
IndexAI: AI Based Index Selection for NoSQL Databases

Mohammad Mahdi Khosravi
Computer Engineering Dept.

Middle East Technical University
Ankara, Turkey

Email: mahdi.khosravi@metu.edu.tr

Pinar Karagoz
Computer Engineering Dept.

Middle East Technical University
Ankara, Turkey

Email: karagoz@ceng.metu.edu.tr

Ismail Hakki Toroslu
Computer Engineering Dept.

Middle East Technical University
Ankara, Turkey

Email: toroslu@ceng.metu.edu.tr

Abstract—In the big data era, automated index selection and
recommendation has been an important research problem to
improve the data access efficiency. Previous efforts on artificial
intelligence based database index selection have focused on
relational databases. In this work, we consider the automated
index selection for NoSQL databases and investigate the feasi-
bility of supervised learning and reinforcement learning based
solutions. The experiments conducted on the YCSB dataset
show that reinforcement learning improves index selection per-
formance as in relational databases, and supervised learning
gives promising results and can be considered applicable under
sufficient amount of training data.

1. Introduction

Indexing is one of the most important aspects of database
management systems for efficiency of data access. Although
there are popular and effective index structures such as B-
trees, hash index etc., automated index selection for different
workloads still remains as an open problem with room for
improvement. In recent years, we witness studies exploring
the the use of Artificial Intelligence (AI) and Machine
Learning (ML) for automated index selection and recom-
mendation. Such recent studies mostly consider relational
databases to propose automated index selection [1], [2].

With the rise of big data, NoSQL databases are widely
used in modern applications and software systems due to
the increasing demand for processing large amounts of data.
NoSQL databases provide high scalability, performance, and
availability compared to traditional relational databases. In
NoSQL databases, indexing still plays an important role to
provide scalability; yet under dynamic workload, it is not
straightforward to have an adaptive indexing mechanism. In
the literature, there are limited number of recent studies on
automated index selection for NoSQL databases. As one of
the most studies, in [3], Yan et al. propose the DRLISA
framework, which uses deep reinforcement learning for
NoSQL database index selection.

In this paper, we focus on the problem of AI-based index
selection for NoSQL databases, and study two alternatives
towards AI-based index selection. As the first one, we
use supervised Machine Learning to recommend an index

structure such as a B-tree according to the workload. The
second one is the use of a Reinforcement Learning (RL)
model that is based the framework SmartIX proposed by on
Licks et al [1]. SmartIX is proposed for relational databases.
In this work it is adapted for NoSQL databases and Yahoo!
Cloud Serving Benchmark (YCSB) [4].

For the Machine Learning model, we use supervised
learning based approach such that a training data set is
collected to develop a model to predict the time cost of
workload under a given index structure. We model the it
both as regression and classification problem to compare
which method would be most suitable. Our metrics for the
prediction performance are as follows: (1) The R2 value and
the Root Mean Squared Error (RMSE) are calculated for the
regression algorithms. (2) For classification, accuracy, recall
and precision metrics are used along with f1-score.

On the other hand, RL has the benefit of not requiring
an annotated data set to train a model; rather interaction
between the agent and environment through a trial-and-error
process is applied. Using RL, however, requires tackling a
few challenges:

• A proper state representation is needed to suit the
type of problem we are solving. In other words, a
NoSQL database representation is needed to be mod-
eled in the Reinforcement Learning environment.

• It is important to represent the action and reward
mechanism for our model. If the reward function
for index selection is too complex, the training pro-
cess may require a large amount of training data to
achieve good performance.

Therefore, we adapted the RL model of the SmartIX frame-
work to NoSQL database to solve these issues.

The rest of the paper is organized as follows. Section
2 provides background information on RL, supervised Ma-
chine Learning and YCSB. Section 3 describes the proposed
approach for optimal index selection. We present the ex-
perimental setup and results in Section 4 and discuss the
implications of the findings in Section 5. In Section 6,
related work is presented. Finally the paper is concluded
with an overview in Section 7.



