interpretable model’s family. The interpretation of the weights in logistic regression is based on the 

odds function wrapped in the logarithm (log odds), where the odds function refers to the probability of 

event divided by probability of no event (i.e., probability to develop or not pancreatic cancer). Then we 

compare what happens when we increase one of the feature values by 1, but instead of looking at the 

difference, we look at the ratio of the two predictions:  

𝑜𝑑𝑑𝑠𝑥𝑗 + 1

𝑜𝑑𝑑𝑠
 =  𝑒𝑥𝑝(𝑏𝑗) 

In essence, the feature importance corresponds to the exponential of the feature weight. This way, a 

change in feature x by one unit increases the log odds ratio by the value of the corresponding weight. In 

the list that follows we summarize the interpretations of a LR model based on the feature type:  

▪ Numerical feature: increasing the value of feature 𝑥𝑗  by one unit results in a change in the 

estimated odds by a factor of 𝑒𝑥𝑝(𝑏𝑗).  

▪ Categorical feature (binary): changing the feature 𝑥𝑗 from one category to the other changes the 

estimated odds by a factor of 𝑒𝑥𝑝(𝑏𝑗). 

▪ Categorical feature (multiple categories): one way to deal with multiple categories is to apply one-

hot encoding so that the interpretation for each category is equivalent to the interpretation of 

binary features.  
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Figure 4: Example of Logistic Regression algorithm 

The LR models suffer from the nonlinearity they impose in the relationship between features and outcome 

or where features are correlated. This can be addressed by tree-based models like DT algorithm. Tree based 

models work by splitting the data multiple times according to certain cut-off values in the features. During 

the splitting process different subsets of the dataset are created, resulting in each instance belonging to 

one subset. The predicted outcome in the edge nodes is based on the average outcome of the training data 

that belong to that node. DT takes a feature and determines which cut-off point minimizes the variance of 

y for a regression task.  

In terms of interpretation the process is the following: by traversing the tree starting from the root node 

the edges reveal the subsets involved. At the end, the last node reached reveals the predicted outcome.  

All the edges are connected by “AND”. Part of a DT regression tree, with allowed depth set to 2, fitted on 

the cervical cancer dataset is shown in Figure 5. The overall importance of a feature in a DT can be computed 

by going through all the splits for which the feature was used and measuring how much it has reduced the 

variance compared to its parent node. The sum of all importance is scaled to 100 in a way that each 

importance can be interpreted as a share of the overall model importance. 
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Figure 5: Regression tree fitted on the cervical dataset 

 

4.2 Model agnostic interpretation methods 
The model agnostic interpretation methods are independent of the underlying ML model, separating the 

explanations from the ML model itself. Model-agnostic interpretation methods can be further distinguished 

into local and global methods. Global methods describe how features affect the prediction on average 

while, in contrast, local methods aim to explain individual predictions.  

The SHAP (SHapley Additive exPlanations) method is a quite popular model agnostic method that supports 

both local and global explanations and enhance the explainability of an AI model. It computes the 

contribution of each feature to the prediction, thus offering a better explanation and interpretability of the 

prediction itself.  

In the context of global interpretability, the SHAP values can show how much each predictor contributes, 

either positively or negatively, to the target variable. This way it reveals not only the variable importance 

but also the positive or negative relationship between each variable with the target, as it is shown in Figure 

6. In the case of local interpretability each observation gets its own SHAP values. Each of the participants in 

the iHelp clinical pilots can have a personalised interpretation of their case that explains why they received 

that risk prediction and the contributions of the predictors. It is important to present the feature 

importance on each individual case rather than across the entire population.  
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Figure 6: SHAP value (impact on model output) 

4.3 Filter methods 
Filter feature selection methods use statistical techniques to evaluate the relationship between each input 

variable and the target variable, and these scores are used as the basis to choose (filter) those input 

variables that will be used in the model. Filter methods pick up the intrinsic properties of the features 

measured via univariate statistics instead of cross-validation performance. These methods are faster and 

less computationally expensive than wrapper methods. When dealing with high-dimensional data, it is 

computationally cheaper to use filter methods. We have purposely left the feature extraction techniques 

like Principal Component Analysis (PCA), Singular Value Decomposition (SVD), Linear Discriminant Analysis 

(LDA), etc., since they appear unsuitable for the context of this work where interpretability is most 

important for our models. These methods help to reduce the dimensionality of the data or reduce the 

number of variables while preserving the variance of the data. 

There are several filter methods we can exploit and that depends on the type of the input/output features. 

Before we present the most commonly used below, we briefly introduce the Statistical Hypothesis Testing.  

4.3.1 Statistical Hypothesis Testing 
In statistics, when we wish to start asking questions about the data and interpret the results, we use 

statistical methods that provide a confidence or likelihood about the answers. In general, this class of 

methods is called statistical hypothesis testing, or significance tests. In statistics, a hypothesis test calculates 

some quantity under a given assumption. The result of the test allows us to interpret whether the 

assumption holds or whether the assumption has been violated.   

The assumption of a statistical test is called the null hypothesis, or hypothesis zero (H0 for short). It is often 

called the default assumption, or the assumption that nothing has changed. A violation of the test's 

assumption is often called the first hypothesis, hypothesis one or H1 for short. H1 is really a short hand for 

some other hypothesis, as all we know is that the evidence suggests that the H0 can be rejected (BRO, 18). 
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▪ Hypothesis 0 (H0): Assumption of the test fails to be rejected. 

▪ Hypothesis 1 (H1): Assumption of the test does not hold and is rejected at some level of 

significance. 

Before we can reject or fail to reject the null hypothesis, we must interpret the result of the test. 

The results of a statistical hypothesis test must be interpreted for us to start making claims. There are two 

common forms that a result from a statistical hypothesis test may take, and they must be interpreted in 

different ways. They are the p-value and critical values. We describe a finding as statistically significant by 

interpreting the p-value. For example, we may perform a Student's t-test on two data samples and find that 

it is unlikely that the samples have the same mean. We reject the null hypothesis that the samples have the 

same mean at a chosen level of statistical significance (or confidence). A statistical hypothesis test may 

return a value called p or the p-value. This is a quantity that we can use to interpret or quantify the result 

of the test and either reject or fail to reject the null hypothesis. This is done by comparing the p-value to a 

threshold value chosen beforehand called the significance level. The significance level is often referred to 

by the Greek lower case letter alpha (α). A common value used for alpha is 5% or 0.05. A smaller alpha value 

suggests a more robust interpretation of the result, such as 1% or 0.1%. The p-value is compared to the pre-

chosen alpha value. A result is statistically significant when the p-value is less than or equal to alpha. This 

signifies a change was detected: that the default or null hypothesis can be rejected. The p-value is 

probabilistic. This means that when we interpret the result of a statistical test, we do not know what is true 

or false, only what is likely. Rejecting the null hypothesis means that there is sufficient statistical evidence 

that the null hypothesis does not look likely. Otherwise, it means that there is not sufficient statistical 

evidence to reject the null hypothesis. 

Some tests do not return a p-value. Instead, they might return a test statistic value from a specific data 

distribution that can be interpreted in the context of critical values. A critical value is a value from the 

distribution of the test statistic after which point the result is significant and the null hypothesis can be 

rejected. 

▪ Test Statistic < Critical Value: not significant result, fail to reject null hypothesis (H0). 

▪ Test Statistic ≥ Critical Value: significant result, reject null hypothesis (H1). 

It requires that you know the distribution of the test statistic and how to sample the distribution to retrieve 

the critical value. The p-value is calculated from the critical value. Again, the meaning of the result is similar 

in that the chosen significance level is a probabilistic decision on the rejection or failure of rejection of the 

base assumption of the test given the data. Results are presented in the same way as with a p-value, as 

either significance level or confidence level. For example, if a normality test was calculated and the test 

statistic was compared to the critical value at the 5% significance level, results could be stated as: The test 

found that the data sample was normal, failing to reject the null hypothesis at a 5% significance level or the 

test found that the data was normal, failing to reject the null hypothesis at a 95% confidence level.  

Many statistical hypothesis tests return a p-value that is used to interpret the outcome of the test. Some 

tests do not return a p-value, requiring an alternative method for interpreting the calculated test statistic 

directly. A statistic calculated by a statistical hypothesis test can be interpreted using critical values from 

the distribution of the test statistic. Some examples of statistical hypothesis tests and their distributions 

from which critical values can be calculated are as follows: 
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▪ Z-Test: Gaussian distribution.  

▪ Student's t-Test: Student's t-distribution. 

▪ Chi-Squared Test: Chi-Squared distribution. 

▪ ANOVA: F-distribution. 

Critical values are also used when defining intervals for expected (or unexpected) observations in 

distributions. Calculating and using critical values may be appropriate when quantifying the uncertainty of 

estimated statistics or intervals such as confidence intervals and tolerance intervals. Note, a p-value can be 

calculated from a test statistic by retrieving the probability from the test statistics cumulative density 

function (CDF). 

Being equipped with the basics on Hypothesis Testing, p-values and critical values, in the next sections we 

briefly present the most commonly used filter methods and classify them in categories that are based in 

the input and output type of data. 

4.3.2 Numerical Input, Numerical Output 
Correlation coefficients are used to measure how strong a relationship is between two variables such as 

blood pressure and cholesterol level. The rationale behind using correlation for feature selection is that the 

right variables are highly correlated with the target and at the same time, they should be uncorrelated 

among themselves (statisticshowto).  

For that reason, if two variables are correlated, we can predict one from the other. Therefore, if two 

features are correlated, the model only needs just one of them (does not matter which one), as the second 

one does not add additional information and thus it can be discarded. We can also compute multiple 

correlation coefficients to check whether more than two variables are correlated to each other. This 

phenomenon is known as multicollinearity. An example is linear regression, where one of the offending 

correlated variables should be removed to improve the skill of the model. We may also be interested in the 

correlation between input variables with the output variable in order provide insight into which variables 

may or may not be relevant as input for developing a model. The structure of the relationship may be 

known, e.g., it may be linear, or we may have no idea whether a relationship exists between variables or 

what structure it may take. Depending on what is known about the relationship and the distribution of the 

variables, different correlation scores can be calculated.  

