
Global Reinforcement Learning in Neural Networks with Stochastic
Synapses

Xiaolong Ma and Konstantin K. Likharev

Abstract— We have found a more general formulation of the
REINFORCE learning principle which had been proposed by
R. J. Williams for the case of artificial neural networks with
stochastic cells (“Boltzmann machines”). This formulation has
enabled us to apply the principle to global reinforcement learn-
ing in networks with deterministic neural cells but stochastic
synapses, and to suggest two groups of new learning rules for
such networks, including simple local rules. Numerical simula-
tions have shown that at least for several popular benchmark
problems one of the new learning rules may provide results on
a par with the best known global reinforcement techniques.

I. INTRODUCTION

In contrast to supervised training methods such as error
back-propagation [1], for global reinforcement learning [1],
[2], a “learning agent” is provided with a global evaluative
feedback r (“reward”), rather than with a detailed error evalu-
ation. Under these conditions, some randomness is generally
needed in order to explore the space of all possible “policies”
(i.e. the set of agent’s internal parameters θ). The focus
of this paper is reinforcement learning of artificial neural
networks consisting of neural cells whose output signals y
are sent to inputs of other cells through synapses with certain
weights wij :

xi =
∑

j

wijyj . (1)

In this case, the policy is just the input-output mapping, i.e.
the set of synaptic weights.

Most previous work on reinforcement training has been
focused on networks with deterministic weights, in which
the randomness necessary for policy exploration is provided
by stochastic neural cells (“Boltzmann machines” [3]). For
such networks, Williams [4] has been able to derive a general
class of “REINFORCE” 1 learning algorithms which achieve
a statistical gradient ascent of the average reward, E{r|w},
in the multi-dimensional space of wij .

For the simplest case of feedforward multilayered percep-
trons (MLP) [1] such ascent is achieved by the following

The authors are with Stony Brook University, Stony Brook, NY
11794-3800, USA (phone: 631-632-9842; fax: 631-632-4977; email:
xma@grad.physics.sunysb.edu).

1Acronym for REward Increment = Nonnegative Factor × Offset Rein-
forcement × Characteristic Eligibility

training rule:2

∆wij = ηijreij , (2a)

eij =
∂ ln[pi(yi,wm,ym−1)]

∂wij
, (2b)

if all the learning rates ηij are nonnegative and depend at
most on wm and time t.3 Since within these restriction the
rates ηij are to some extent arbitrary, they may be chosen in
a way to simplify this rule, for example, by making it local.

For example, if yi can take only two values (0 and 1),
with probabilities

pi(yi,wm,ym−1) =
{

1− g(xi), if yi = 0,
g(xi), if yi = 1, (3)

where g(x) is the “logistic” activation function,

g(xi) =
1

1 + e−xi
, (4)

it may be readily shown [4] that eij takes the form

eij =
(

∂ ln pi

∂g

) (
dg

dxi

) (
∂xi

∂wij

)
= (yi − 〈yi〉)yj , (5)

where 〈yi〉 is the average output of cell i for a given input
xi. Taking all learning rates equal, ηij = η, we get the local
rule called the Associative Reward Inaction (Ar-i) [2]:

∆wij = ηr(yi − 〈yi〉)yj . (6)

The addition of a small extra term (which is not responsible
for following the gradient but helps to kick the system out of
local minima) yields the famous Associative Reward Penalty
(Ar-p) rule [5]:

∆wij = η [r(yi − 〈yi〉)yj + λ(1− r)(−yi − 〈yi〉)yj] , (7)

where r ∈ [0, 1] and λ is a small positive number.
Some other activation functions that lead to simple learn-

ing rules can be found in Ref. [6]. Existing algorithms that
can be associated with the REINFORCE principle include
also Lr-i [7], and the learning rules for the “exponential
families of distributions” [4]. All of them rely on stochastic
neural cells.

2Throughout this paper, we denote the collection of all weights in the
network as w, while the set of weights that connect mth layer to the previous
layer is presented by vector wm. Similarly, the sets of input and output
signals of all the neurons in the network are denoted as x and y, while xm

and ym are the subsets of inputs to and outputs from layer m, and xi and
yi are the input and output of cell i.

3This rule may be readily generalized to arbitrary feedforward or recurrent
networks [4].