2. Background

2.1. Reinforcement Learning

Reinforcement Learning (RL) is a sub-field of machine
learning related to how to make optimal decisions in un-
certain environments. It involves an approach where an
agent learns through trial and error by interacting with an
environment. The agent takes action and moves through
different states of the environment while receiving feedback
in the form of rewards. It is particularly useful in scenarios
where a model of the environment is unknown or where the
agent must interact with the environment over time to obtain
feedback on its actions [5].

Formally, the agent takes actions based on the current
state s of the environment and receives feedback in the form
of rewards r. The goal of the agent is to learn a policy π
that maximizes the expected cumulative reward over time.

RL can be formulated as a Markov Decision Process
(MDP) defined by a tuple (S,A, P,R, γ), where S is the set
of possible states of the environment, A is the set of possible
actions that the agent can take, P is the transition probability
function that specifies the probability of transitioning from
state s ∈ S to state s′ ∈ S when taking action a ∈ A, R is
the reward function that maps state-action pairs to rewards,
and γ is the discount factor that determines the importance
of future rewards [5].

The agent’s behavior is defined by a policy π, which is
a mapping from states to actions. The goal of the agent is
to learn an optimal policy π∗ that maximizes the expected
cumulative reward over time. The value function V π(s) and
the action-value function Qπ(s, a) are important concepts in
RL. The value function V π(s) represents the expected cu-
mulative reward starting from state s following the policy π.
The action-value function Qπ(s, a) represents the expected
cumulative reward starting from state s, taking action a,
and following policy π thereafter. The value function for a
state-action pair, following a policy π, is computed using
the Bellman Expectation Equation given in Equation 1.

Q(s, a) = Eπ[rt+1 + γQ(st+1, a
′) | s, a] (1)

In the equation, the state-action value of a state can be
decomposed into the immediate reward (rt+1) we get on
performing a certain action in state(s) (a′) and moving to
another state (st+1) plus the discounted value (γ) of the
state-action value of the state (st+1) with respect to the some
action(a) our agent will take from that state on-wards.

One popular RL algorithm is the Q-learning algorithm,
which is suitable for MDP environments. The idea behind
this algorithm is to incrementally update the values of
Q(s, a) based on the reward from an action. At each step,
Q(s, a) can be updated by using Equation 2.

Q(s, a)← Q(s, a) + α(r+ γmax′
a
Q(s′, a′)−Q(s, a)) (2)

There are different ways to implement the Q-learning
algorithm. The basic implementation of Q-learning involves
using tabular Q-value structures to store state-action values.

However, this approach becomes impractical when the state
space is large and there are many possible actions. It would
require visiting all state-action pairs frequently enough to
accurately estimate their values, which is not feasible.

Neural networks offer an alternative approach for Q-
learning by approximating the Q-values using function ap-
proximation techniques. Instead of explicitly storing and
updating Q-values in a table, a neural network (Q-network)
is trained to learn the Q-value function, which takes the state
as input and outputs the Q-values for all possible actions.
This allows for a more compact representation of the Q-
values and enables learning in high-dimensional domains.

2.2. Supervised Learning

Supervised learning is a branch of machine learning that
aims to learn from data that is labelled with the desired
output. In this work, two of the main types of supervised
machine learning are used: regression and classification.
Regression methods predict a continuous output value, such
as the price of a house or the height of a person. Clas-
sification methods predict a discrete output value among
predefined classes, such as the type of animal in a given
picture. Therefore

Two well-known classifiers, Naive Bayes Classifier
(NBC) and Support Vector Machine (SVM) are used in this
work. NBC is based on the assumption that the features of
the input are independent given the class label, and uses
Bayes’ Theorem to calculate the probability of each class
given the input. SVM is based on the idea of finding a
hyperplane that best separates the data points of different
classes. The hyperplane is chosen to maximize the margin
between the classes, which is defined as the distance from
the hyperplane to the nearest data point of each class. SVM
can also handle nonlinear data by using kernel functions that
map the data to a higher-dimensional space where a linear
hyperplane can be found. [6]