Nevertheless, correlations only describe the relationship, they do not prove cause and effect. Correlation 

is a necessary, but not a sufficient condition for determining causality. Three requirements to infer a causal 

relationship are the following:  

▪ A statistically significant relationship between the variables 

▪ The causal variable occurred prior to the other variable 

▪ There are no other factors that could account for the cause 

Correlation studies do not meet the last requirement and may not meet the second requirement. However, 

not having a relationship does mean that one variable did not cause the other (researchbasics).  

The Pearson's correlation coefficient can be used to summarize the strength of the linear relationship 

between two data samples. The Pearson's correlation coefficient is calculated as the covariance of the two 
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variables divided by the product of the standard deviation of each data sample. It is the normalization of 

the covariance between the two variables to give an interpretable score.  

𝑃𝑒𝑎𝑟𝑠𝑜𝑛′𝑠 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 = 𝑐𝑜𝑣(𝑥, 𝑦)/𝑠𝑡𝑑𝑒𝑣(𝑥) × 𝑠𝑡𝑑𝑒𝑣(𝑦) 

The use of mean and standard deviation in the calculation suggests the need for the two data samples to 

have a Gaussian or Gaussian-like distribution. The result of the calculation, the correlation coefficient can 

be interpreted to understand the relationship.  The coefficient returns a value between -1 and 1 that 

represents the limits of correlation from a full negative correlation to a full positive correlation. A value of 

0 means no correlation. The value must be interpreted, where often a value below -0.5 or above 0.5 

indicates a notable correlation, and values below those values suggests a less notable correlation see for 

example Figure 7 below.  

 

Figure 7: Graphs showing a correlation of -1, 0 and +1 

The Pearson's correlation is a statistical hypothesis test that does assume that there is no relationship 

between the samples (null hypothesis). The p-value can be interpreted as follows: 

▪ p-value ≤ alpha: significant result, reject null hypothesis, some relationship (H1). 

▪ p-value > alpha: not significant result, fail to reject null hypothesis, no relationship (H0). 

The Pearson's correlation coefficient can be used to evaluate the relationship between more than two 

variables. This can be done by calculating a matrix of the relationships between each pair of variables in the 

dataset. The result is a symmetric matrix called a correlation matrix with a value of 1.0 along the diagonal 

as each column always perfectly correlates with itself.  

4.3.3 Numerical Input, Categorical Output 
Analysis of variance (ANOVA) is an analysis tool used in statistics that splits an observed aggregate 

variability found inside a data set into two parts: systematic factors and random factors. The systematic 

factors have a statistical influence on the given data set, while the random factors do not. Analysts use the 

ANOVA test to determine the influence that independent variables have on the dependent variable in a 

regression study (ANOVA). 

The t- and z-test methods developed in the 20th century were used for statistical analysis until 1918, when 

Ronald Fisher created the analysis of variance method (M., S., 18). 
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ANOVA is also called the Fisher analysis of variance, and it is the extension of the t- and z-tests. The term 

became well-known in 1925, after appearing in Fisher's book, "Statistical Methods for Research Workers” 

(FIS, 92). It was employed in experimental psychology and later expanded to subjects that were more 

complex. 

The key points of the ANOVA approach are: 

▪ Analysis of variance, or ANOVA, is a statistical method that separates observed variance data into 

different components to use for additional tests. 

▪ A one-way ANOVA is used for three or more groups of data, to gain information about the 

relationship between the dependent and independent variables. 

▪ If no true variance exists between the groups, the ANOVA's F-ratio should equal close to 1. 

The Formula for ANOVA is:  

𝐹 =  
𝑀𝑆𝑇

𝑀𝑆𝐸
 

Where F=ANOVA coefficient, MST=Mean sum of squares due to treatment, MSE=Mean sum of squares due 

to error.  

The ANOVA test is the initial step in analyzing factors that affect a given data set. Once the test is finished, 

an analyst performs additional testing on the methodical factors that measurably contribute to the data 

set's inconsistency. The analyst utilizes the ANOVA test results in an f-test to generate additional data that 

aligns with the proposed regression models. 

The ANOVA test allows a comparison of more than two groups at the same time to determine whether a 

relationship exists between them. The result of the ANOVA formula, the F statistic (also called the F-ratio), 

allows for the analysis of multiple groups of data to determine the variability between samples and within 

samples. 

If no real difference exists between the tested groups, which is called the null hypothesis, the result of the 

ANOVA's F-ratio statistic will be close to 1. The distribution of all possible values of the F statistic is the F-

distribution. This is actually a group of distribution functions, with two characteristic numbers, called the 

numerator degrees of freedom and the denominator degrees of freedom. 

We may have multiple data samples that are related or dependent in some way. For example, we may 

repeat the same measurements on a subject at different time periods. In this case, the samples will no 

longer be independent; instead, we will have multiple paired samples. We could repeat the pairwise 

Student's t-test multiple times. Alternately, we can use a single test to check if all of the samples have the 

same mean. A variation of the ANOVA test can be used, modified to test across more than 2 samples. This 

test is called the repeated measures ANOVA test. 

The default assumption or null hypothesis is that all paired samples have the same mean, and therefore the 

same distribution. If the samples suggest that this is not the case, then the null hypothesis is rejected and 

one or more of the paired samples have a different mean. 

▪ Fail to Reject H0: All paired sample distributions are equal. 

▪ Reject H0: One or more paired sample distributions are not equal.  



GA-101017441       

 D4.2 - Personalised health modelling and predictions II 26 

4.3.4 Categorical Input, Categorical Output 
Information gain (relative entropy, or Kullback-Leibler divergence), in probability theory and information 

theory, is a measure of the difference between two probability distributions. It evaluates a feature X by 

measuring the amount of information gained with respect to the class (or group) variable Y, defined as 

follows:  

𝐼(𝑋) = 𝐻 (𝑃(𝑌) − 𝐻(𝑃(𝑌/𝑋)) 

Specifically, it measures the difference the marginal distribution of observable Y assuming that it is 

independent of feature X(P(Y)) and the conditional distribution of Y assuming that is dependent of X 

(P(Y/X)). If X is not differentially expressed, Y will be independent of X, thus X will have small information 

gain value, and vice versa (L., L., V., 11). 

Moreover, the Chi-Squared test is a statistical hypothesis test that assumes (the null hypothesis) that the 

observed frequencies for a categorical variable match the expected frequencies for the categorical variable. 

A categorical variable is a variable that may take on one of a set of labels. An example might be sex, which 

may be summarized as male or female. The variable is sex and the labels or factors of the variable are male 

and female in this case. We may wish to look at a summary of a categorical variable as it pertains to another 

categorical variable. For example, sex and interest, where interest may have the labels science, math, or 

art. We can collect observations from people collected with regard to these two categorical variables; for 

example:  

 

Figure 8: Example of a small categorical dataset 

We can summarize the collected observations in a table with one variable corresponding to columns and 

another variable corresponding to rows. Each cell in the table corresponds to the count or frequency of 

observations that correspond to the row and column categories. Historically, a table summarization of two 

categorical variables in this form is called a contingency table, because the intent is to help determine 

whether one variable is contingent upon or depends upon the other variable. For example, does an interest 

in math or science depend on gender, or are they independent? This is challenging to determine from the 

table alone; instead, we can use a statistical method called the Pearson's Chi-Squared test. The test 

calculates a statistic that has a Chi-Squared distribution, named for the Greek lowercase letter chi (χ).  

Given the Sex/Interest example above, the number of observations for a category (such as male and female) 

may or may not be the same. Nevertheless, we can calculate the expected frequency of observations in 

each Interest group and see whether the partitioning of interests by Sex results in similar or different 

frequencies. The Chi-Squared test does this for a contingency table, first calculating the expected 

frequencies for the groups, then determining whether the division of the groups, called the observed 

frequencies, matches the expected frequencies. The result of the test is a test statistic that has a Chi-

Squared distribution and can be interpreted to reject or fail to reject the assumption or null hypothesis that 

the observed and expected frequencies are the same, that the variables are independent of each other. 
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The variables are considered independent if the observed and expected frequencies are similar, that the 

levels of the variables do not interact, are not dependent. 

We can interpret the test statistic in the context of the Chi-Squared distribution with the requisite number 

of degrees of freedom as follows: 

We can interpret the test statistic in the context of the Chi-Squared distribution with the requisite number 

of degrees of freedom as follows:  

▪ Test Statistic ≥ Critical Value: significant result, reject null hypothesis, dependent (H1). 

▪ Test Statistic < Critical Value: not significant result, fail to reject null hypothesis, independent (H0).  

The degrees of freedom for the Chi-Squared distribution is calculated based on the size of the contingency 

table as:  

𝑑𝑒𝑔𝑟𝑒𝑒𝑠 𝑜𝑓 𝑓𝑟𝑒𝑒𝑑𝑜𝑚 = (𝑟𝑜𝑤𝑠 − 1) ∗ (𝑐𝑜𝑙𝑠 − 1) 

In terms of a p-value and a chosen significance level (alpha), the test can be interpreted as follows: 

▪ p-value≤ alpha: significant result, reject null hypothesis, dependent (H1). 

▪ p-value > alpha: not signi_cant result, fail to reject null hypothesis, independent (H0). 

For the test to be effective, at least five observations are required in each cell of the contingency table 

(BRO, 18). 

Another approach is the variance threshold, which is a simple baseline approach to feature selection. It 

removes all features which variance does not meet some threshold i.e., features with not much useful 

information. By default, it removes all zero-variance features, i.e., features that have the same value in all 

samples. We assume that features with a higher variance may contain more useful information but note 

that we are not taking the relationship between feature variables or feature and target variables into 

account, which is one of the drawbacks of filter methods (ANALYTICS). 
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5 Risk Predictions 
One of the main tasks of iHelp is to provide Personalised risk predictions for patients to discern the risk 

level of developing pancreatic cancer for each person individually. For that purpose, large retrospective 

datasets with clinical (primary) data will be made available from the pilots to train AI models that make 

these predictions. In the iHelp project, that EHR data will be combined with secondary data from 

questionnaires and wearables to form HHR data. In the context of this task we will mainly focus on using 

EHR, which is technically tabular data, fit models to them, make predictions about the patient's risk level 

and estimate the most important risk factors. This paragraph discusses the main concepts behind some of 

these models. 