U.S. Government work not protected by U.S. copyright

2006 International Joint Conference on Neural Networks
Sheraton Vancouver Wall Centre Hotel, Vancouver, BC, Canada
July 16-21, 2006

47

The objective of this paper is to extend the REINFORCE
approach to networks with random synaptic weights. This
goal is motivated by our group’s work on CMOL CrossNets,
a specific nanoelectronic implementation of neural networks
- see Ref. [8] for the most recent review. In CMOL hardware,
the synapses are by their nature stochastic. In addition,
stochastic synapses are believed to be more biological [9],
[10], and some existing supervised learning algorithms (see
Refs. [11], [12] and [13] for examples) also rely on random
weights.

In Sec. II we will derive the REINFORCE approach (2) for
an MLP from a more general point of view (the likelihood
ratio method [14]), so that it can be then applied to the
case of random weights. (It will also be argued that the new
derivation can be generalized to any feedforward or recurrent
network.) In Sections III and IV we derive two sets of novel
learning rules for networks with random weights, based on
the arguments provided in Sec. II. In Sec. V and VI we
apply those rules to some well-known test problems and
compare the results with those of other learning algorithms.
Finally, in conclusion (Sec. VII) we discuss the advantages
and limitations of the new learning rules.

II. DERIVATION OF THE REINFORCE ALGORITHM
USING THE LIKELIHOOD RATIO METHOD

Let v = {v1, v2, ...} denote a vector of some activity
signals of a stochastic network with a set of deterministic
internal parameters θ. Let us make a natural assumption that
the probability p(v,θ) of the system to generate a particular
set of signals, at fixed network input, is a continuous function
of θ. In this case the average reward received at a given set
of parameters θ is4

E{r|θ} =
∑
v

r(v)p(v,θ), (8)

where the summation is carried out over all possible vectors
v. By calculating the gradient with respect to θ (∇θ ≡
∂/∂θ) we obtain

∇θE{r|θ} =
∑
v

r(v)∇θp(v,θ)

=
∑
v

r(v)
∇θp(v,θ)

p(v,θ)
p(v,θ)

= E{re|θ}, (9)

where the vector

e =
∇θp(v,θ)

p(v,θ)
= ∇θ ln[p(v,θ)] (10)

had been originally known as the “score function” or “like-
lihood ratio” in classical statistics, and was called “charac-
teristic eligibility” in Ref. [4]. Equation (9) was originally

4For the simplicity of notation, we assume that the signals take discrete
values. All the results are trivially generalized to the case of continuous
signals.

proposed for computing performance gradients in the so-
called i.d.d. (independent and identically distributed) pro-
cesses [14].

Let us apply this equation to a fully connected M -layer
MLP with deterministic synapses and random cells. To do
that, we identify v with the set of all cell outputs y, and
θ with weights w. Note that for an MLP, the probability
p(y,w) may be calculated layer by layer. Indeed, given
that the output of layer m − 1 is ym−1, the probability
for the mth layer to produce output ym is a function of
ym, wm and ym−1, i.e. pm = pm(ym,wm,ym−1). For the
input layer, p1(y1) is simply the probability of a particular
input y1 which does not depend on any weights or other
cells. Therefore, according to the basic relation of conditional
probability,

p(y,w) = p1(y1)p2(y2,w2,y1)...
pM (yM ,wM ,yM−1). (11)

Now let us calculate the derivative of the product with respect
to a particular weight wij :

eij =
∂ ln[p(y,w)]

∂wij
. (12)

By conditioning on (i.e. fixing) the previous layer, only one
of the factors in Eq. (11) is affected by the variation of wij .
Therefore,

eij =
∂ ln[pm(ym,wm,ym−1)]

∂wij
. (13)

Since pm(ym,wm,ym−1) is simply a multiplication of
independent probabilities for different cells in the mth layer,
we can further “localize” eij to a single cell and hence reduce
Eq. (13) to Eq. (2b).

Now let us consider the updating rule expressed by Eq.
(2a). If ηij is a positive constant η, then using Eqs. (2) and
(9) we get

E{∆w|w} = η
∑
v

r(v)e(v)p(v,w),

= ηE{re|w}
= η∇wE{r|w}. (14)

Therefore E{∆w|w} is an unbiased estimate of the reward
gradient (multiplied by a positive constant). Formally this
means that in order to increase the average reward we should
repeat the random procedure of calculating ∆wij many
times before actually applying the average weight change. In
practice, however, the “online” version of the REINFORCE
algorithms (which means applying weight change immedi-
ately after obtaining a sample of ∆wij) generally works
equally well or even better, as long as η is not too large.
(This trick is also commonly applied to supervised training
algorithms such as error backpropagation [1].)

