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Abstract - The paper presents how a digital twin (DT) can accelerate the development of automated driving
systems. In particular, the verification and validation of sensing and perception system, with focus on safety critical
traffic scenarios under parametric uncertainty and different types and variations of vulnerable road users (VRUs).
The investigations show that the parametric uncertainty introduced by different VRUs is relatively small, but due to
the safety relevance as well as sensitivity of deep neural networks, such a study remains relevant. The uncertainty
introduced by the variations in weather and illumination conditions is much larger, which allows a proper robustness
assessment of sensing and perception subsystem.

Keywords: digital twin, synthetic data generation, automated driving systems, autonomous vehicles, sensing and
perception

Introduction
Digital twin (DT) is a relatively new concept in de-
sign, having been around for less than 10 years.
Hence, minimal research exists on how DT-driven vir-
tual verification can improve product design and qual-
ity. Moreover, much of the technology required to re-
alize DT is in the development, such as big data an-
alytics and Internet of Things (IoT) communication
(Tao, et al., 2020).
One of the possible application of DT for autonomous
vehicles is to support the development process. In
case of automate driving systems (SAE J3016 L3
and L4) the research and development community
realized quickly that only real-world testing - using
mileage-based coverage - is not feasible, from eco-
nomical and technical point of view. One of the main
reasons is that during real world-driving, safety rele-
vant events, happen very rarely. It became obvious
that virtual testing as well as digital twins will play a
key role in the certification of automated driving sys-
tems (Leitner, Watzenig, and Ibanez-Guzman, 2020).
Therefore, the paper deals with the following re-
search questions:
• How to build a digital twin for automated driving

systems, what are the main requirements and main
building blocks?

• How synthetic data generation is done using DT
and how synthetic data accelerates the verification
and validation of sensing and perception systems?

The concept of digital twin
The concept of digital twin (DT) has been introduced
by NASA - the DT can be seen as a virtual mirror of
the physical counterpart integrating multiple physics
and scales, and it employs both dynamic sensor data
and historical data from the product life cycle.

Figure 1: Digital twin for autonomous vehicles.

A digital twin (DT) is characterized by the interaction
and convergence of the digital and physical worlds,
which could possibly bring many benefits:
• The physical product can be made more intelligent

to actively adjust its behaviour in real time accord-
ing to the simulation by the virtual product (e.g. via
software updates over the air).

• The virtual product can be made more realistic to
accurately reflect the real states of the physical
product.

• The solution enables integrating the real and sim-
ulated world at all required levels of integration to
support efficient development and production.

A possible DT used for development and deployment
of autonomous vehicles is presented in Fig. 1, where
the timescales for data communication are also men-
tioned. For example, the information exchange be-
tween the DT and the real vehicle is happening at a
times scales of hours (collected data is sent to the DT
on hourly basis) and the updates over-the-air (OTA)
might happen once a month.
While simulations and digital twins both use digital
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models to replicate products and processes, there
are some key differences between the two. The most
notable is that a digital twin creates a virtual envi-
ronment able to study several simulations, backed up
with real-time data and a two-way flow of informa-
tion between the twin and the sensors that collect
this data. This increases the accuracy of predictive
analytical models, offering a greater understanding
of how products, policies, and procedures, behave in
real-world. A simulation replicates what could hap-
pen to a product, but a digital twin replicates what
is happening to an actual specific product in the real
world.

These differences can be further explained as fol-
lows:

• Static vs. active: A simulation model is static as it
won’t change or develop unless a designer intro-
duces more elements. However, while a digital twin
will begin much the same as a simulation model,
the introduction of real-time data means that the
twin can change and develop to provide a more
active simulation.

• Possible vs. actual: A simulation replicates what
could happen to a product, but a digital twin repli-
cates what is happening to an actual specific prod-
uct in the real world. Any changes to a simulation
are limited to the imagination of a designer who
needs to input any changes. However, because a
digital twin offers real feedback, the designer can
see if it is working as intended and then determine
any improvements based on actual use.

• Scope of use: The final key difference is the scope
of use that is offered by simulations vs digital twins.
Simulations allows designers to test different sce-
narios against set parameters, making it useful for
product design purposes.

A DT is not only highly relevant for development of
autonomous vehicles, but they are becoming increas-
ingly more important in the high-tech industry. With-
out DT the high-tech industry would not be able to
accurately design and monitor complex systems, e.g.
detecting system failures or degradation as early as
possible.