Logistic Regression (LR) is the simplest form of Supervised Learning for Classification. The core concept is 

that the input variables are multiplied by the weights of the model and the result passes by a nonlinear 

function, usually Sigmoid function. This function is given by the formula 1/(1+exp(-x)) and is bounded in the 

range (0,1). In this manner the algorithm maps the inputs to a probability space where values close to 1 for 

inputs belonging to the relevant class whereas values close to 0 don’t. Using a threshold value t, the 

algorithm estimates that only observations whose output surpasses that value belong to the relevant class. 

By using a cost function to compare the algorithm’s predictions to the ground truth an optimization 

algorithm (such as gradient descent) can be utilized to train the model by estimating the changes that need 

to be made to the weights of the model so as to minimize the cost function. Logistic regression is a simple, 

fast and easily explainable method. Due to its simplicity however, it tends to underfit since it cannot easily 

capture nonlinear relationships that exist in real world data.  

 

Figure 9: Schematic of a logistic regression model 

Perhaps the simplest non-linear classifier is the DT. In this algorithm a tree model is built so that each node 

tests the value of a feature and the respective branches the outcome of that test. The upper nodes contain 

tests of the attributes with highest information gain and the tests usually have binary outcomes. The lowest 

nodes are called leaves and contain the final results with regard to the problem being addressed (e.g classes 

in a classification problem or values in imputation). Apart from being fast compared to more complex 

methods this algorithm is also highly explainable since it is quite straightforward. Finally, during the training 

process, it implements feature selection by evaluating each feature according to the information gain it 
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provides. However, training must start from scratch in case new data is provided and because of the linear 

boundaries that split data it is hard to estimate highly nonlinear data without overfitting.  

 

Figure 10: Schematic of a Decision Tree Classifier 

Random Forest (RF) is a method based on DT. The core concept is that the algorithm generates many 

different DTs with various parameters and trains them on different random datasets that are subsets of the 

original. Such techniques that combine many base models are called ensemble techniques. When training 

is finished the algorithm has many trained DTs and uses all of them to generate the final answer to the 

problem. In the case of classification, the model outputs the most selected class whereas in Regression the 

output is the mean of all the DT’s answers. RFs while slower than DTs do overcome it’s overfitting tendency 

while also including the feature selection process that happens in each dt. However, they compromise on 

explainability and must also be retrained from scratch with all the available data.  

 

Figure 11: Schematics of the first 5 trees of a Random Forest Classifier 

Another ensemble technique based on DTs is Gradient Boosting (GB). The difference with Random Forests 

is that GB generates the next tree by taking into consideration it’s previous mistakes instead of randomly 

generating it. It does this by making a simple initial estimation and then fitting a DT on the residual values, 

meaning the distance of the estimation from the true values. The first estimation derives from the previous 

by adding the output value of the DT scaled by a learning rate. Each next DT is trained on the residuals 

(values in the case of regression or logits in the case of classification) of all of the previous until they don’t 

influence the model anymore or a condition is reached. This way the model bases its final decisions on the 

initial naive estimation “corrected” by multiple models with each model learning from the mistakes of all 

of the previous models. This technique makes use of the non-linearity of the DT but also has a way to learn 

from its own mistakes as it is trained. However, like with Random Forests it compromises on explainability 

to achieve better performance.  
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Figure 12: Schematic of a Gradient boosting Classifier’s trees 

Neural Networks (NNs), and especially feedforward networks aka multilayer perceptrons, is a method that 

is similar to Logistic Regression. They also estimate a nonlinear classification function by calculating the 

weight values that minimize the cost function. The main difference with LR is that in the case of neural 

networks more layers are added between the inputs and the outputs. This way the model has the ability to 

estimate more complex nonlinear functions and achieve better results. However, as the layers increase so 

does the complexity of the model and the calculation of the weight values since in this case there is 

dependence between weights of different layers. For example, if two features have very large numerical 

differences the next layers may amplify these differences in a way that the model is not able to focus on 

the smaller features. For this reason, data fed to multilayer perceptrons usually go through a pre-processing 

step where scaling is applied. In addition, instead of a gradient descent an algorithm called backpropagation 

is used to calculate the correct changes that need to be made to the weights according to their contribution 

to the total error.  

 

Figure 13: Schematic of a shallow NN 

A by-product of the model’s increased complexity is the increased potential of overfitting. It is thus very 

important to utilize techniques that avoid overfitting s.a. cross validation and weight regularization. It is 

also very important to control the size of the network since if it’s too large apart from being prone to 

overfitting it will also require more computations. However, there is no general guideline to find the correct 

size of a NN and this is usually estimated during the tuning phase where many different models are trained 

to estimate the best hyperparameters. Despite their higher computational needs and slower training 

speeds, neural networks are extremely flexible and can be retrained according to will so long as the data 

are in the same format, which makes it a great candidate for a federated learning workflow. However, 

because of the higher complexity of the model it is sometimes hard to completely explain the knowledge it 

has aggregated.  
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5.1 SotA algorithms for pancreatic cancer prediction 
Pancreatic Cancer is a heavy burden on public health. Patients suffering from pancreatic cancer have very 

low survival rates due to the difficulty of early identification. The bibliography regarding models that are 

based on EHR shows that SotA models reach Area Under the Curve (AUC) scores of about 0.7 - 0.85 (M., C., 

G., 16), (S., K., N., + 18), (M., H., N., + 19) for testing sets under specific circumstances (s.a. having new-

onset diabetes). Many implementations use Logistic Regression (B., K., T., + 19), (T., C., 19), (M., R., B., + 21) 

as the algorithm with the exception of Hsieh et al (H., S., L., + 18) and Muhammad et al (M., H., N., + 19) 

who utilised artificial neural networks. Muhammad et al claim to have investigated a variety of other cancer 

types such as lung cancer, prostate cancer, endometrial cancer, prostate cancer and colorectal cancer using 

Artificial Neural Network (ANN), Support Vector Machines (SVM), DT, Naive Bayes, LDA and LR. Their results 

indicated that in general ANNs achieve the best performance compared to other algorithms in terms of 

sensitivity, specificity and AUC. Since we have found no study where a plethora of models have been 

implemented and compared it is interesting to verify these indications as well as test SotA models such as 

GB which have been shown to achieve great performance on tabular data.  

5.2 Hyperparameter optimization 
Hyperparameter optimization (aka tuning) is the process of choosing a good set of hyperparameters for a 

learning algorithm. Hyperparameters are quantities or entities such as the learning rate, loss function, 

optimization algorithm of a LR/NN, max tree depth/leaf nodes of a DT, number of trees of a RF/GB or 

number/type/amount of neurons of a NN layer. In contrast to the parameters of the models (weights, 

biases, etc) they do not derive from the training data but are used to influence the learning process.  

Simple methods for hyperparameter tuning include grid search where a grid of possible values is created 

and in each iteration, a combination of them is tried in a specific order, random search where the same 

process happens but with a random order. Since hyperparameter tuning is a process where the aim is to 

minimize the cost function of a trained model by changing some hyperparameters it can also be thought of 

as an optimization problem. Thus, classical optimization algorithms like Bayesian optimization can be 

applied. For that purpose, algorithms have been specifically designed to perform tuning such as Hyperband, 

Population based training, Bayesian optimization combined with Hyperband (BOHB).  

Different algorithms have different parameters to tune and of course may be implemented in different 

frameworks. The training processes of different models of the same algorithm are usually irrelevant to one 

another and can be done in parallel. Therefore, it is desired to have a tuning framework that supports a 

variety of frameworks (i.e., sklearn, tensorflow, pytorch, xgboost) and can also parallelize the training of 

different candidate models to speed up the tuning process so as to completely utilize the computer’s 

resources. Ray Tune apart from providing the above also implements SotA algorithms (i.e., Asynchronous 

Successive Halving (ASHA), Population based training, Baysean Optimisation & Hyperband (ΒΟΗΒ) for 

choosing hyperparameters that use early stopping in case a model underperforms to search for a more 

promising model. Also, since it is based on Ray, a distributed computing system it has the ability to be 

configured to utilize more machines by doing distributed optimization. Finally, it also implements cross 

validation so that the models are evaluated in a way that handles overfitting. 
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It should be noted that this final option will not be used in the case of sensitive hospital data except if there 

is a need for further speedup of the training process. In that case it will be using computational resources 

of the relevant institution as nodes so that no data leaves the hospital’s premises. 

5.3 Model Evaluation 
When evaluating a ML model, it is important to use a method that does not give out a biased score to be 

sure that the model will be able to perform just as well in the deployment phase as it did when trained. 

Therefore, it is important to actually split the available data and hold out a sample to use for an unbiased 

estimate after the training process is finished. It is also important to be able to evaluate the model while it 

is being tuned on the training dataset to get an early indication of the model’s potential. For the above 

reasons the datasets are usually split into Train, Validation and Test sets. If there is need for more data in 

the training set then the train-validation split can occur during training time in a k-fold cross-validation 

manned where after the train-test split, the test set is split into k groups and training happens by holding 

out each next group as a temporary validation set in a round robin fashion. That way the model actually 

trains on all the data but in each iteration it tries to use the remaining k-1 groups to estimate the held out 

group correctly.   

Another thing that is important to take care of when splitting the datasets is to ensure that each dataset 

should have enough examples for each class to be estimated. This can be easily achieved by splitting the 

initial dataset according to each class, then splitting the classes amongst themselves and finally merging 

the respective datasets. 

When evaluating datasets with multiple classes or unbalanced classes accuracy can be very misleading as a 

metric. That is because if the model focuses only on specific classes with high prevalence it may achieve 

good accuracy even when ignoring all other classes. In such cases it is important to use other evaluation 

measures instead.  