In the more general case when coefficients ηij depend on
i and j, the estimation will deviate from the exact direction
of the gradient. But as long as ηij > 0 and sufficiently small

48

Fig. 1. Example of a quasi-layered feedforward network.

for all i and j, we will always move “uphill” the reward
profile, because the change of the average reward

∆E{r|w} ≈ ∇wE{r|w} · E{∆w|w}

=
∑
i,j

ηij

(
∂E{r|w}

∂wij

)2

≥ 0. (15)

One can easily verify that this is also true for the case when
coefficients ηij depend on time t but do not correlate with
reij . (In that case we require 〈ηij〉 > 0.)

For an arbitrary feedforward network the concept of
“layer” is not very clear but still definable for the purpose
of our derivation. The input layer is simply the collection
of all those cells which receive only external inputs. For
example, in the simple network shown in Fig. 1, cells 1
and 2 belong to the input layer. The second layer then can
be chosen from the rest of the cells (excluding those that
are already categorized as the input layer) which receive no
inputs except those from the input layer or external signal.
(In Fig. 1, only cell 3 satisfies this requirement.) Similarly,
the third layer is composed of the cells (4 and 5 in Fig. 1)
which have not been assigned to the first and the second layer
and which receive signals only from those layers (or external
signals), etc. Generally, we will assume that a cell belongs
to layer m if all the cells that directly feed it belong to the
previous layers and at least one of them belongs to layer
m− 1. This way, all the cells in the network can be labeled
with a layer number, and p(v,θ) can still be calculated
“layer” by “layer”. In this case, however, we should directly
factorize p(v,θ) into individual cells downstream through
the connections rather than into layers because the input
signal to any cell may come from any previous layer. For
example, for the network shown in Fig. 1,

p(y,w) =p1(y1)p2(y2)p3(y3, w32, y2)
p4(y4, w43, y3)p5(y5, w51, w53, y1, y3). (16)

REINFORCE learning rule can even be generalized to re-
current networks. Williams derived “episodic” REINFORCE
algorithms for reinforce tasks, based on the fact that any
recurrent network can be unfolded in time [1] into a feed-
forward one (for details, see [4]). Baxter et al. [15] showed

how to generalize REINFORCE algorithm for recurrent net-
works to non-episodic problems through Partially Observable
Markov Decision Processes. All of those extensions are
applicable to the derivation provided above.

III. NETWORKS WITH STOCHASTIC SYNAPSES: RULES A

Let us now consider an MLP composed of deterministic
cells (within the usual firing rate model [1]) connected by
stochastic synapses. In this case, yi = g(xi), where g(x)
is the activation function, while each wij in Eq. (1) is now
random. Let us assume that the synaptic weights have the
Gaussian distribution with some mean value µij and variance
σ2

ij . Equation (1) shows that in this case xi is also a random
variable obeying the Gaussian distribution, with the following
probability density function:5

pi(xi,µ
m,ym−1) = A exp

[
− (xi − 〈xi〉)2

2(σ2
x)i

]
, (17)

where A is a normalization factor and6

〈xi〉 =
∑

j

µijyj , (18)

(σ2
x)i =

∑
j

σ2
ijy

2
j . (19)

Now let us identify variables v of Sec. II with the set of
input signals x, and θ with the set of average weights µij .
Then from Eq. (10), the eligibility component

eij =
∂ ln pi

∂µij

=
(xi − 〈xi〉)

(σ2
x)i

∂〈xi〉
∂µij

=
(xi − 〈xi〉)yj

(σ2
x)i

. (20)

Therefore, the eligibility looks close to that of the Ar-i rule
expressed by Eq. (5) even for an arbitrary activation function
and for any (e.g., continuous) probability distribution of
output signals yj . According to Eq. (2a), the learning rule
is local even in this general case:

General Rule A:

∆µij = ηijr
(xi − 〈xi〉)yj

(σ2
x)i

. (21)

If ηij = η, we get

Rule A0: ∆µij = ηr
(xi − 〈xi〉)yj

(σ2
x)i

. (22)

which results in following the exact gradient of the average
reward. However, the division by (σ2

x)i would make the
hardware implementation of such rule rather difficult. This

5According to the central limit theorem, if the cell connectivity is
sufficiently large, the distribution of xi is approximately Gaussian regardless
of the distribution of wij . In this case, our assumption of a Gaussian
distribution of the weights may be dropped.