DT for autonomous vehicles
Developing a DT for verification and validation of au-
tonomous vehicles has several benefits and possible
applications. A typical, data-driven workflow (contin-
uous integration and continuous deployment) is pre-
sented in Fig. 2 (ASAM, 2023b), in which the DT
could play a key role, since DT-driven virtual verifi-
cation is capable of high-fidelity simulations, allowing
designers to further improve and refine the design.

Due to the ability to model real-life scenarios, de-
signers can obtain feedback on how a concept will
behave in the real-world (e.g. in case of safety criti-
cal traffic scenarios, large variation of vulnerable road
users).

Furthermore, the generated synthetic data set allows
verification and validations at early stage of develop-
ments.

According to (Andrews, 2022) synthetic data is in-
formation that’s artificially generated rather than pro-
duced by real-world events. Typically created us-
ing algorithms, synthetic data can be deployed to

Figure 2: Data driven development of autonomous vehicles.

validate mathematical models and to train machine
learning models.
Data generated by a computer simulation can be
seen as synthetic data. This encompasses most ap-
plications of physical modeling, such as music syn-
thesizers or flight simulators. The output of such sys-
tems approximates the real thing, but is fully algorith-
mically generated (Nowruzi, et al., 2019).
Synthetic data is generated to meet specific needs or
certain conditions that may not be found in the orig-
inal, real data. Synthetic data are often generated to
represent the authentic data and allows a baseline
to be set. Another benefit of synthetic data is to pro-
tect the privacy and confidentiality of authentic data
(Barse, Kvarnström, and Jonsson, 2003).
In this paper the presented DT is built using Simcen-
ter Prescan, considering physics-based sensor mod-
els, Simcenter Amesim, considering a 15DOF vehicle
dynamics model, SUMO traffic simulator.
Simcenter Prescan allows the definition and
parametrization of the scenario in a flexible way.
For vehicles, different models and colours can
be selected, while for humans: gender, race, age
can be chosen. Furthermore, environmental and
illumination conditions specific for the operational
design domain can be easily specified - see Fig 3.
There are three essential components to provide
a good physics-based simulation: sensor specific
information, simulation engine and digital twin of the
world/environment.
In this paper, the synthetic data generated by DT is
stored in KITTI data format - see Fig. 4 (Geiger, et

Figure 3: Digital twin in Simcenter Prescan.
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al., 2013) and is going to be extended to OpenLa-
bel (ASAM, 2023a) data format. Hereby, as an appli-
cation of the DT the robustness assessment of the
sensing and perception stack, which relies on Yolov3
(Redmon and Farhadi, 2018) is presented.

Figure 4: KITTI data structure.

Robustness assessment
Let us assume that in case of camera-based sens-
ing and perception system the misdetection are as-
sociated with a failure. The number of misdetections
depend of the operating conditions of the sensors,
therefore the input data set ∀x ∈ Xn (e.g. in case of
a camera sensor the image data set) shall be repre-
sentative capturing a wide variety of operating con-
ditions (e.g. illumination conditions, weather condi-
tions, etc.).

Therefore, it is relevant to investigate the robustness
of the system, e.g. how the number of failures are
changing, when the sensing system is exposed to an
augmented data set ∀x ∈ X - the nominal data set
Xn is augmented by aleatoric and parametric uncer-
tainty.

Robustness assessment of camera-based sensing
and perception stack requires the definition of a ref-
erence data set, an augmented data set, a distance
metric to assess the similarity between the reference
data set and augmented data set as well as a perfor-
mance metric such as the validation accuracy of the
network.

A block diagram of the robustness assessment of the
sensing and perception subsystem is presented in
Fig. 5.

Figure 5: Robustness assessment.

The structural similarity index measure (SSIM) is a
method for predicting the perceived quality of digital

images and can be used for measuring the similarity
between two images x, y - see Wang, et al., 2004.

SSIM(x, y) = (2µxµy + c1)(2σxy + c2)
(µ2

x + µ2
y + c1)(σ2

x + σ2
y + c2) (1)

where µx and µy are the the pixel sample mean of x
and y, σ2

x and σ2
y are the variance of x and y, σxy is

the cross-correlation of x and y and c1 and c2 are two
variables to stabilize the division with weak denomi-
nator.

The resultant SSIM index is a decimal value between
-1 and 1, where 1 indicates perfect similarity, 0 in-
dicates no similarity, and -1 indicates perfect anti-
correlation.