Such measures are sensitivity and specificity which measure the percent of correct positive estimations out 

of all positive estimations and of correct negative estimations out of all negative estimations for each 

feature. A good binary classifier will have both high sensitivity and high specificity meaning that it will not 

only correctly estimate that an observation belongs to a class, but it will also not mistakenly put 

observations that belong in other classes in that class. To get a better understanding of a model’s 

performance it is common practice to measure the sensitivity against the specificity of the model while 

varying its decision threshold. By calculating these values for thresholds from 0 to 1 we get the Receiver 

Operating Characteristic (ROC) curve which is one of the best indicators of the model’s performance. Since 

what we want from a model is to produce more True Positive (TP) than False Positive (FP) classifications, a 

good model will have an ROC curve that leans towards the top left corner of the plot.  

In the figure below (Figure 14) we can see such a curve plotted for three different datasets. It is clearly 

visible that this model performs better on the train set than on the other sets. Such a thing is an indication 

of overfitting, and the tuning process should start anew. It is common practice to quantify the performance 

of the datasets by measuring the AUC and use it as a metric to be able to compare models without having 

to plot their curves.  
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Figure 14: ROC curves of a model for the Train, Validation and Test set1 

Another useful measure for a clinician would be the Positive Predictive Value (PPV) and Negative 

Predictive Value (NPV). These measure the probability that the model is right if it predicts a class and the 

probability that the model is right if predicts an observation doesn’t belong to a class.  

  

 
1 This model has overfit since there is a large gap between the performance on the training set and the validation and test sets. 
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6 Connection with the Pilots: State of the art  
The aim of this Section is to gather all the necessary information about the available datasets that will be 

used under this Task, for the initial implementation of the AI algorithms. More specifically, each pilot 

partner gives a description of the already shared datasets and the ones that will be shared in the future. 

Also, the desirable outcomes described above, aim to shape the methodology to be developed for the 

implementation of the AI models. Finally, it is of major importance to have a description for possible pre-

existing algorithms (out of iHelp project), that could contribute to the building of the basis of the models in 

iHelp. All these issues are addressed in the following sub-chapters by each partner, separately.  

6.1 UNIMAN pilot 

6.1.1 Description of available datasets & known risk factors 
The University of Manchester (UNIMAN) pilot has access to various datasets (mostly publicly available) as 

well as newly generated data.  This will allow us to employ a range of conventional and emerging 

approaches to build risk prediction models for pancreatic cancer. Publicly available datasets include 

▪ UK Biobank 
▪ Lifelines 
▪ The National Health and Nutrition Examination Survey (NHANES) 
▪ Alberta Tomorrow Project (ATP) 

 
Based on the previous work of UNIMAN researchers in the area of cancer research, known risk factors for 

pancreatic cancer are cigarette smoking, heavy alcohol consumption, periodontal disease, increased BMI, 

low physical activity, increased consumption of red/processed meat and dairy products, VitD 

(controversial), chronic pancreatitis, hepatitis B infection, SLE, Diabetes, Helicobacter Pylori infection, usage 

of PPI (Proton-pump inhibitor), chemicals and heavy metals: beta-naphthylamine, benzidine, pesticides, 

asbestos, benzene, and chlorinated hydrocarbon, etc. 

6.1.2 Description of case study & its desirable outcomes 
UNIMAN pilot has already developed a risk prediction model using the UK data. The model applied relative 

risk and prevalence of risk in the general population then we compute lifetime risk for each decade of age 

group.  By using this approach, the UNIMAN pilot is able to demonstrate an individual 10-year risk compared 

to general population at the same age group.  The risk prediction developed using established estimated 

risk from literature review, so the UNIMAN pilot purpose is to update the list of the risk factors and also its 

prevalence. 

6.1.3 Predictive analytics for risk of developing PC based on genomic 
and epigenetic markers 

The UNIMAN team has developed the Risk Estimation for Lifestyle Enhancement Combined Test (REFLECT) 

model and Risk Estimation for Additional Cancer Testing (REACT) model for cancer risk prediction. The 

REFLECT model is a lifestyle-related risk prediction tool via Web-based interface for 11 different cancers, 

which includes pancreatic cancer.  The method is derived from YourDiseaseRisk, which were developed for 

the US population and which has been adapted. For constructing the algorithms to calculate individual risk, 

the prevalence of factors related to each cancer type in the UK population and 10-year estimated cancer-

specific risk based on UK figures were applied. An individual’s cancer risk is compared to the average risk in 
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the population for someone of the same age and sex.  Results are presented in three categories: lower than 

average, average, and higher than average. In our pilot study, all the consented participants will complete 

REFLECT assessment initially.  

The REACT model is a symptom-based cancer risk assessment tool offered through a Web-based interface 

in a community setting. REACT is a tool to assist people in deciding whether or not they need to consult 

their general practitioner (GP) about potentially cancerous symptoms. This tool assesses the symptoms of 

5 major cancers affecting people in the UK (i.e., bowel cancer, breast, ovarian, lung, and prostate cancer). 

Risk estimation in REACT is based on the Risk Assessment Tools (RATs) model, which is utilizing a 

representative record of symptoms. Each clinical symptom listed in the original RAT model (e.g. 

constipation or dyspnea, terms easily understood by GPs but necessarily not by a layperson) was translated 

into layperson language to be used in the REACT questionnaire. To raise awareness of symptoms that may 

be indicative of pancreatic cancer amongst the public. We are also building the symptom-related risk 

prediction model for pancreatic cancer based on our previous REACT model.  

In the iHelp project, the UNIMAN pilot will collect data on biomarkers including genetic and methylation 

markers.  These markers will be used to assess their incremental risk based on their genetic footprint and 

risk incur from their lifestyle which impose on their epigenetic markers.  These markers can be used to 

enhance the predictive value for pancreatic cancer.  

Genetic markers- Single nucleotide polymorphisms (SNPs) are one of the common types of individuals’ 

genetic variants, which have been used to predict the risk of developing various diseases, including coronary 

heart disease, diabetes, and cancers. Various susceptible loci for pancreatic cancer have been identified by 

Genome-Wide Association Study (GWAS). The previous studies have built polygenic risk scores (PRS) from 

SNPs, and the result revealed that the PRS was associated with pancreatic ductal adenocarcinoma risk. 

Methylation markers- DNA methylation (DNAm) is one of the epigenetic changes identified by transferring 

a methyl group to the C-5 on the cytosine. DNA methylation is generally referring as CpG methylation, which 

occurs on cytosines followed by guanine residues (CpG). DNAm has emerged to be a surrogate for biological 

ages; previous researchers have proposed different epigenetic clocks to estimate age-related diseases. 

Some well-known epigenetic clocks include Hannum’s, Horvath’s and Levine’s clocks. Epigenetic clocks are 

a potential measurement to predict future morbidity and mortality outcomes. It is to be noted that DNAm 

was highly correlated to lifestyle factors, including dietary, physical activity, obesity, and smoking. Unlike 

SNPs, DNAm can be reversed based on lifestyle changes. In sum, genetic predisposition is constituted since 

birth; in contrast, DNAm could be modulated by lifestyle change.  

6.1.3.1 Methodology 

The UNIMAN pilot is a community-based pilot.  To enable pancreatic cancer risk mitigation, we adopted a 

2-step approach.  The first step is to identify individuals at above average risk of pancreatic cancer as 

compared to risk from population at the same age group (5 years) using the REFLECT risk assessment 

application.  The second step is then to assess their genetic and epigenetic risks in these at-risk individuals.   

Development of the REFLECT model 

To develop a UK version of a cancer risk prediction model for pancreatic cancer, the data required to 

develop these models are: 1) the identified list of risk factors for inclusion; 2) point estimates of the relative 

risk for each risk factor; and 3) population prevalence for each of the exposures.  To be able to compare 
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individual risk to the population, further information on cancer incidence by 10-year age bands are 

required. We used these data to compute risk score.  Further details can be found in (L., U., C., + 17).  

Development of the REACT web tool 

Using the questions and risk estimates from the pre-existing cancer “RAT” (Risk Assessment Tool) and the 

original research from which this was derived, the web tool was developed and subsequently extensively 

modified as a result of discussion in the steering group.  The web tool is in the form of an on-line 

questionnaire where users work through the questionnaire which asks questions about specific symptoms, 

and obtain a risk estimation and explanation and signposting at the end. 

Below, we describe the methodology we will use to analyse the biomarkers. 

Genomic biomarker: 

First, we will perform QC, imputation, and annotation of genotyped data. Next, we will calculate the 

polygenetic score (PRS) from processed genotyped data by summarising the common variants (risk alleles) 

to evaluate the risk for genetic predisposition. We will use the classic PRS formula, where βk is the log odds 

ratio (OR) for SNPk from the previous GWAS, SNPk is the allele dosage for SNPk, and n is the included SNPs 

number in this study. 

𝑃𝑅𝑆 =  𝛽1 × 𝑆𝑁𝑃1 + 𝛽2 × 𝑆𝑁𝑃2 + ⋯ + 𝛽𝑘 × 𝑆𝑁𝑃𝑘 … + 𝛽𝑛 × 𝑆𝑁𝑃𝑛   

We will assign a threshold of scores from published works to derive score stratification into tertile.  

Epigenomic biomarkers: 

In terms of DNAm data analysis, UoM will use methylation QC data to compute Hannum, Horvath and 

Levine clocks and the available calculator provided by Hovarth’s group. Data can be uploaded as 

anonymised data, and methylation age can then be computed for all three clocks using this platform. We 

will investigate epigenetic age acceleration by computing the residuals from regressing DNAm age on 

chronological age and blood cell composition. It is to be noted that epigenetic age acceleration is 

independent of chronological age and blood cell composition. 

6.1.3.2 Results 

Here we describe results that can be generated from biomarkers. 

Genomic biomarkers: 

The PRS score will be stratified into quartile based on non-cancer PRS score’s value from the UK population 

with the lowest quartile will be used as the reference group. At the individual level, we will inform our 

participants which quartile they belong to and what this means to their risk.  