6Note that by our definition of pi, at this averaging, yj should be
considered not as a random variable but a fixed number - cf. the derivation
of Eq. (11).

49

is especially true for nanoelectronic circuits like CMOL
CrossNets, where both neural cells and synapses should
be simple to sustain their unprecedented potential density
limited only by nanowiring (at ∼ 1012 binary synapses per
cm2, i.e. above the areal density of the human cerebral cortex
[8]).

In order to avoid this complication, we may take ηij =
η(σ2

x)i and obtain the following

Rule A1: ∆µij = ηr(xi − 〈xi〉)yj . (23)

In our simulations we have not observed any advantage of
using Rule A0 over the much simpler Rule A1 - see Sec. VI
and Table 1 below.

Note that Rule A1 looks very similar to the Ar-i learning
rule expressed by Eq. (6), except that the post-activation
signal yi is replaced for the pre-activation signal xi. Hence
it is natural to assume that the performance of the new rule
may be similarly improved by adding a small antitrapping
λ-term:

Rule A2:
∆µij = η [r(xi − 〈xi〉)yj + λ(1− r)(−xi − 〈xi〉)yj] .

(24)

Let us emphasize again that the derivation of Rules A implies
that the averaging of xi should be carried out over the
statistical ensemble of random synaptic weights, with signals
yj kept constant. The importance of this condition will be
further discussed in Sec. VI below.

IV. NETWORKS WITH STOCHASTIC SYNAPSES: RULES B

The formulas of the previous section have been obtained
by looking at the reward as a function of two independent sets
of variables: x and w. However, there is another legitimate
way to look at the reward: at a fixed network input, we may
consider it a function of the synaptic weight set alone, r =
r(w). From this standpoint, we can replace v in Equation (9)
with w, and θ with µ. Assuming the Gaussian distribution
of the random weights,

pij(wij) = B exp

[
− (wij − µij)2

2σ2
ij

]
. (25)

we get

eij =
∂ ln pi

∂µij
=

wij − µij

σ2
ij

. (26)

Therefore according to Eq. (2a), the learning rule should be
as follows:

General Rule B:
∆µij = ηijr

wij − µij

σ2
ij

. (27)

Just as in the previous section, we can utilize the flexibility
in choosing ηij to further simplify the learning rule. With
ηij = ησ2

ij , we obtain the following simple rule:

Rule B1: ∆µij = ηr(wij − µij). (28)

This is perhaps the simplest learning rule suggested for
MLP so far. The simulation results described in the next
section show that this rule follows the gradient at a slower
speed than Rule A1 (23), probably because Eq. (28) is
completely unaware of the structure of the network. It is
natural to try to improve this rule’s performance by the
introduction of a λ-term, similar to that used in Eqs. (7)
and (24):

Rule B2:
∆µij = η[r(wij − µij) + λ(1− r)(−wij − µij)],

(29)

but this modification actually makes the performance worse
- see below.

V. RULE CHARACTERIZATION: PARITY FUNCTION

As the first, simplest test of the new learning rules, we
have simulated training of a small fully-connected three-
layer MLP (4-10-1) to perform the parity function of 4
input bits. The inputs were binary, and the range of all
signals was from +1 to -1.7 The network is taught to produce
a positive output when there are even number of +1s in
the input, and a negative output in the opposite case. The
reward signal is simply r = +1 for the correct answer and
r = −1 for the wrong answer. (Since there is only one
output, the reward may be also considered as a “clipped”
error signal, so that we are actually dealing with the case on
the border between reinforcement and supervised learning.)
The network performance has been measured by the sliding
average reward defined as

ra(t) = (1− γ)ra(t− 1) + γr(t). (30)

Here γ is a small positive constant (for the results shown
below, γ = 0.01), t is the training epoch number, and r(t)
is r averaged over all training patterns in the t-th epoch.
One epoch consisted of the system exposure to all training
patterns, and the resulting adaptation of all weights. The
training set consisted of all 16 possible input patterns.

