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Abstract— This paper presents a control scheme to achieve
dynamic stability in an aerial vehicle with dual multi-degree of
freedom manipulators using a lyapunov based model reference
adaptive control. Our test flight results indicate that we can
accurately model and control our aerial vehicle when both
moving the manipulators and interacting with target objects.
Using the Lyapunov stability theory, the controller is proven
to be stable. The simulation results showed how the MRAC
is capable of stabilizing the oscillations produced from the
unstable PI-D attitude control loop. Finally a high level control
system based on a switching automaton is proposed in order
to ensure the saftey of the aerial manipulation missions.

I. INTRODUCTION

Historically, UAV research has been focused on avoiding

interaction with the environment. Recently, the focus has

shifted towards aerial manipulation and bringing the un-

manned aerial systems in contact with their surroundings.

The ability to manipulate objects will, ultimately, greatly

expand the use of unmanned aerial systems. Although some

research groups tested various forms of adaptive control on

quadrotor UAVs [1], [2], its full potential can be exposed

through aerial manipulation missions, where the moment of

inertia and the center of mass constantly fluctuate. Model

reference adaptive control concept [3], proposed in this paper

has been used in numerous applications [4]–[6]. Together

with the original PID controller of the aircraft it is used to

assure aircraft stability throughout the manipulation process.

Current State of the art in Aerial manipulation has focused

mostly on single DOF gripper manipulators and slung load

transport. A lot of researchers that contributed to this field

of aerial robotics have so far focused on 3 key aspects:

• Contact inspection (Pose/Wrench control)

• Slung load transport

• Single Degree of freedom grippers
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A. Pose/Wrench control

In [7], authors introduced wrench control to give the

quadrotor an ability of stable motion while in contact. The

authors used a hybrid Pose/Wrench framework capable of

switching between pure Pose and Pose/Wrench control but

the operator is required to make the switch. Instead of using

additional force/torque sensors, authors utilized a wrench

estimator using quadrotor inputs and pose measurements.

Another hybrid Force/Position control concept based on state

feedback is introduced in [8], [9]. In this work, a duct-fan

aerial vehicle is used to achieve contact inspection tasks. The

authors presented a mechanical design to cope with inherent

zero dynamics of the system.

B. Slung Load

Authors in [10] explored the possibility of using single and

multiple UAVs to assist in search and rescue (SAR) missions.

They tested formations of up to three small size petrol

powered helicopters that cooperatively transport a slung load.

The authors were capable of transporting a video camera with

three small size helicopters in adverse weather conditions

that exhibited high wind speeds of up to 35km/h. A group

of authors in [11] implemented an additional vision system

that measured the position of the slung load. They proposed

an adaptive controller that reduced the swing in the load. In

order to solve a similar problem with quadrotors carrying a

slung load, authors in [12] proposed a technique based on

dynamic programming which ensured swing free trajectory

tracking.

In [13], a tethered helicopter configuration is modeled

and tested. This configuration proved to be more stable in

Fig. 1: MM-UAV carrying a long rod
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presence of disturbances (i.e. wind gusts) then a non-tethered

helicopter. Tether also introduced coupled dynamics, adding

to the complexity of the overall controller. Nevertheless,

tether is a very interesting concept that could potentially be

used in twofold manner: It could provide unlimited supply

of electricity; It could also be used as additional pose and

position measurement system.

C. Single DOF Grippers

The authors in [14]–[16] analyzed the stability of a he-

licopter and a quadrotor with added payload mass. Using

Routh-Hourwitz criteria, the authors derived a connection

between the mass off the added payload, its offset from

UAV center of mass and the stability of the UAV. Plotting

offset vs. mass stability regions, they clearly showed how

a bigger mass tightens the stability region of the aircraft.

Namely, the bigger the mass, the smaller the available offset

region, so that the vehicle has to grab the additional payload

as close to the center of gravity as possible. Quadrotor

stability in presence of unknown payload disturbances was

discussed in [17]. Here the authors look into the possibility of

estimating disturbance parameters (i.e. mass and moments of

inertia). Using hover mode to estimate the parameters, they

effectively eliminated the Euler angles and the derivatives

of the position from the equations. This research group

also contributed by doing an experimental study with teams

of quadrotors cooperatively grasping, stabilizing, and trans-

porting payloads along desired three-dimensional trajectories

[18]. They went a step further and showed the experimental

results of team of quadrotors performing automated assembly

of Special Cubic type Structures [19]. They used their

gripping tool to pick up the simple structural nodes and used

magnetic endings on the structures to piece them together.