Epigenomic biomarkers: 

We will summarise the biological age from the different Epigenetic clocks. At the individual level, we will 

provide our participants their biological age before and after 6 months’ prevention group study.  
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6.2 FPG pilot 

6.2.1 Description of available datasets & known risk factors 
The Agostino Gemelli University Policlinic (FPG) pilot has access to a dataset related to patients affected by 

pancreatic cancer that underwent surgery followed by adjuvant (chemo-)radiotherapy. According to the 

fact that the real-world data and the patient reported outcomes that will be analysed in the perspective 

phase are not currently collected in a database, the main role of this retrospective dataset will be the 

opportunity to have a comparison cohort for the subgroup of patients that will be enrolled with similar 

clinic-pathological features and in the same setting (adjuvant (chemo-)radiotherapy). Patients of 

perspective phase will include also other radiotherapy treatment setting; in that case the retrospective 

analysis will be limited according to the fact that patients are structurally not comparable. 

6.2.2 Description of case study & its desirable outcomes 
Primary aim of the study is to use AI-based analytic techniques to analyse the role of real-world data (RWD) 

in prediction of toxicities, quality of life (QoL), and survival outcomes in patients affected by pancreatic 

cancer. Any further ongoing elaboration of acquired data, realised, and selected also using AI algorithm, 

will be proposed to clinicians adjunctively to the data currently acquired in good clinical practice. 

Secondary aims of the study are:  

▪ Analysis and development of a dedicated RWD infrastructure for patients affected by pancreatic 

cancer;  

▪ Identify possible recommendation for a better treatment acceptation and tolerability;  

▪ The evaluation of patients and clinicians experience of the IoT and the dedicated application in 

terms of better understanding, awareness, usefulness, and effectiveness; 

▪ To allow data interoperability;  

▪ Sharing anonymised data or model with iHelp consortium platform. 

6.2.3 Previous AI algorithms, relevant outcomes & risk factors 
identified 

To the best of FPG pilot knowledge there are no AI-based models based on RWD able to predict 

radiotherapy toxicity, but several papers show that acute and late toxicity can occur in intensity modulated 

radiotherapy (B., G., B., 15), (J., Y., P., + 19).  

6.2.4 Development of toxicities risk prediction model 

The toxicities risk prediction model aims to address the following toxicity related outcomes: 

▪ Acute upper GI 

o classes: G1, G2, G3, G4, G5 

▪ Late upper GI 

o classes: G1, G2, G3, G4, G5        

▪ Need for hospitalization 

o classes: Yes, No 

▪ Haematological toxicity 
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o classes: anaemia, neutropenia, thrombocytopenia 

6.2.4.1 Pre-processing 

The FPG pilot has provided a dataset with sample values. That dataset needs to go through a pre-processing 

pipeline in order to be transformed as appropriate input in the models that will be described in the next 

sections. The pre-processing techniques that are applied on the sample dataset provided are the following:  

Outlier detection: 

An outlier is an individual point of data that is distant from other points in the dataset. It is an anomaly in 

the dataset that may be caused by a range of errors in capturing, processing or manipulating data.  

Therefore, identifying and dealing with outliers is an integral part of working with data, since in the training 

data they may skew the model, lowering its accuracy and overall effectiveness. There are several 

approaches for outlier detection. In this dataset we aimed for the detection of both univariate and 

multivariate outliers. The former is a case with an extreme value that falls outside the expected population 

values for a single variable while the latter is a combination of unusual scores on at least two variables. For 

the univariate outliers we used Z-score, one of the most commonly used tools in determining outliers. Z-

score is just the number of standard deviations away from the mean that a certain data point is. For the 

multivariate outliers we have employed the Mahalanobis distance which measures the number of standard 

deviations that an observation has from the mean of a distribution. 

Imputation:  

Briefly, this method is the process of replacing missing data with substituted values. We remind the reader 

that we have thoroughly analysed this technique in Section 3.2. For both the categorical and the numerical 

missing values in the dataset we have used the KNN algorithm with rounding and without respectively. To 

this specific dataset the KNN outperformed single value algorithms such as mean, median and most 

frequent value imputation algorithms (where we substituted all the missing values with the respective 

mean/median/most frequent value of each specific feature) as well as multiple value imputation algorithms 

such as iterative and random forest imputation algorithms. Figure 15 summarizes the imputation methods 

evaluated and the selected ones.  

 

Figure 15: Selected imputation methods 
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Under/Over sampling: 

We plan to apply under sampling since electronic health records (EHR) are sensitive data. Under sampling 

techniques, remove examples from the training dataset that belong to the majority class in order to better 

balance the class distribution. 

Eliminating unnecessary features:  

Another potential pre-processing step that can be applied in order to improve model’s performance is to 

identify the most correlated features and remove them. Moreover, features that we know in advance that 

they do not provide any additional information with regard to the target prediction are also removed. In 

addition, features corresponding to measurement units are not taken into consideration.  

Creation of embeddings:  

Many features in the dataset are categorical and therefore there was the need to apply one hot encoding 

technique. For instance, the ‘overall survival’ feature contained two possible values, either ‘dead’ or ‘alive’.  

6.2.4.2 Baseline models / Initial approach 

The problem of predicting the toxicities of interest is considered a classification problem where the 

predictor classes refer to the grade of the toxicity in question. For example, both acute upper GI and late 

upper GI toxicities belong to one of the following five grades: G1, G2, G3, G4 and G5, indicating the severity 

of the corresponding toxicity.  

The retrospective dataset consists of base features and blood exams related features. Specifically, the base 

features include information about CA19-9 marker diagnosis, TNM staging, radiotherapy related features 

like settings and techniques applied and more while blood exams include measurements about proteins 

like haemoglobin, platelets, white_blood_cells, neutrophils, lymphocytes, proteins, urea_nitrogen, c-

reactive_protein, creatinine, albumin, alt, ast, ggt, alkaline_phosphatase, lactic_dehydrogenase, 

direct_bilirubin, indirect_bilirubin, total_bilirubin, inr and ca19_9.  

A set of classification algorithms has been implemented in order to predict the toxicities of interest. An 

overview of the ML models implemented is depicted in the list that follows: 

▪ Logistic Regression 

▪ Decision Tree 

▪ Random Forest 

▪ Gradient Boosting 

▪ LightGBM  

▪ XGBoost 

▪ MLP 

Specifically, the Decision Tree classifier is based on the sklearn.tree.DecisionTreeClassifier2 implementation 

and is used to perform multi-class classification on the grades (G1, G2, G3, G4 and G5) of the acute upper 

GI and late upper GI toxicities that denote the severity of the toxicity in question. The idea is to create a 

 
2 https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html  

https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html
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model that can predict the grade of toxicity by learning decision rules inferred from the base clinical 

(phenotypic, disease specific and treatment specific) and the blood exams related features.  

More advanced methods are also developed in order to improve the generalizability and robustness of the 

baseline models. For this purpose, a set of ensemble methods is built and is evaluated in order to find the 

optimal model, as it is described in section 6.2.4.3. In general, ensemble methods combine the predictions 

of several base estimators. They are distinguished in averaging methods, where several estimators are built 

independently and their predictions are then averaged, and the boosting methods where base estimators 

are built sequentially and then one tries to reduce the bias of the combined estimator. In the context of 

averaging methods, a Random Forest classifier is developed based on the 

sklearn.ensemble.RandomForestClassifier3 implementation, while in the context of boosting methods a 

Gradient Boosting classifier is developed based on the sklearn.ensemble.GradientBoostingClassifier4, a 

XGBoost classifier based on the XGBoost 5  implementation and a LightGBM classifier based on the 

LightGBM6 implementation.  

Moreover, a multilayer perceptron (MLP) model is developed. An MLP model is actually a fully connected 

class of feedforward artificial neural network (ANN). A dedicated MLP model is developed to predict the 

risk of developing each of the toxicities of interest. Specifically, Figure 16 depicts the internal architecture 

of the MLP for predicting the need for hospitalization.  

 

Figure 16: MLP architecture for toxicity: Need for hospitalization 

The resulted number of trainable parameters in this MLP model is 2,734. The trainable parameters refer to 

the weights of the neurons in the model.  

Figure 17 depicts the internal architecture of the MLP for predicting the acute upper GI and late upper GI 

toxicity grades. The number of trainable parameters in this MLP model is 2,749.  

 
3 https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html  
4 https://scikit-
learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingClassifier.html#sklearn.ensemble.Gra
dientBoostingClassifier  
5 https://xgboost.readthedocs.io/en/stable/python/python_intro.html  
6 https://lightgbm.readthedocs.io/en/v3.3.2/Python-Intro.html  

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingClassifier.html#sklearn.ensemble.GradientBoostingClassifier
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingClassifier.html#sklearn.ensemble.GradientBoostingClassifier
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingClassifier.html#sklearn.ensemble.GradientBoostingClassifier
https://xgboost.readthedocs.io/en/stable/python/python_intro.html
https://lightgbm.readthedocs.io/en/v3.3.2/Python-Intro.html
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Figure 17: MLP architecture for toxicities: Acute upper GI and Late upper GI 

 

6.2.4.3 Evaluate models and find optimal 

The algorithms mentioned in the previous section are evaluated in a simple fashion. The initial dataset is 

split randomly into two different datasets one used for training and one for the evaluation. During the 

training process the algorithms are exposed only to the training set. After the training process is over for 

each of the resulting models and for each desired label, we calculate the macro-average metrics on the 

separate test dataset (precision, recall, f1-score) and compare them for each model. Currently we consider 

the model with the highest macro-average F1-score as the best model for the dataset.  

6.3 HDM pilot 

6.3.1 Description of available datasets & known risk factors 
The Hospital de Dénia-MarinaSalud (HDM) pilot has full access to the EMR of Marina Alta region, this 

dataset contains about 300.000 EMR’s from 2009 (when the hospital started) until now. The most important 

dimensions of information are Person, Encounter, Orders, Clinical Event, Laboratory, Radiology, Diagnosis 

and Procedures. 

Focusing on the Pancreatic Cancer patients, the pilot can provide around 240 patients (from 2009 to 2020) 

and we can retrieve administrative and clinical information (we expect to have pathological reports with 

the tumor details of all them). 

6.3.2 Description of case study & its desirable outcomes 
The case study is based on the remote patient lifestyle monitoring of a group of patients diagnosed with 

pancreatic cancer together with patients who theoretically have some theoretical risk factor. 