The neural cells were deterministic, with the following
activation functions:

yi = tanh(
G√

Nm−1

xi) (31)

where the linear gain G is normalized by the square root of
the number of cells in the previous layer, so that the average
intensity of signals (and hence the degree of cell nonlinearity)
is the same in all cells. (We have used G = 0.4 for all
simulations.)

The synaptic weights were independent Gaussian random
variables with equal fluctuation swings (σij = σ), but
generally different mean values µij . In order to arrive finally

7Because of such symmetric data representation, a certain number of bias
cells with constant output (+1) had to be added to the input and hidden layer,
in both this task, and those described in the next section. These biases are
not included into the cell count.

50

(a) Rule A0 (22), η = 0.6. (b) Rule A1 (23), η = 0.1. (c) Rule A2 (24), η = 0.1, λ = 0.005.

(d) Rule B1 (28), η = 0.02. (e) Rule B2 (29), η = 0.02, λ = 0.0005. (f) Rule A1 with 〈xi〉 calculated by averaging
through time (Eq. (33), for 300 time steps). η = 0.1,
γx = 0.03.

Fig. 2. The process of training an MLP with random synaptic weights to implement the 4-input parity function. Plots show the sliding average reward
as a function of training epoch number for 10 independent simulations runs. Parameters: σ(0) = 10, α = 1.

at a trained network with fixed (deterministic) weights, we
used the following “fluctuation quenching” procedure:

σ(t) = σ(0)[1− ra(t)]α, (32)

where the constant α was typically 1.
Figure 2 shows typical results of the simulation. As we

can see, all learning rules were able to follow the expected
reward gradient. Both rules B worked typically slower than
Rules A. Rule A2, which include the antitrapping λ-term, had
much lower probability of being stuck in a local minimum.

Note that according to Eq. (18), the averaging of xi should
be carried out over the statistical ensemble of only one
layer of random weights (with random outputs from previous
layer fixed). It might be tempting to use another opportunity:
calculate 〈xi〉 by direct averaging of xi over time during the
network operation. (This is close, though not exactly equiva-
lent to averaging over the statistical ensemble of all possible
combinations of synaptic weights.) We have explored this
opportunity using the following natural formula,

〈xi〉(t) = (1− γx)〈xi〉(t− 1) + γxxi(t). (33)

with small γx, just to find that it does not work - see Fig.
2(f). Thus the choice of the proper statistical ensemble for
averaging is indeed important.

VI. RULE CHARACTERIZATION: MONK’S PROBLEMS

As the second, more challenging test, we have used the
set of three “MONK’s” problems [16] which are widely
used for neural network algorithm benchmarking. All the
problems are classification tasks with two classes. Each of
the 3 problems contains 432 data vectors with 17 binary

components each. For Problems 1, 2 and 3, there are,
respectively, 124, 169, and 122 vectors in the training sets;
the rest of the data are used as the test sets.

For the comparison of different training methods, we
have used the MLPs of the same size as used earlier by
other authors: 17-3-1. The positive output was treated as
representing one class and negative one as representing
the other class. We have used r ∈ [0,+1] for Ar-p and
Ar-i, whereas r ∈ [−1,+1] for the other reinforce learning
algorithms. The training was carried out in the online mode,
e.g., the weights were updated after each pattern presented
at the input. Training was stopped either when the sliding
average reward ra exceeded 0.99 or after 10000 epochs.

Table I shows the generalization performance (the percent
of correct classifications on the test set) after training the
networks with the new and some well known algorithms,
including both supervised training rules (Error Backpropa-
gation (BP) [16], Weight-Decay Backpropagation (WDBP)
[17], Alopex [13], Weight Perturbation (WP) [12], Summed
Weight Neuron Perturbation (SWNP) [11]) and global re-
inforcement rules (Ar-i [5] and Ar-p [5]). The error bars
correspond to the standard deviation of the results of five
experiments for each case except for A2 and Ar-p, where
they were results of 20 experiments. The simulation results
for the first three algorithms have been borrowed from Ref.
[13]. For each training rule the network parameters (see the
last column of Table I) were carefully optimized for the
best generalization performance. No fluctuation quenching
has been used (α = 0) unless otherwise specified. In order
to ensure a fair comparison between the best two (A2 and
Ar-p), we have optimized their performances for individual