D. Beyond the current State of the Art

The aim of this research is to extend the current state of the

art by introducing multiple degree of freedom manipulators.

To the extent of authors knowledge, little or no attempt has

been made to implement such an aerial vehicle so far. Afore

mentioned state of the art is limited to simple manipulation

problems (i.e. Pick and place, contact inspection, painting,

etc.). Multiple - Degree of Freedom manipulators expand

the capabilities of aerial robots by giving them the ability

to: Perch and manipulate, Twist valves on or off, Assemble

objects, remove obstacles and many other.

Introducing multiple degrees of freedom adds to the

complexity of the control problem. Therefore, the first goal

of this research is to achieve and sustain a stable flight

while moving manipulator arms. A lot of research in mobile

robotics as well as the research in air robots with 1DOF

grippers can be utilized to solve this problem. After this, next

research step would be to implement current state of the art

in contact stability and load estimation which would yield

a fully dexterous aerial robot. The following two chapters

present a first step towards a fully dexterous MM-UAV.

Link θ d a α

B-0 π
2

db ab 0

0 0 0 0 0

1 q1
A
−

π
2

0 3.75 −

π
2

2 q2
A

0 3.75 π
2

3 q3
A

0 3.75 −

π
2

4 q4
A
+

π
2

0 0 π
2

T-E 0 0 3.75 0

TABLE I: Denavit-Hartenberg Parameters for Manipulators

[cm]. Showing Arm A only for clarity.

II. MANIPULATOR MODEL

Using the recursive Newton-Euler approach and Denavit-

Hartenberg parametrization for forward kinematics, each arm

is modeled as a serial chain RRRR manipulator [20]. The

coonection between the quadrotor body frame and the first

joint of each arm is represented with static revolute joint

with a constant angular offset for each MM-UAV arm (Link

B-0). Apllying the results from [21] quadrotor dynamics are

introduced to the aerial platform of the robot.

Denavit-Hartenberg (DH) parameters of the manipulator

arms are shown in Table I. Parameters θ, d, a, and α are

in standard DH convention and q1i , q2i , q3i , and q4i are joint

variables of each manipulator arm i = [A,B]. Since the

whole aircraft is symmetrical, the general kinematic structure

is identical for the right and left arms, the coordinate frames

are the same for each arm, and only the link B-0 is different

for the two arms. Reference frames are shown in Fig. 2 which

relate the world frame, W , via body frame, B, to the end-

effector frame, E. To make the DH parameters consistent, an

additional, virtual frame T is set in the origin of frame L4.

The direct kinematics function relating the quadrotor body

to the end-effector frame is obtained by chain-multiplying

the transformation matrices together:

Te
b(q) = T0

bT
4

0
Te

4
(1)

With Denavit-Hartenberg parameterization, joint frames

are set and direct kinematics equations for each serial chain

are derived. This procedure is repeated for both manipu-

lator arms. Given the initial angular ΩB and translational

VB velocities of the quadrotor body, the angular ~ωi
j and

translational ~vij velocities and the derivatives of the velocity

vectors (i.e. v̇ij and ω̇i
j) for each joint j and each arm i, can

be propagated and expressed in the quadrotor body frame.

III. QUADROTOR MODEL

This paper tries to combine both manipulator dynamics

and the dynamics of the quadrotor. Due to the resulting com-

plexity of model and mission requirenments, the quadrotor

dynamics considered in this paper do not account for various

aerodynamic effects (i.e. blade flapping, ground effect, etc.)

experienced during highly dynamic flying maneuvers. Most

of the missions require stable hovering maneuvers, which

justifies a simplified mathematical model without accounting

for the previously mentioned aerodynamic effects.

As the manipulator dynamics are introduced through the

recursive Newton-Euler method, it is possible to separate
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Fig. 2: Reference Frames for Manipulator Arms

model the quadrotor motion based on Newton-Euler equa-

tions for rigid body translation and rotation [22]. The mass,

moments of inertia, and dynamic movement of the manip-

ulator are then introduced as disturbances to the quadrotor

model.