An initial assessment of behaviour will be carried out on this group of global patients with respect to the 

clinical and behavioural variables to be analysed. Once this previous analysis has been carried out, they will 

be included in the monitoring program that will provide us with information about this behaviour that, 

together with a review with the type of analytical tests that the clinical experts decide, will create the basis 

of the HHR that will be used to apply the AI algorithms that they will assess. if there is a correlation between 

the behaviours and the evolution of the patients. 
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The expected outcomes of the studies are basically three: 

▪ Identify and demonstrate risk factors in pancreatic cancer. 

▪ Identify behaviours that help mitigate risk. 

▪ Identify behaviours that help to improve the disease or suffering of the patient. 

6.3.3 Previous AI algorithms, relevant outcomes & risk factors 
identified 

The HDM pilot is not aware of studies that identify how behaviours affect the evolution of the disease, 

hence the interest in developing the case study. 

6.4 MUP pilot 

6.4.1  Description of available datasets & known risk factors 
The case study related to Medical University Plovdiv (MUP) pilot is a hospital-based case-control study. A 

total of 899 participants are recruited, including 299 pathologically verified pancreatic cancer cases and 600 

controls selected from the same hospital. Cases and control are 1:2 matched by gender and age, in addition, 

we will use multiple controls. 300 controls will recruit from other cancer patients, 300 controls will recruit 

from other disease patients except for cancer 

In addition, MUP collects various types of data as per the Table 1 below:
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Table 1. Various types of data collected by MUP 

Symptom data Comorbidities Morbidity history Family history Physical 
Laboratory 

tests 

Gene mutation 

factor 

1. Weakness, helplessness 

2. Rapid fatigue 

3. Doesn't feel well, feels sick 

4. Feeling of bloating in the abdomen 

5. Feeling of heat or fever 

6. Fever 

7. Frequent episodes of constipation 

8. Frequent diarrhea 

9. Difficulty eating 

10. Nausea 

11. Loss of appetite 

12. Hypersensitivity in the upper 
abdomen 

13. Pain in the upper and / or middle 
part of the abdomen 

14. Abdominal pain that radiates to 
the back 

1. Chronic pancreatitis 

2. Acute pancreatitis 

3. Cysts of the pancreas 

4. Type 1 diabetes 
mellitus 

5. Insulin-resistant 
diabetes mellitus 

6. Choledocholithiasis 

7. Chronic cholecystitis 

8. Newly diagnosed 
diabetes mellitus 

9. Chronic 
gastroduodenitis 

10. Chronic hepatitis type 
B, C 

11. Liver cirrhosis 

12. Gastric ulcer 

13. Obesity 

1. Acute 
pancreatitis 

2. Acute 
cholecysitis 

3. Acute 
gastroduodenitis 

4. Gastric ulcer 

5. Gastric surgery 

6. Operations of 
the pancreas 

7. Radiation of 
the abdominal 
area 

8. Hepatitis type 
B, C 

9. No data on 
specific past 
diseases 

10. Other past 
diseases 

1. Carcinoma 
of the 
pancreas 

2. Malignant 
diseases 

3. Lynch 
syndrome 

4. Familial 
atypical 
malignant 
melanoma 

5. Genetic 
mutation of 
BRCA2 

6. No data on 
specific family 
morbidity 
history 

1. Pale, dry 
skin 

2. Reduced 
skin turgor 

3. Painless 
jaundice - skin 
and visible 
mucous 
membranes 

4. Palpation 
pain 
paraumbilicall
y or in the 
upper 
quadrants of 
the abdomen 

5. Abdominal 
pain, which 
intensifies on 
palpation 

6. Palpable 
tumor 
formation in 
the abdominal 
area 

1. Amylase 

2. Lipase 

3.  SGOT 

4.  SGPT 

5. GGT 

6. Amount of 
fat in the 
faecal samples 

7. Pancreatic 
elastase in 
faecal samples 

8. Blood sugar 

9. Glycated 
hemoglobin 

10. CA19-9  

11. CEA 

12. No 
particular 
changes into 
the laboratory 
tests' data 

1. TP53 

2. KDMA 
mutations  

3. FOXA2/3 

4. PDX1 

5. MNX1 

6. KRAS 

7. NR5A2 

8. RBPJL 

9. NEUROD1  

10. NKX2-2 

11. No 
changes 
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15. Abdominal pain, which intensifies 
when lying down and leaning back 

16. Abdominal pain, which intensifies 
after eating 

17. Weight loss that is undesirable 

18. Changes in stool color - 
discoloration 

19. Darkening of the urine 

20. Itchy skin 

21. Painless jaundice - skin and 
visible mucous membranes 

22. No complaints 

23. Pain in musculoskeletal system 

24. Painfull or impaired movements 

25. Others 

14. No concomitant 
diseases 

15. Morbus Hypertonicus 

16. Pyelonephritis 
chronica 

17. Arthrosis 

18. Polyneuropathy 

19. Other comorbidities 

7. Obesity 

8. Asictes 

9. Edemas 

10. No specific 
physical data 

11. Impaired 
movements 

12. 
Musculoskelet
al pains 

13. Other 
clinical 
symptoms 
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6.4.2 Desirable outcomes and model approach 
Machine learning algorithms separate into two main tasks, supervised (Classification/Regression) and 

unsupervised (Clustering). To solve Classification problems labels for each observation (patient) are needed. 

In our case these labels would be the risk level of the patient. This means that to utilize supervised 

algorithms we will need an extra column per row in the dataset that represents the risk level per patient 

(low, medium, high). Since this label is not present we can only use clustering algorithms. Clustering (see 

Section 2.2 for details) is an unsupervised machine learning method of identifying and grouping similar data 

points in larger datasets without concern for the specific outcome. 

The goal of the MUP pilot is to predict the risk of developing pancreatic cancer in low, medium and high-

risk patients. The doctors (based on the bibliography) verified that patients, who appear to have the same 

symptoms as the cases, belong to the high risk cluster, whereas those who do not have similarities with the 

cases are considered to be low or medium risk. Initially, we have implemented a k-means algorithm for 

clustering either on all the features or on combinations of those. The resulting clusters indicated that even 

the cases do not end up in a specific cluster i.e., the high risk cluster. Therefore, in order to have all the 

cases in the same cluster we implemented a Constrained K-means algorithm that was introduced by 

Wagstaff et al. (W., C., R., + 2001). This algorithm creates a graph that links all the cases and forces them to 

belong to the same cluster. The Constrained K-means results in a cluster containing all the cases including 

some control group patients with similar profiles as the cases. Then, we label each patient according to 

which cluster they belong to and we train an XGBoost classifier to explain/interpret with the SHAP method 

(see Section 4.2 for details) the features of each cluster (F., Y., G., + 2021). 

6.4.3 Exploratory Data Analysis 
Figure 18 reveals that most cancer patients are in the age range of 50 to 80. On the other hand, we have 

almost no one over 80 years old, while at least a few cases are in their early 50s. Specifically, the blue bars 

depict the cases, and the orange bars depict the control groups. Most cases belong to the group age 61-70 

years, followed by the group of 51-60 years, and then the group age of 71-80 years comes next. However, 

very few cases belong below 40 years and 41-50 years and only one case included in the group 81-90 years 

and above 90 years. 
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Figure 18: Distribution of patients in age 

There are some features, which do not reveal important information, as they only appear in a few number 

of cases. For instance, there are not many reports on family history for the cases, see Figure 18, and when 

they contain information it regards only one group of illnesses, malignant diseases. In addition, only 5 cases 

have morbidity history (see Figure 19), two cases with morbidity history 'acute cholecystitis' and three cases 

with morbidity history 'Hepatitis type B, C'. Therefore, it is very difficult for a model to learn from so little 

information. Figure 19 depicts the distribution of patients with regard to the family history feature. 

Specifically, the blue bars depict the cases and the orange bars depict the control groups. The cases denoted 

only family history with id 2 that connect with malignant diseases. 

 

Figure 19: Distribution of patients in family history 

In Figure 20 it is shown that two cases have morbidity history 2 (acute cholecystitis) and three cases have 

morbidity history 8 (Hepatitis type B, C).  
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Figure 20: Distribution of patients in morbidity history  

Cancer males and females have a similar distribution (see Figure 21), so we do not gain any information 

on whether cancer affects one gender versus the other. It seems that the women are similar to men in 

the cases group.  

 

Figure 21: Distribution of patients by gender 

6.4.4 Development of the risk predictor models 

6.4.4.1 Pre-processing 

Τhe dataset described briefly in the previous section needed to be pre-processed in order to be given as 

input in the models that will be described in the next sections. We used the following methods to get the 

final dataset: 

Undersampling: The dataset was unbalanced with control groups (controls) overcoming the patients with 

pancreatic cancer (cases), counting 595 and 226 observations, respectively. This can drive the AI model to 

focus more on the population with the most observations. This problem has already been addressed in (F., 

H., H., +2020) and the proposed solution is to utilize undersampling or oversampling techniques. We 

decided to apply undersampling since electronic health records (EHR) are sensitive data and an 
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oversampling technique would add noise and could lead to incorrect conclusions. Undersampling 

techniques remove examples from the training dataset that belong to the majority class in order to better 

balance the class distribution.  

Eliminating unnecessary features: The next step was to identify those features i.e., columns that 

introduced noise and did not add any value in the dataset and therefore there was no need to keep the 

additional columns that failed to show any variation in the dataset, since they would not help our model 

learn different patterns. Specifically, the features that were removed are:  

▪ Diagnosis: this feature was provided only for those patients already suffering from pancreatic 

cancer (cases) and not for the rest (control group). Therefore, we had to remove it from the 

dataset since it would be of no account for the models to learn a feature that will not appear in 

the control group in order to make predictions.   

▪ Genotyping: this feature had the same value for all the patients, and thus it would not introduce 

extra information in the models.  

Eliminating unnecessary values: Many features contained values that reflect to the ‘No data’ category. This 

characteristic of the dataset made the algorithm put a lot of emphasis on the 'No data' features when 

clustering the users. This was problematic since the algorithm considered the 'No data' features to be most 

important in deciding the risk level of the patient. To avoid this issue, we modified the pre-processing 

process for the data to remove the 'No data' columns after applying one hot encoding method.  