51

TABLE I
GENERALIZATION PERFORMANCE FOR MONK’S PROBLEMS

Algorithm Problem 1 Problem 2 Problem 3 Parameters

Supervised Learning

BP
WDBP
Alopex

WP
SWNP

100
100
100
100

99.5±0.6

100
100
100
100
100

93.1
97.2
100

93.5±1.3
94.6±2.3

η = 0.1
η = 0.01

Reinforcement Learning

Ar-i (6)
Ar-p (7)

Rule A0 (22)
Rule A1 (23)
Rule A2 (24)
Rule B1 (28)
Rule B2 (29)

77.1±0.3
99.4±0.5
78.8±1.8
79.2±2.5
96.3±4.0
79.4±2.8
78.4±6.8

70.3±0.0
99.8±0.3
75.5±3.3
77±11

99.7±0.5
72.2±5.8
69.9±1.3

96.8±0.0
96.8±0.0
96.6±1.1
96.7±1.3
96.8±0.0
95.2±1.5
94.8±2.9

η = 0.1
differ for individual problemsa

η = 0.1, σ = 1
η = 0.1, σ = 1

differ for individual problemsb

η = 0.008, σ = 1
η = 0.008, σ = 1, λ = 0.0005

aThe best results were achieved at η = 0.6, λ = 0.035 for problem 1, η = 0.7, λ = 0.025 for problem 2, and η = 0.07, λ = 0.001 for problem 3.
bThe best results were achieved at η = 0.08, λ = 0.005, σ(0) = 1.8, α = 0.4 for problem 1, η = 0.1, λ = 0.003, σ(0) = 1, α = 0.2 for problem 2

and η = 0.007, λ = 0.004, σ(0) = 1, α = 1 for problem 3.

problems.

VII. DISCUSSION

Not surprisingly, the results for most methods of super-
vised training are better than those for the global reinforce-
ment training rules (whose natural domain of application
are cases when the supervision is not available). The next
observation is that for the MONK’s problems with their large
training sets, the problem of trapping in local minima is much
more severe than for the parity function, and indeed impairs
the performance of the simple learning rules like Ar-i, A1 and
B1. The antitrapping terms in Ar-p and A2 clearly improve
the situation. On the other hand, the addition of such term
for Rules B does not help.

Another interesting fact is that reinforcement learning rules
(including all the new rules) all had very good performance
on the third of the MONK’s problems, which includes noise
in the training set and had been believed to be the most
difficult one [16].

However, for us the most important result is that neural
networks with stochastic synapses trained using at least one
of the new rules, namely A2, can perform classification tasks
even better than the Boltzmann machines using Ar-p rule.
Note that the new rule is very simple and local, giving hope
that it may be readily implemented in hardware, in particular
in ultradense nanoelectronic networks like CMOL CrossNets
[8]. Such implementation is our most immediate goal.

It is interesting that although rules of groups A and B
can be derived for the same random system according to
the same approach (following the average reward gradient),
they are rather different in structure. One way to understand
this fact is to emphasize that we are dealing with random
systems. The weight changes ∆µij given by the rules of
both groups are random numbers. For ηij = η, they have the
same expectation value 〈∆µij〉 = η∇µE{r|µ}. But even if
two random numbers have the same expectation value, they
can have very different properties. The rules of group A have
been derived from the statistic ensemble of all possible neural
cell outputs y, while rules B came from the analysis of the

statistical ensemble of all weights w. The former derivation
makes larger use of the information about the topology of the
network, while the later method treats the weights as some
abstract, separate learning units. (For example, the structure
of Eq. (28) completely ignores the existence of the pre-
activation and post-activation signals!) In this sense the rules
of group B are maximally localized because each weight
change requires no information other than its own perturba-
tion and the global reinforcement signal r. We believe that
this is why the rules of group A (in particular Rule A2) are
more effective for training multilayerd perceptrons, while the
rules of group B may be more applicable to learning in more
complex systems. (We plan to explore this opportunity.)

One more important question still to be answered is
network scaling, i.e., whether the efficiency of the new
rules (and specifically, Rule A2) may be sustained with the
growth of network size. Answering this question hinges on
finding benchmark problems with a variable length L of the
input vector, for which the known methods such as Ar-p
are insensitive to L. So far we have been unable to find
such problems in literature and plan to develop some tests
ourselves.