Regression is one of the most important and broadly
used machine learning and statistics tools. It allows to make
predictions from data by learning the relationship between
features of the data and observed, continuous-valued re-
sponses. In this work, two common methods of regression,
Linear Regression (LR) and Support Vector Regression
(SVR) are used. LR is one of the most popular form of
regression analysis due to its ease of use in predicting and
forecasting. It assumes that there is a linear relationship
between the input features and the output variable. The goal
of linear regression is to find the best-fit line or curve that
minimizes the sum of squared errors between the actual
and predicted values. SVR is an extension of SVM as a
kernel-based method that can capture non-linear and high-
dimensional patterns in the data. It works by transforming
the input features into a higher-dimensional space using a
kernel function and then finding a hyperplane that fits the
data with a maximum margin. The prediction for a new data
point is then obtained by applying the same kernel function
and taking the dot product with the hyperplane coefficients
[6], [7].



2.3. YCSB

The Yahoo! Cloud Serving Benchmark (YCSB) is an
open-source framework designed for benchmarking the per-
formance of NoSQL databases. It provides a standardized
workload and a set of performance metrics to enable users
to compare the performance of different NoSQL databases
under the same conditions.

YCSB is specifically designed to support various types
of NoSQL databases, such as key-value stores, column-
family stores, and document-oriented databases. It can gen-
erate workloads that model different types of applications,
including read-intensive, write-intensive, and mixed work-
loads.

The benchmark consists of two main components: a
workload generator and a set of performance metrics. The
workload generator generates a set of operations based on
the specified workload type and the underlying data model
of the NoSQL database being tested. The generated opera-
tions include read, scan, update and insert. The performance
metrics measure the throughput and latency of the opera-
tions, indicating the performance of the database.

3. Proposed Methods for AI-based Index Se-
lection

3.1. Problem Definition

The problem challenged in this study can be briefly
described as follows: Given the database index types and
the database workload, the target is to determine the index
type that will maximize the throughput of the workload.

Formally the collection of workloads is denoted as
W where |W | = N . Each wi ∈ W is a workload
configuration where 0 ≤ i ≤ |W | − 1 and wi =
(Re, Sc, Up,RMW, In,Op, Th) such that:

1) (Re, Sc, Up,RMW, In) are the read, scan, up-
date, read-modify-write and insert proportions of
the workload respectively. Note that the sum of the
workload proportions should be equal to 1.

2) Op is an integer indicating operations to execute
which would be partitioned based on the propor-
tions in the first item.

3) Th is the throughput of the workload configuration
wi. This value is obtained by actually running the
workload configuration.

I denotes the index type and in this work, it is assumed
that I ∈ (B-tree, Hash, LSM-tree) [8].

3.2. Supervised Learning based Index Selection

In the proposed supervised learning based approach, the
basic idea is to use predicted throughput as a metric to
suggest the index type. In other words, given the workload
and index type, as the first step, the throughput is predicted.
Among the index type alternatives, the one with the highest

Algorithm 1 Supervised Learning based Index Suggestion
Input: Workload Configuration W
Output: Index structure I

D ← Training data set
Train Machine Learning model M with D
Initialize empty dictionary L
for each I ∈ {B-tree, Hash, LSM-tree} do

Throughput←M.predict(W )
L[Throughput]← I

end for
O ← max(L.keys())
return L[O]

throughput prediction is considered as the index type to
select. Since the throughput is a continuous value, regression
algorithms are preferred for prediction. However, a classi-
fication approach is included as well, such that throughput
ranges are considered as class labels.

The pseudo-code of the overall algorithm of the pro-
posed method for index recommendation is given in Algo-
rithm 1. Essentially the algorithm gets an input workload
configuration W (as described in Section 3.1), and then for
that workload configuration, it will predict the throughput
as a continuous value for regression or a range for classifi-
cation. This prediction is performed for the 3 index types,
B-tree, LSM-tree and Hash. After this step, the algorithm
will select the index type with the maximum throughput as
the index structure I to select.