[

~Fq

~τq

]

=

[

mqI 0
0 Jq

] [

~̇v
~̇ω

]

+

[

0
~ωq × Jq~ωq

]

(2)

In the first aerodynamic approximation, rotor thrust and

torques ~T and ~Q, respectively are proportional to the square

of rotor speed Ω, which is consequently proportional to the

voltage Ω ∝ U [V ]. Forces and torques of each propeller are

added according to the standard quadrotor propulsion system

equations as shown in (3).

~Ftot = ~T 1 + ~T 2 + ~T 3 + ~T 4

τ totx = τ2x + τ3x − τ1x − τ4x

τ toty = τ3y + τ4y − τ1y − τ2y

τ totz = τ2z + τ4z − τ1z − τ3z

(3)

A lot of researchers usually neglect the underlying dynam-

ics of brushless DC motors used on the available quadrotor

platforms. For some missions and for a very few available

platforms, this symplifycation proved to be acceptable. How-

ever, in the presence of the added payload and its inertia,

as well as the mission requirenments for air robots, the

dynamics of the motors has an important impact in the

overall aircraft stability and cannot be omitted from the

MM-UAV model. Off the shelf electronic speed controllers

are used to power and control the motors, which makes

it impossible to devise a complete model for the motors.

Therefore, a simplified 1st order PT1 dynamic model is used.

Considering simplified aerodynamic conditions, propellers

simply produce thrust forces ~T i. Summing them all together

gives the total aircraft thrust. Each propeller torque ~τ i, in

contrast, has two components, one coming from the actual

propeller drag, and the other due to the displacement of the

propeller from the center of mass.

~τ i = ~Qi +∆~Ri
T × ~T i (4)

IV. STABILITY BOUNDS

Previous work in this field has concentrated only on load

mass stability problem, ignoring the coupled manipulator

dynamics [17], [15]. For a 1DOF gripper tools, this as-

sumtion is welcome, but for 4-DOF arms that introduce a

significant increase in payload and moment of inertia tihs

symplification cannot be applied. Therefore, two underlying

effects are identified to cause the change in the overall center

of mass ~CM and the overall moment of inertia ICM :

• Repositioning of the arms

• Load mass and moment of inertia

Building upon the results from [23], [24] we present a

simplified arm model to establish a stability criteria for

an ilustrative air robot mission example: Picking up and

manipulating a long cylinder type object Fig 3a and 3b.

A. Center of Mass and Moment of Inertia distribution

In this simplified kinematics model (Figs. 3a and 3b), only

the movement of the second joint in both arms are considered

(i.e. q2A and q2B). The rest of the arm joints remain fixed.

With this simplification it is possible to view the arms as

links of length 2C and mass mA, mB respectively, and the

corresponding moments of inertia.

As shown in [24], one can easily calculate the varying

center of mass CM :

~CM =
~QcmmQ + ~Acm(t)mA + ~Bcm(t)mA + ~Lcm(t)mL(t)

mQ +mA +mB +mL(t)
(5)

The overall moment of inertia CM changes as the joints

move. This variation can easily be derived using the Parallel

axis theorem:

Icm = IQ +Re
0
(t)(IA + IB + IL)R

e
0
(t)

T

+mQ∆Q(t)2 +mA∆A(t)2 +mB∆B(t)2 +mL(t)∆L(t)2

(6)

Where ∆Q,∆A ∆B and ∆L represent the center of mass

of each body with respect to the overall center of mass

CM . These vectors are a function of time because they

change as the joints q2A and q2B change through time. IQ
is the quadrotor body moment of inertia, written in the

base coordinate system, and IA, IB and IL represent the

moments of inertia for each arm and the load written in the

endeffector’s frame of reference. The transformation matrix

Re
0
(t), extracted from (1), transforms these moments of

inertia into the quadrotor base coordinate system.

Final equations for the center of mass CM and the

moment of inertia around it JCM are too complex to be

presented in analytic form, therefore the overall changes in

ICM are shown in Fig 4. The images are plotted relative

to the quadrotor moment of inertia IQ. Although the effects

of each joint change are similar, there are a few substantial

differences: Joints 1 cause a greater shift in ~CM then Joints
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(a) Joint 1 (b) Joint 2

Fig. 3: Simplified Arm Model

2, due to the fact that they carry longer part of the MM-

UAV arms; Furthermore, Joints 1 cause opposite effects on

Ixx and Iyy . With the arms in a horizontal position (q1A =
q1B = −90◦), Iyy increases, while Ixx decreases; Because

the joints are perpendicular to each other, their effects are

reversed; Joints 2 have a slightly larger operating range (i.e.