Finally, an important issue to explore is whether systems
with random synapses may learn in the conditions of delayed
reward. (In this work, the reward was assumed immediate.)
The usual approach to reinforcement problems with delayed
reward is to use another network serving as a “critic” whose
function is to predict the long-term reward [1], [2], [5]. At
this stage it is not yet clear whether neural networks with
random synapses may be effectively used as such critics.

VIII. ACKNOWLEDGMENTS

Valuable discussions with Paul Adams, Jacob Barhen, Dan
Hammerstrom and Jung Hoon Lee are gratefully acknowl-
edged. This work was supported in part by AFOSR, NSF,
and MACRO via FENA Center.

52

REFERENCES

[1] J. Hertz, R. G. Palmer, and A. S. Krogh, Introduction to the theory of
neural computation. Redwood City, CA: Addison-Wesley Pub. Co.,
1991.

[2] R. S. Sutton and A. G. Barto, Reinforcement learning : An introduc-
tion. Cambridge, MA: MIT Press, 1998.

[3] G. E. Hilton and T. J. Sejnowski, “Learning and relearning in boltz-
mann machines,” in Parallel Distributed Processing: Explorations in
the Microstructure of Cognition, D. E. Rumelhart, Ed., Cambridge,
MA: MIT Press, 1968, vol. 1, pp. 282–317.

[4] R. J. Williams, “Simple statistical gradient-following algorithms for
connectionist reinforcement learning,” Machine Learning, vol. 8, pp.
229–256, 1992.

[5] A. G. Barto and M. I. Jordan, “Gradient following without back-
propagation in layered networks,” in Proceedings of the First Annual
International Conference on Neural Networks, vol. 2, San Diego, CA,
1987, pp. 629–636.

[6] P. Dayan and G. E. Hinton, “Varieties of helmholtz machine,” Neural
Networks, vol. 9, no. 8, pp. 1385–1403, 1996.

[7] K. S. Narendra and M. A. L. Thathatchar, Learning Automata: An
Introduction. Prentice Hall NJ: Englewood Cliffs, 1989.

[8] Ö. Türel, J. H. Lee, X. L. Ma, and K. K. Likharev, “Neuromorphic
architectures for nanoelectronic circuits,” Int. J. Circ. Theory App.,
vol. 32, no. 5, pp. 277–302, 2004.

[9] W. Maass and A. M. Zador, “Dynamic stochastic synapses as compu-
tational units,” Neural Computation, vol. 11, pp. 903–917, 1999.

[10] H. S. Seung, “Learning in spiking neural networks by reinforcement
of stochastic synaptic transmission,” Neuron, vol. 40, pp. 1063–1073,
2003.

[11] B. Flower and M. Jabri, “Summed weight neuron perturbation: An
o(n) improvement over weight perturbation,” in Advances in Neural
Information Processing Systems(NIPS92), M. Kaufmann, Ed., San
Mateo, CA, 1993, vol. 5, pp. 212–219.

[12] M. Jabri and B. Flower, “Weight perturbation - and optimal architec-
ture and learning technique for analog VLSI feedforward and recurrent
multilayer networks.” IEEE Trans. Neural Netw., vol. 3, pp. 154–157,
1992.

[13] K. P. Unnikrishnan and K. P. Venugopal, “Alopex: a correlation based
learning algorithm for feed-forward and recurrent neural networks,”
Neural Computation, vol. 6, pp. 469–490, 1994.

[14] M. M. Aleksandrov, V. I. Sysoyev, and V. V. Shemeneva, “Stochastic
optimaization,” Engineering Cybernetics, vol. 5, pp. 11–16, 1968.

[15] J. Baxter and P. L. Bartlett, “Infinite-horizon policy-gradient estima-
tion,” Journal of Artificial Intelligence Research, vol. 15, pp. 319–350,
2001.

[16] S. B. Thrun et al., “The MONK’s problems: A performance compar-
ison of different learning algorithms,” Computer Science Department,
Carnegie Mellon University, Pittsburgh, PA, Tech. Rep. CS-91-197,
1991.

[17] A. Krogh and J. A. Hertz, “A simple weight decay can improve gen-
eralization,” in Advances in Neural Information Processing Systems,
J. E. Moody, S. J. Hanson, and R. P. Lippmann, Eds., vol. 4. Morgan
Kaufmann Publishers, Inc., 1992, pp. 950–957.

53