In the supervised learning based approach, both for
regression and classification, the workload configurations
annotated with index type and throughput value constitute
the training dataset. Each data instance is represented with
the following features: Index type (I), Read load ratio
(Re), Scan load ratio (Sc), Update load ratio (Up), Read-
Modify-Write load ratio (RMW ), Insert load ratio (In), and
Number of operations in the workload (Op).

3.2.1. Regression based Approach. In the regression based
approach, the workload collection is represented as a fea-
ture vector as described above. The target output is the
Throughput(T ), which is a numeric value. Thus the regres-
sion model predicts a continuous value as the throughput.
The evaluation of the model is measured with R2 and Root
Mean Squared Error (RMSE) metrics. R2 value is a measure
of how well a regression model fits the data. It is the amount
of the variation in the output dependent attribute which is
predictable from the input independent variables. R2 values
range from 0 to 1, where 0 means no fit and 1 means perfect
fit, therefore, a higher R2 value indicates a better fit and a
lower R2 value means a worse fit. RMSE, in turn, is the
standard deviation of the prediction errors.

3.2.2. Classification based Approach. In this approach, in
order to represent the problem as a classification task, the
target output is remodeled as discrete value. To this aim,
the throughput values are partitioned into bins and instead



of continuous throughput values, discrete bin numbers are
used as the target. Let

B = {B1, B2, ..., BN}

be a set of bins where each Bi for 1 ≤ i ≤ N corresponds
to an interval of throughput for a database workload con-
figuration. In other words, each Bi for 1 ≤ i ≤ N can
be represented as a pair of endpoints (Li, Ri) where Li

indicates the lower endpoint and Ri indicates the higher
endpoint.

With this representation, classification models are
trained to predict the throughput interval for the given
workload. The classification model evaluation is performed
with precision, recall, accuracy and F1-score metrics.

3.3. Reinforcement Learning based Index Selection

In a Reinforcement Learning (RL) model, an agent that
interacts with the environment for several episodes is trained
and each episode consists of a discrete number of time
steps. During this process, the following hyper-parameters
are considered:

• Learning rate (α),
• Discount factor (γ),
• ϵ, and
• ϵ-decay.

The ϵ value is used for having a balance of exploitation
and exploration in the agent training phase. This means that
the agent should start exploring the environment, and then,
stabilize on exploiting the rewards. Therefore, usually, ϵ ≥
0.9 in the beginning and the value is decreased, per episode,
as given in Equation 3.

ϵ = ϵ− (ϵ-decay× ϵ) (3)

In RL, we also used experience replay to break any
existing temporal correlations [9]. Thus, a memory buffer D
which keeps the experience tuples e = (s, a, r, s′), where s
is the state, a is the action, r is the reward, and s′ is the next
state, is initialized before starting the training procedure.
With sampling from the experience replay buffer, a mini-
batch of transitions is obtained with the same structure
e = (s, a, r, s′). These transitions can be used for updating
the parameters of the Q-network.

In the main training loop, the agent starts an episode
with the initial hyper-parameters. At each step (within an
episode), the agent will make a transition to a new state
based on the action it has taken and get the reward of that
action. At the end of the step, the agent will store a tuple
e = (s, a, r, s′) in D and then perform the random mini-
batch sampling step. When the agent has exhausted all the
time steps within an episode, it will update the ϵ value,
and reset the state and cumulative reward of the episode.
Algorithm 2 presents the training phase, as just explained,
in pseudo-code.

In this work, we used the SmartIX [1] RL framework
by Licks et al., and adapted it to the NoSQL index selection

Algorithm 2 Reinforcement Learning using Deep Q-
learning

Initialize γ, α, ϵ and ϵ-decay
Initialize number of episodes E, number of steps M
Initialize neural network Q
Initialize replay memory D
for i = 0 to E do

for j = 0 to M do
s′, r ← a.take action()
D.add (⟨s, a, r, s′⟩)
sample and update network(D,Q)
s← s′

end for
ϵ← ϵ− (ϵ-decay×ϵ)

end for

problem. To this aim, significant changes have been applied
to the state representation, action and reward mechanisms.
SmartIX uses the columns of a relation as its basis for state
representation by keeping a bit vector where each entry
would correspond to the indexing status on that column. In
our design, we index the attributes of the NoSQL database.
The reward function in the original approach involved using
the QphH@Size metric given in the relational database
benchmark of TPC-H 1. In this work, we use the YCSB
framework [4] and the throughput metric provided by YCSB
for our reward evaluation. The actions in both approaches
are similar. However, in the original paper, linear function
approximation was used for the Q-learning algorithm, while
we use a deep Q-learning algorithm by utilizing neural
networks.