Creation of embeddings: A particularity in the MUP dataset is that almost all features correspond to indexes 

that map to category labels. An AI model cannot understand category labels and therefore it needs 

numerical values to make it easier for the machine to process the data. To apply any type of algorithm to 

the data, we need to convert the categorical data to numbers. To achieve this, one-hot encoding, also 

known as “1-of-N” encoding (meaning that the vector is composed of a single one and a number of zeros), 

is one way as it converts categorical variables into binary vectors.  

6.4.4.2 Baseline models / Initial approach 

We used two clustering algorithms, K-means and Hierarchical clustering (HC) and evaluated the generated 

clusters using the silhouette score metric. The silhouette score algorithm determines the similarity of each 

object in a cluster with other objects in the same cluster compared to the objects in other clusters. The 

silhouette coefficient quantifies this. The value of the silhouette coefficient is between [-1, 1] and a score 

of 1 shows that the data point is very compact within the cluster to which it belongs and far away from the 

other clusters. On the other hand, a value of -1 has the opposite meaning, while values near 0 denote 

overlapping clusters. The K-means achieved 0.288 silhouette score, besides the HC, which was 0.214. 

Therefore, K-means was better than HC, so we analyzed the k-means. 

We propose the clustering method to group the patients into 3 clusters, i.e., low, medium and high-risk 

cancer. Data from 914 patients with non-cancer or cancer were used, and after pre-processing 

(undersampling and so on), we had 224 of respectively. Table 2 shows the number of patients grouped in 

the same cluster for each baseline algorithm, K-means and HC. For instance, cluster 0 has 224 patients with 

cancer and only 52 non-cancer patients (see Table 2.1). 
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Table 2. Distribution of all the patient per cluster 

Table 2.1. k-means Table 2.2 Hierarchical Clustering 
Cluster Label Number of 

patients 

0 Cancer 224 

No cancer 52 

1 Cancer 0 

No cancer 99 

2 Cancer 0 

No cancer 73 

 

 

Cluster Label Number of patients 

0 Cancer 224 

No cancer 150 

1 Cancer 0 

No cancer 47 

2 Cancer 0 

No cancer 27 

 

We interpret from Table 2.1 that the clusters are separated as follows:  

▪ Potential high-risk patients→ Cluster 0 

▪ Potential medium-risk patients → Cluster 1 

▪ Potential low-risk patients → Cluster 2 

We assume that a new patient A with similar characteristics (e.g., symptoms) to patient B, who has already 

been diagnosed with cancer, will be at high risk of developing pancreatic cancer. Figure 22 to Figure 24 

visualize the most significant features per cluster that characterize the patients belonging to it. 

 

Figure 22: Cluster 0 (Potential high-risk cluster) 

The patients are placed in cluster 0 because of the absence of the following features: laboratory_tests_9 

(Glycated hemoglobin), physical_finding_5 (Abdominal pain, which intensifies on palpation), 

physical_finding_4 (Palpation pain paraumbilically or in the upper quadrants of the abdomen).  
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Figure 23: Cluster 1 (Potential medium risk) 

The patients placed in cluster 1 appear to have in common the laboratory_tests_9 (Glycated Hemoglobin) 

and symptoms 23 (Pain in musculoskeletal system), symptoms_2 (Rapid fatigue) and morbidity_history_10 

(Other past diseases). 

 

Figure 24: Cluster 2 (Potential low risk)  

The patients placed in cluster 2 appear to have in common the physical_findings_4 (Palpation pain 

paraumbilically or in the upper quadrants of the abdomen) and physical_findings_5 (Abdominal pain, which 

intensifies on palpation) and symptoms_10 (Nausea).   

We summarize all the information of the above figures in Table 3.  

Table 3. Significant features per cluster 

Not laboratory_tests_9 (Glycated 

hemoglobin) 

Laboratory_tests_9 (Glycated 

hemoglobin) 

physical_findings_4 (Palpation pain 

paraumbilically or in the upper 

quadrants of the abdomen) 

Not physical_finding_5 (Abdominal 

pain, which intensifies on palpation) 

symptoms 23 (Pain in musculoskeletal 

system) 

Physical_findings_5 (Abdominal pain, 

which intensifies on palpation) 
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Not physical_finding_4 (Palpation 

pain paraumbilically or in the upper 

quadrants of the abdomen) 

Symptoms_2 (Rapid fatigue) Symptoms_10 (Nausea) 

 
Morbidity_history_10 (Other past 

diseases) 

Imaging diagnostics_1 

(Transabdominal ultrasound) 

 

6.4.4.3 All features model with constrained clustering 

After we applied the undersampling technique and having in mind the small number of patients, we 

observed that all the cases were in the same cluster, and thus we annotated them as high-risk. However, 

the question that arises is, what happens if we have a massive number of patients? For instance, before 

applying pre-processing, the cases were separated into two clusters (cluster 1 and 2) on baseline models, 

as seen in Table 4. As it turned out after the discussion with the clinicians, it was not right. 

Table 4. Clustering before undersampling 

Cluster  Label  Number of patients 

0 Cancer 0 

No cancer 34 

1 Cancer 51 

No cancer 27 

2 Cancer 37 

No cancer 17 

 

Therefore, we decided to use Constrained K-means clustering based on the Python implementation7. 

Constrained K-means achieved grouping all the cases in the same cluster by setting it as a constraint. 

Specifically, we produced a graph connecting all cases together and set this as a constraint in the clustering 

procedure to ensure that all cases are grouped in the same cluster. Table 5 shows how the clusters are 

separated with Constrained K-means. 

Table 5. Patient distribution per cluster based on Constrained K-means 

Cluster  Label  Total per label 

0 Cancer 0 

No cancer 74 

1 Cancer 224 

No cancer 52 

 
7 https://github.com/Behrouz-Babaki/COP-Kmeans  

https://github.com/Behrouz-Babaki/COP-Kmeans
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2 Cancer 0 

No cancer 98 

 

Based on Table 5, the high-risk patients are in cluster 1. In Figure 25 to Figure 27 the important features of 

each cluster are depicted using SHAP plots.  

It is difficult for the cluster 1 (see Figure 26) to highlight essential characteristics, as it mainly highlights the 

features that are not included in this cluster. Therefore, we focused on feature-based models to overcome 

this limitation.  

 

Figure 25: Cluster 0 

The patients placed in cluster 0 appear to have in common the physical_findings_4 (Palpation pain 

paraumbilically or in the upper quadrants of the abdomen) and physical_findings_5 (Abdominal pain, which 

intensifies on palpation) and symptoms_10 (Nausea). On the other hand, On the other hand, cluster 1 

reveals only what features are not included in the cluster. 

 

Figure 26: Cluster 1  
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Figure 27: Cluster 2 

The patients placed in cluster 2 appear to have in common the laboratory_tests_9 (Glycated hemoglobin), 

symptoms_23 (Pain in musculoskeletal system) and symptoms_15 (Abdominal pain, which intensifies 

after eating).   

6.4.4.4 Symptom base model with constrained clustering 

The approach for predicting the risk of the patients in the sequel, is to apply constrained clustering for each 

feature (symptoms, comorbidity etc.) separately, for several reasons. First and foremost, each feature’s 

range of appearance varies so if the analysis for each feature was not carried out separately, the model 

would focus on the feature with the most prevalence. To make it clear, if control groups have a lot of family 

history disease, the clustering algorithm identifies this feature as significant and ignores all the other 

features. Therefore, it is preferred to study each feature separately. 

Consequently, this section describes the results of clustering the data based only on the symptom features. 

In Figure 28 the number of cases and control groups that appear for each symptom are depicted.  

 

Figure 28: Distribution of cases and control groups per symptom 

Constrained K-means clustering was applied to solve the problem with the cases belonging to multiple 

clusters. In Table 6 the corresponding number of patients per cluster can be found and in Figure 29 to Figure 

34 the clusters are illustrated along with the corresponding SHAP plots.  
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Table 6. Constrained K-means clustering for symptoms 

Cluster  Label  Total per label 

0 Cancer 88 

No cancer 33 

1 Cancer 0 

No cancer 44 

2 Cancer 0 

No cancer 11 

 

We observe that cluster 0 contains all the cases but also some control groups with the same symptoms and 

thus, it is considered as the high-risk cluster. The potential medium and low clusters are clusters 1 and 2 

respectively (see Figure 29 to Figure 31).  

 

Figure 29: Cluster 1 Distribution plot 
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Figure 30: Cluster 1 is the potential medium risk cluster 

 

 

 

Figure 31: Cluster 2 Distribution plot 
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Figure 32:  Cluster 2 is the potential low risk cluster 

The most significant symptoms in high risk patients based on Figure 30 are those including "Pain in the 

musculoskeletal system" (symptom 23), "Rapid fatigue" (symptom 2) and "Does not feel well/sick" 

(symptom 3), whereas they include the "Pain in the upper and/or middle part of the abdomen" (symptom 

13), "Nausea" (symptom 10) and "Weakness/helplessness" (symptom 1). The results appear to be 

meaningful from a clustering perspective, as 37/88 cases contain "Weakness/helplessness" (symptom 1). It 

is justifiable that the "Weakness/helplessness" symptom is not a dominant characteristic of high risk 

patients (sixty positions in SHAP with a small effect value), as 44 / 88 = 50% of the control groups have it, 

otherwise half of the patients without cancer would be annotated as high risk which is not valid based on 

the clinicians feedback. Hence, when describing a cluster, we should consider a combination of symptom 

values jointly and not independently.   

 

Figure 33: Cluster 0 Distribution plot 
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Figure 34: Cluster 0 is the potential high risk cluster 

6.4.4.5 Experimental results 

When we extracted the labels for the patient, we trained an XG Boost, an AI classification algorithm that 

learns to predict the risk. We took 90 patients as a test set to evaluate the models we have seen above. All 

the accuracies are very high, as shown in Table 7. For the labels extracted from the symptom-based models 

of constrained clustering, the results were equally good, see Table 8. The evaluation of the best model 

included the following metrics: f1-score, accuracy, precision, recall, macro average and weighted average. 