Furthermore, a structural dissimilarity (DSSIM) may
be derived from SSIM, though it does not constitute
a distance function as the triangle inequality is not
necessarily satisfied.

DSSIM(x, y) = (1 − SSIM(x, y))/2 (2)

In addition to DSSIM , there are three widely used
distance metrics for measuring uncertainty, all of
which are p-norms, defined for matrices (since the
focus is on camera images). Ideally, two inputs with
smaller distance should be more similar with respect
to human perception ability. Hereby, only the ∞-norm
of a matrix is defined as the maximum absolute sum
of the matrix rows.

||A||∞ = max
1≤i≤n

n∑
j=1

|aij | (3)

As a remark, the norm above is normalized in such
a way that is independent of image size as well as
number of layers.

Accuracy is one metric for evaluating classification
models. Accuracy is defined as a ratio between the
number of correct predictions and the total number
of predictions. For binary classification, accuracy can
also be calculated in terms of positives and negatives
as follows:

A(x) = TP + TN

TP + TN + FP + FN
(4)

where TP, TN, FP, FN denote True Positives, True
Negatives, False Positives and False Negatives.

According to the ethics guidelines for trustworthy
AI (EU-study/report, 2019) the development, de-
ployment and use of AI systems should meet the
seven key requirements for trustworthy AI: (1) human
agency and oversight, (2) technical robustness and
safety, (3) privacy and data governance, (4) trans-
parency, (5) diversity, non-discrimination and fair-
ness, (6) environmental and societal well-being and
(7) accountability.

Therefore, one of the investigations presented
hereby, are related to technical robustness and safety
considering diversity, non-discrimination and fair-
ness. In this sense, the robustness of the sensing and
perception stack is studied, when different vulnerable
road users, which belong to different age, gender and
ethnic categories are considered.

In Simcenter Prescan (Siemens-DISW, 2023), a
large number of different vulnerable road users
(VRUs) are already predefined. In the current study,
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the following VRUs, have been considered: VRUs =
{Male Regular (as reference), Female Regular, Male
African, Male CyclingCyclist, Child Regular, Female
wBuggy, Male Old White WithStick, Female wShop-
pingCart}. The considered scenario is an urban driv-
ing scenario, when the VRU is crossing in front of the
vehicle..
Furthermore, the three different diffculty classes -
Easy, Moderate, Hard - are defined based on object
2D bounding box size, object truncation and object
occlusion. Smaller objects, which are truncated or
partly occluded are more difficult to detect than larger
objects, which are fully visible.
The performed investigations show that the normal-
ized uncertainty - considering different VRUs - be-
longs to a narrow interval ∆x ∈ [0, 0.05] and the
validation accuracy is A(x) ∈ [0.6, 0.8]. If we clas-
sify the detected objects in three different classes
based on the difficulty of the detections such as:
Easy, Moderate, Hard, we could observe - as shown
in Fig. 6 - that child detection is more difficult in com-
parison with adult detection (mainly due to the size).

Figure 6: Validation accuracy for different VRUs.

Finally, the robustness of the network against
aleatoric and parametric uncertainties has been in-
vestigated, where the uncertainty is quantified using
the structural dissimilarity matrix. Hereby, only the re-
sults related to VRUs, in case of parametric uncer-
tainty, introduced by the weather condition variations
(fog) are shown - see Fig. 7 . It observed that as
uncertainty is increasing the accuracy is decreasing,
with a sharper drop, when the uncertainty exceeds a
certain threshold ∆x ≥ 0.275.

Figure 7: Network robustness against fog.

Conclusions
The DT and the generated synthetic data allow, effi-
cient robustness assessment of the sensing and per-
ception subsystem, considering aleatoric (e.g. sim-
ulated hardware faults) and parametric uncertainty
(e.g. parameter variations of vulnerable road users,
variations of environmental and illumination condi-
tions).

A digital twin matures through a product lifecycle as
more data is collected and analysed, offering differ-
ent information that is not available with a static sim-
ulation. The scope of a digital twin reaches much
further than simulations and includes all stages of a
product’s lifecycle. This increased scope means that
digital twin can find uses outside of design and can
help improve processes and make wider business
decisions.

The investigations show that the parametric uncer-
tainty introduced by different VRUs is relatively small,
but due to the safety relevance as well as sensitiv-
ity of deep neural networks, such a study remains
relevant. The uncertainty introduced by the varia-
tions in weather and illumination conditions is much
larger, which allows a proper robustness assessment
of sensing and perception subsystem.
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