In the following subsections, we elaborate on the state,
action and reward representation of our RL model. Addi-
tionally, the neural network architecture used within the RL
model is described.

3.3.1. States. In SmartIX [1], the state is defined based
on the columns of their relational table. Instead, we define
our state according to the attributes (fields) of a NoSQL
database. In our RL model, formally the state is a set
S = (F1, F2, ..., FN ) where Fi = ⟨Fieldi, Indexedt⟩.
Fieldi is a field identifier and Indexedt is either 1 if the
field is indexed at time t or 0 if not. For simplicity, the
name of each field is just ”field i” where 0 ≤ i ≤ (N − 1).
This is also the default name that YCSB [4] gives to the
attributes when loading data onto the DBMS. We keep our
set S as a vector to keep track of every field of all keys in
our NoSQL database. When a field is indexed, it means that
the corresponding field of all keys will be indexed.

3.3.2. Action. The actions of this model will select a field
within the the set of available fields and either drop or create
an index on that field based on the current status of the field.
For example, in a time step, if the action selects field 4 and
if it is currently indexed, the index will be dropped and vice
versa.

1. https://www.tpc.org/tpch/



Here the ϵ value plays an important role, since based on
that value the agent chooses whether to take a random action
or the maximum of all actions. Formally this cab written as
in Equation 4.

a =

{
maxa∈A Q(s, a), with probability 1-ϵ
randoma∈A, with probability ϵ

(4)

3.3.3. Reward. As the reward value, the throughput of the
workload under the index selection is used. After the agent
takes action, the YCSB workload is run and the resulting
throughput value is used as the reward value. Essentially,
the reward function assigns a scalar reward based on the
benchmarking results. The RL model aims to maximize
this reward, indicating improved database performance. By
associating the reward with the highest performance metric
achieved during the exploration of various index configu-
rations, the RL model learns to identify the optimal index
configuration that leads to the best query performance.

3.3.4. Neural Network Architecture. As mentioned in
earlier sections, we used the Deep Q-learning approach. The
neural network model employed in Q-learning consists of
three layers: (1) The first layer is a linear layer that maps
the input (state) to a hidden layer. (2) The second layer
applies the Rectified Linear Unit (ReLU) activation function
to introduce non-linearity with 64 neurons. (3) The third
layer is another linear layer that maps the hidden layer to
the output layer, which has a size equal to the number of
possible actions in the environment.

4. Experiments

In this section, we present the details of the conducted
experiments on the proposed solutions. First, the experimen-
tal setup is described, and then the results are presented.

4.1. Experimental Setup

All experiments were performed on a computer with an
AMD Ryzen (8 cores) processor. We used Python 3.6.10 and
NoSQL version of PostgreSQL 13.11 for the development
and database environment. The RL setup uses PyTorch,
while for the Machine Learning experiments, Scikit-learn
was used. To include the LSM-Tree index structure in Post-
greSQL, we used a RockDB Foreign Data Wrapper [10].

In the experiments, 10 workload samples are selected
and benchmarked using the YCSB [4] under different in-
stances of the 3 index structures B-tree, Hash and LSM-tree.
The first 5 workloads are 100% workloads which focus on
one operation only. The other 5 workloads are generated
randomly. For this, we wrote a script that would generate
the following values randomly:

1) Operation proportions: The percentage of read,
write, scan, update and read-modify-write opera-
tions.

2) Operation count: The total number of operations to
run in the workload.