▪ Accuracy is described as a combination of both types of observational error and is the sum of True 

Positives and True Negatives, divided by the sum of True Positives, True Negatives, False Positives 

and False Negatives. 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑡𝑝+𝑡𝑛

𝑡𝑝+𝑡𝑛+𝑓𝑝+𝑓𝑛
 , where 𝑡𝑝 are the True Positives, 𝑡𝑛 are the True 

Negatives, 𝑓𝑝 are the False Positives and 𝑓𝑛 are the False Negatives. 

▪ Precision (also called positive predictive value) is the fraction of relevant instances among the 

retrieved instances. 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑡𝑝

𝑡𝑝+𝑓𝑝
 . 

▪ Macro Averaged Precision is used for models with multiple classes. When macro-averaging, all 

classes contribute equally regardless of how often they appear in the dataset. Macro-precision 

measures the average precision per class. 

▪ Recall in an imbalanced classification problem with more than two classes, is calculated as the sum 

of true positives across all classes divided by the sum of true positives and false negatives across 

all classes. 𝑅𝑒𝑐𝑎𝑙𝑙 = (𝑡𝑝)/( 𝑡𝑝 + 𝑓𝑛)  

▪ F1-score, the traditional F-measure or balanced F-score (F1 score) is the harmonic mean of 

precision and recall: 𝐹1 =
𝑡𝑝

 𝑡𝑝 + 
(𝑓𝑝 + 𝑓𝑛)

2

   

▪ Macro Averaged Recall is used for models with multiple classes. When macro-averaging, all classes 

contribute equally regardless of how often they appear in the dataset. Macro-recall measures the 

average recall per class. 

▪ Macro-F1 averaging is used for models with multiple classes. When macro-averaging, all classes 

contribute equally regardless of how often they appear in the dataset. Macro F1-averaging is 

performed by first computing the F1-score per class and then averaging it. 
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Table 7. Without constrained k-means clustering for symptoms 

 

# 

F1-score 

k-means Hierarchical Clustering Constrained Clustering 

0 0.98 0.99 0.97 

1 1.00 0.95 0.98 

2 0.93 1.00 0.97 

Accuracy  0.98 0.99 0.97 

 

For the best model, symptom-based with constrained clustering, we have the follow evaluations score: 

Table 8. Constrained k-means clustering for symptoms 

Clusters Precision Recall f1-score Support 

0 0.96 1.00 0.98 25 

1 1.00 1.00 1.00 9 

2 1.00 0.50 0.67 2 

accuracy   0.97 36 

macro avg 0.99 0.83 0.88 36 

weighted avg 0.97 0.97 0.97 36 

 

The constrained clustering appears to work well for this specific dataset and the results seems to be 

meaningful. Furthermore, the constrained clustering converted the unsupervised problem to a semi-

supervised one. The best clustering approach for predicting the risk of the patients is the constrained 

clustering for each feature (symptoms, comorbidity etc.) separately for several reasons. First and foremost, 

each feature’s range of appearance varies, so if you do not analyze each feature individually, the model 

may focus on the feature with the most prevalence. To show what we mean, if control groups have a lot of 

family history of the disease, the clustering algorithm raises this feature as significant and ignores all the 

other features. Therefore, it is preferred to study each feature individually. 

6.4.5 Implementation and integration of results 
The MUP risk predictor pretrained model is serialized using the Pickle8 Python library. Pickle is a generic 

object serialization module that can be used for serializing and deserializing objects. It is a format that is 

compatible with the runtime execution environment of the Analytic Workbench component that hosts and 

exposes all pretrained models.  

 
8 https://docs.python.org/3/library/pickle.html  

https://docs.python.org/3/library/pickle.html
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Once the MUP risk predictor model is successfully trained and properly evaluated, it gets serialized and 

packaged in a .zip file along with its metadata. Specifically, the metadata refers to: 

▪ the full set of features 

▪ the set of features that should be excluded when an inference is requested 

▪ possible values per feature 

▪ the possible predicted values that refers to the possible risk level prediction outcomes (low, 

moderate, high) 

▪ the algorithm that the model implements, an XG Boost Classifier 

▪ a model container file that references the model.pickle file 

▪ a description of the model  

Apart from the model metadata, the .zip file also contains: 

▪ the predictor model itself 

▪ the dataset which the model has been created with 

▪ the evaluation metrics of the trained model 

▪ the predictions for the validation dataset 

Apart from the main integration path that relies on the Analytical Workbench, the personalized 

predictor exposes a REST API that is mostly used to continuously retrain the predictor model with 

different configuration parameters. The predictor REST API consists of methods that allow to trigger a 

retraining process as well as a method for making inferences based on a given model and a method 

for retrieving the optimal performance model, as it is depicted in Figure 35. 

 

Figure 35: Predictor REST API.  

6.5 TMU pilot 

6.5.1 Description of available datasets & Known Risk factors 
In the Taipei Medical University (TMU) pilot, data is stored in TMU-Clinical Data Repository (TMU-CDR) 

database that includes, historic patient data. The clinical database includes data from three affiliated 

hospitals, namely TMU Hospital, Wanfang Hospital and Shuang Ho Hospital.  EHR data includes age, sex, 

diagnostic codes, laboratory test reports, medications, comorbidities, family history. Data is stored in a 

secure storage facility at TMU and must stay on premise and can only be accessed externally to the platform 

in Taiwan, after acquiring required permissions from the authorities. 
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For pancreatic cancer, the modifiable risk factors include obesity, dietary factors, alcohol and smoking 

whereas non-modifiable factors include age, genetic risk factors, familial pancreatic cancer, chronic 

pancreatitis and diabetes mellitus (S. S. K., + 16), (C. X. M., + 21), (J., Y. S., + 19). 

For liver cancer, the modifiable risk factors include health behaviors and lifestyle factors (tobacco, alcohol 

use, smoking, obesity) (S., L., L., 21) whereas non-modifiable cancer risk factors include genetics (genetic 

mutations), family history, age, gender, race and ethnicity, and infections (hepatitis B virus, hepatitis C virus) 

(S., C., Y., + 19), (K., S., C., + 18), (A., A., A., + 17).  

6.5.2 Description of case study & its desirable outcomes 
The TMU pilot objective is to predict high risk individuals towards pancreatic and liver cancer for early-stage 

management of the disease. For this purpose, we will develop AI based machine learning models that will 

be applied to the data from TMU-CDR (Clinical Data Repository) to predict high-risk individuals for 

pancreatic and liver cancer so that modifiable risk factors (lifestyle, behavior) can be addressed early. This 

data will include variables such as clinical visits, diagnoses, medications, comorbidities, pancreatic and liver 

cancer diagnostic tests, etc. 

6.5.3 Previous AI algorithms, relevant outcomes & Risk factors 
identified 

Previously, the TMU pilot has worked on projects that allowed them to develop AI algorithms for patients 

with hematologic malignancies (S., F., C., + 20) and those on haemodialysis (T., A., C., + 18). Although they 

have not carried out risk prediction in the previous studies, however, with the assistance of iHelp technical 

partners, the TMU pilot aim to develop AI-based machine learning models to generate risk predictions (for 

pancreatic and liver cancer) based on the TMU-CDR database. 
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7 Conclusions 
AI technologies hold immense promise to further improve the care of people with cancer and to facilitate 

cancer research. In this context, this document summarizes the actions performed under T4.1 - 

“Personalized Health Modelling and Predictions” as it provides an extended description of the mechanisms 

and AI models that will be implemented for the realisation of personalised health and risk prediction 

models. After an initial analysis of the available description of the datasets, specific methods and algorithms 

were selected for the training models. During the second phase of the project, since some real data became 

available, the mechanisms and the AI models were further specified and/or modified, in order to exploit 

the provided data for identifying the pre-mentioned risk factors. The primary data that become available 

were provided by two out of five pilots, namely UNIMAN and MUP. Regarding the MUP dataset, the 

problem of predicting the toxicities of interest has been faced as a classification problem and an overview 

of the ML models implemented, including Logistic Regression, Decision Tree, Random Forest, Gradient 

Boosting, LightGBM, XGBoost, MLP models. Currently we consider the model with the highest macro-

average F1-score as the best model for the MUP dataset. Moreover, regarding the FPG pilot, after the 

training, we consider the model with the highest macro-average F1-score as the best model for the 

dataset.Regarding the UNIMAN pilot, the results that can be generated from biomarkers and their analysis, 

include the PRS score that will be stratified into quartile based on non-cancer PRS score’s value from the 

UK population with the lowest quartile will be used as the reference group. Regarding the Epigenomic 

biomarkers, the biological age from the different Epigenetic clocks can be summarized.  
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List of Acronyms 
AI Artificial Intelligence  

ANN Artificial Neural Network 

ANOVA  Analysis of variance 

ASHA Asynchronous Successive Halving 

ATC Athens Technology Centre 

ATP Alberta Tomorrow Project 

AUC Area Under the Curve 

BOHB Bayesian optimization combined with Hyperband 

CA Consortium Agreement 

CDR Clinical Data Repository 

D Deliverable 

DoA Description of Action 

DL Deep Learning 

DT Decision Trees 

EHRs Electronic Health Records 

EU European Union 

FP False Positive 

FL Federated Learning 

FPG Agostino Gemelli University Policlinic 

GB Gradient Boosting 

HDM Hospital de Dénia-MarinaSalud 

HHRs Holistic Health Records 

ICE Information Catalyst for Enterprise 

LDA Linear Discriminant Analysis 

LR Logistic Regression 

MAR Missing at Random 

MCAR Missing completely at random 

ML Machine Learning 

MNAR Missing not at Random 

MUP Medical University Plovdiv 

NNs Neural Networks 

NHANES National Health and Nutrition Examination Survey 

NPV Negative Predictive Value 

PCA Principal Component Analysis 

PHC Personalising Health and Care 

PHRs Patient Health Records 

PPI Proton-Pump Inhibitor 

PPV Positive Predictive Value 

QoL Quality of Life 

RF Random Forest 

ROC Receiver Operating Characteristic 

RWD Real-World Data 

SHAP SHapley Additive exPlanations 

SVD Singular Value Decomposition 
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SVM Support Vector Machines 

T Task 

TP True Positive 

UK United Kingdom 

UNIMAN  University of Manchester 

UPRC University of Piraeus Research Center 

XAI eXplainable AI 
 