One constraint on the operation proportions is that the
summation of the 5 operations must be equal to 1. It
should also be noted that the random number of operations
was in the range of [500, 5000]. In Table 1 the workload
configurations used in the experiments.

4.2. Supervised Learning Setup

For supervised learning, we generated a dataset includ-
ing 294 instances with the attributes described in Section
3.2. The experiments are conducted under 5-fold cross-
validation.

The hyper-parameter tuning of SVM and SVR is per-
formed by PyTorch. According to tuning process, for SVR,
the C value is set to 1000, and a Radial basis function (RBF)
is used as the kernel function. For SVM, a linear kernel
function provides the best prediction performance.

For the classification, we split the throughput values into
9 bins where each bin would correspond to an interval of
500 operations/s as given in Equation 5.

B1 = [0-500], B2 = [501-1000], ..., B9 = [4000-4500] (5)

The throughput prediction performance of regression
and classification approaches are presented in Table 2 and
Table 3. For regression, R2 and RMSE values are reported.
For the classifier, the accuracy, precision and recall along
with the F1 score are presented as the performance metrics.

4.3. Reinforcement Learning Setup

In the RL model, the agent is trained in 20 episodes
and each episode is 100 time steps. The agent training took
about 2 days to complete. The learning rate (α) was set as
0.01 and the discount factor (γ) was 0.8. The batch size for
the sampling part was chosen as 10, so, at each step, we
would do the experience replay from 10 stored samples.

Initially, ϵ is set to 0.95 and it is decayed by 25% at
the end of each episode. Figure 1 shows that ϵ reached
its minimum value of 0.01 by the 16th episode. Also, the
reward accumulation was stabilized starting from episode
13 as shown in Figure 2.

5. Discussion

When the classification based prediction models are
compared, it is seen that the SVM model has an accuracy
score of 0.8, whereas the Naive Bayes model has a higher
accuracy score of 0.86. Both models have the same preci-
sion score of 0.78, which means that they have the same
proportion of true positives among all predicted positives.
Similarly, the Naive Bayes model has a higher recall score
of 0.86 while the SVM model has a recall score of 0.8.
The F1 score, which is the harmonic mean of precision and
recall, suggests further that the Naive Bayes model is more
effective. Based on these observations, we can conclude



TABLE 1. WORKLOAD CONFIGURATIONS

Workload Number Read Scan Update RMW Insert Operation Count
1 1 0 0 0 0 1000
2 0 1 0 0 0 1000
3 0 0 1 0 0 1000
4 0 0 0 1 0 1000
5 0 0 0 0 1 1000
6 0.3 0.3 0.09 0.07 0.24 3794
7 0.18 0.23 0.21 0.11 0.27 1783
8 0.27 0.04 0.14 0.3 0.25 3768
9 0.21 0.32 0.25 0.01 0.21 3577
10 0.09 0.25 0.02 0.29 0.35 2397

TABLE 2. CLASSIFICATION PERFORMANCE RESULTS

Metrics Classification Method
Naive Bayes SVM

Accuracy 0.86 0.80
Precision 0.78 0.78

Recall 0.86 0.8
F1 0.82 0.78

TABLE 3. REGRESSION PERFORMANCE RESULTS

Metrics Regression Method
SVR Linear

Mean R2 (of 5-folds) 0.68 0.61
R2 Value of Test Data 0.90 0.32

RMSE 334.02 877.09
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Figure 1. ϵ value per episode

that the Naive Bayes model outperforms the SVM for the
classifiers.

The comparison of two regression models (SVR and
Linear Regression), given in Table 3, shows that SVR per-
forms much better than Linear Regression on the given data
set. The SVR model has a high R2 value of 0.9, which
means that it explains 90% of the variance in the data.
The Linear Regression model has a low R2 value of 0.32,
which is much worse in comparison to SVR. Comparatively,
the SVR model has a low RMSE value of 334.02, and the
Linear Regression model has a much higher RMSE value
of 877.09, which means that it has a large average error
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Figure 2. Accumulated reward per episode

TABLE 4. SUPERVISED LEARNING MODELS’ INDEX SUGGESTIONS

Workload NB SVM SVR LR
1 B-tree Hash B-tree B-tree
2 B-tree B-tree B-tree B-tree
3 Hash/B-tree B-tree Hash B-tree
4 Hash/B-tree B-tree B-tree B-tree
5 B-tree LSM-tree LSM-tree B-tree
6 B-tree LSM-tree B-tree B-tree
7 B-tree B-tree B-tree B-tree
8 B-tree B-tree B-tree B-tree
9 B-tree B-tree B-tree B-tree

10 B-tree B-tree B-tree B-tree

in predicting the data. Therefore, based on these metrics,
the SVR model appears more accurate and reliable than the
Linear Regression.

In Table 4, the indices selected/recommended by differ-
ent methods are listed. In the table it is seen that, B-tree
is the best of the three index structures for any type of
workload that has a mixture of different operations or is
read, scan or RMW-focused. Otherwise for the exceptional
case of write and/or update heavy workloads, LSM-tree is
the best structure, as it is designed to handle write-intensive
workloads [8]. Moreover, in the throughput comparisons,
it can be seen that Hash indexing provides a better result
for read-intensive workloads which only the SVM classifier
manages to identify.

The throughput comparison of the learning models is
presented in Table 5. Here it is seen that the RL approach
can outperform 7 of the workload configurations against



TABLE 5. THROUGHPUT (OPERATIONS/SECOND) COMPARISON

Workload RL Naive Bayes SVM SVR LR B-tree Hash LSM-treeMin Average Max Min Average Max
1 2590.67 1500 1750 2000 4000 4250 4500 805.67 1355.09 3808.74 4076.64 21.97
2 862.07 1500 1750 2000 1500 1750 2000 792.59 771.45 1508.00 85.98 15.61
3 1655.63 500 750 1000 500 750 1000 790.81 957.31 617.67 686.44 22.45
4 1381.22 500 750 1000 500 750 1000 789.79 868.30 612.51 642.43 10.89
5 404.37 500 750 1000 2500 2750 3000 791.1 866.92 655.33 699.88 2718.86
6 2148.36 1000 1250 1500 1000 1250 1500 1281.03 1055.01 1443.68 110.14 16.01
7 1523.93 1000 1250 1500 500 750 1000 919.88 969.36 1172.26 118.53 15.25
8 1320.25 500 750 1000 1000 1250 1500 1067.2 1069.45 1420.81 379.69 14.55
9 2140.63 1000 1250 1500 1000 1250 1500 1209.7 1018.73 1612.71 94.89 17.78

10 1032.30 1000 1250 1500 500 750 1000 950.71 920.22 1086.09 106.16 14.51
Accumulated
Throughput 15059.43 9000 11500 14000 13000 15500 18000 9398.48 9851.84 13937.8 7000.78 2867.88

TABLE 6. THROUGHPUT COMPARISON ON PROPOSED RL METHOD VS.
DRLISA [3]

Workload Number Proposed RL model DRLISA
1 2590.67 2403.84
2 862.07 39.25
3 1655.63 4524.90
4 1381.22 38.70
5 404.37 2415.50

Accumulated
Throughput 6893.96 9422.19

the three baseline index structures (given in the rightmost
three columns). Additionally, the accumulated throughput
value of all 10 workloads indicates that, on the overall,
the RL agent still manages to increase performance by at
least 8% against the baseline results and by 30% against
the Supervised Learning models (if we consider the average
value of the bins in the classifiers). The only exception is
SVM where the accumulated average value is higher by
2.9%.

When we compare the time cost between training a Su-
pervised Learning model and RL, as also mentioned in Sec-
tion 4.3, RL model required 2 days for the agent to complete
its training phase, whereas the Supervised Learning models
took only a few minutes to get trained. This shows a large
difference between the time cost of the two approaches.
On the other hand, Supervised Learning would require an
annotated training dataset, while Reinforcement Learning
can be trained through interaction with the environment.

In Table 6, a comparison between the proposed RL
model and a previous solution in the literature, DRLISA [3]
is given. The throughput results for the first 5 workloads
given in [3] are compared with the results obtained with
the proposed RL model. According to the results, DRLISA
manages to outperform the proposed RL approach (consid-
ering the accumulated throughput) by 26%. However, this
result is not conclusive since only a limited set of throughput
performance is reported in [3]. Additionally, it is seen that
the index suggestion does not provide stable results. For the
workload 3, DRLISA provides a very high output, whereas
for the workloads 2 and 4, the performances are very low
compared to the proposed solution. On the other hand,

the proposed RL solution provides a comparatively steady
throughput performance.

6. Related Work

In the literature, automated index selection and recom-
mendation has been studied mostly for relational databases.
Studies on NoSQL databases have only started recently and
the number of such studies is still few.

For relational databases, the previous index selection
studies focus on cost estimation and generally employ RL
as learning technique [1], [11], [12], [13], [14], [15].

In a recent study by Gao et al. [16] both a cost estimator
and a Deep Reinforcement Learning (DRL) based index
selector are proposed. The proposed cost estimator uses a
graph convolution network and is able to make accurate
estimations without using much storage. Their DRL-based
index selector is merged with their implemented cost esti-
mator to improve index selection performance.

In [17], Shi et al. also focus on relational databases
and introduce a machine learning-based index benefit es-
timator (LIB) to overcome the limitations of index benefit
estimation based on ”what-if” calls. The authors claim that
their approach is the first machine learning-based approach
to quantify index benefits. Their evaluations show that LIB
not only outperforms the ”what-if” method but also reduces
prediction errors significantly (by 91%).

Kossman et al. [18] present a performance study of RL-
based index selection. Additionally, the authors introduce a
novel RL-based index selection framework, which matches
the performance of the state-of-the-art while outperforming
their runtime. Their solutions involve having a complex
model for workloads which allows generalizing it to unseen
workloads. Finally, their approach supports multi-attribute
indexes which is not done by other RL-based solutions.

Additionally, Kossman’s dissertation [19] aims to im-
prove DBMS performance by researching two directions.
The first is introducing new algorithms for efficient index
selection and the second direction is query optimization by
utilizing data dependencies. For efficient index selection two
methods, SWIRL and Extend which complemented each
other, are proposed. The approaches taken in this dissertation



are experimented with industry-standard benchmarks where
promising results are shown.

As one of the most recent studies on index selection for
NoSQL Databases, in [3], Yan et al. propose the DRLISA
framework, which uses DRL for NoSQL database index
selection. As NoSQL database, a document database is
used, and the experiments demonstrate the improvement
by RL based index selection. However, crucial details such
as workload representation and RL implementation are not
presented. This prevents the repeatability of the results.

In [20], Chawathe outlines a cost model for NoSQL
databases, particularly those on the cloud, to capture the
specific monetary costs associated with database operations
in this context. The paper highlights the importance of this
problem and the lack of reported work on such a cost model
for NoSQL databases despite its necessity. The development
of such a cost model allows for optimal (or near-optimal)
index selection in NoSQL database systems.

7. Conclusion

The motivation for this study was to explore AI for
index selection in NoSQL databases. Considering the fact
that a large majority of work focused on relational databases
and using RL only, it is worthwhile to see how we could
use Supervised Learning to obtain index suggestions for
different workloads. Additionally, we provided a RL based
approach to get better index structures in NoSQL databases
which has a different architecture than the DRLISA [3]
framework. The proposed RL method is based on SmartIX
[1] where the framework was modified to make it applicable
for NoSQL databases.

In our evaluation, it is observed that, using RL to find
an optimal index structure based on attributes of a NoSQL
database, leads to an overall increase in the throughput.
Suggestions by regression models, in contrast, do not seem
to provide improvement in comparison to only using B-tree
for any workload configuration. Classification, on the other
hand, can be a more effective approach to predict optimum
index structure while sacrificing having a continuous valued
output. The performance of classification based approach
has potential for improvement if larger training datasets can
be provided.
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