180◦ instead of 120◦); Finally, we conclude that Joints 2 have

a similar effect on both moments of inertia, increasing them

when the arms are fully extended downwards. The biggest

effect is observed on the y axis when Joints 1 move, and the

biggest variations in moment of inertia are observed on the

x axis, when Joints 1 move.

B. Angle Control Stability

Control of the MM-UAV body is achieved with a standard

PI-D control loop shown in Fig. 6. This type of PID imple-

mentation eliminates the potential damages to the actuators,

normally experienced when driving the control difference

directly through the derivation channel [25]. The major factor

that affects the stability of the aircraft is the variable moment

of inertia J = Ixx, Iyy discussed in Sec. IV-A.

The PI-D angle control with the additional adaptive control

loop is shown in Fig. 6. Its transfer function yields a 4th order

characteristic polynomial a4s
4+a3s

3+a2s
2+a1s+a0, where

the 4th order dynamic system includes both the dynamics of

the aircraft and the motor dynamics (7).

GαCL
=

KDKm

KiTmJ

(

Kp

Ki
s+ 1

)

s4 + 1

Tm
s3 + KDKm

TmJ
s2 +

KDKmKp

TmJ
s+ KDKmKi

TmJ
(7)

Coefficients KD, Kp and Ki are PI-D respective gains and

Km and Tm represent propulsion system gain and motor time

constant. After applying the Routh-Hurwitz stability criteria,

the analytical solutions for stability conditions, which require

that all coefficients be positive and that inequalities in (8)

hold, are derived. Stability criteria (8) shows that, due to

the dynamics introduced from the motors (i.e. Tm), the

proportional control Kp can drive the system unstable. In

fact, only the derivative control KD has the sole purpose

of stabilizing the system. Therefore, the Model Reference

Adaptive Control loop can be applied to KD; increasing it

or decreasing depending on the overall moment of inertia.

KDKmKp

Ki

(1− TmKp) > J (8a)

KDKm (1− TmKp) > 0 (8b)

C. Lyapunov based MRAC control

Judging from Fig. 6 and transfer function (7), there are

four parameters in the attitude control loop of a quadrotor

that change during flight and manipulation:

• Km - Propulsion system gain changes drastically

through time, especially in load manipulation missions.

• Tm - Propulsion system dynamics changes due to var-

ious effects as the mission progresses through time.

• β - The aerodynamic conditions constantly change

during the flight.

• J - As previously discussed (IV-A) the moment of

inertia changes depending on the load and arm pose.

Aerial manipulation missions mostly require steady flight

conditions, for which the changes in the aerodynamic con-

ditions as well as the aerodynamic coefficient β can be

neglected. On the other hand, if the battery power supply

is kept constant throughout the mission, the variations in
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(a) Iyy Joints 1A and 1B (b) Ixx Joints 1A and 1B (c) Iyy Joints 2A and 2B (d) Ixx Joints 2A and 2B

Fig. 4: Moments of inertia variations with respect to joint angle changes.

(a) Iyy Joints 1A and 1B (b) Ixx Joints 1A and 1B

Fig. 5: Center of mass variations with respect to joint angle

changes.

the Tm can be minimized. The two remaining parameters, J
and Km diverge the most during aerial manipulation. The

variations in the moment of inertia have been previously

discussed. The propulsion system gain changes are mostly

caused from the variations in the load mass, which changes

the piecewise linearization of the quadratic relationship be-

tween the propeller thrust and the applied voltage. Apart

from that, the variations in temperature and the battery

depletion also change the linearized motor gain throughout

the mission.

In order to adapt to the changing parameters, a Model

Reference Adaptive Control mechanism is applied. Separat-

ing the highly inconsistent parameters Km and J on one

side, and fairly constant Tm and β on the other, allows us

to write the open loop rotation speed transfer function as a

class of IPT1, y = kG(s):

Θ̇(s) =

{

Km

J

}{

1

1 + Tms

1

s

}

u(s) (9)

The PI-D controller is then modified so that its output is

multiplied by the adaptive gain ζ and the adjustment rule

for it is chosen according to:

dζ

dt
= −γuT

PI-De (10)

where e is the error difference between the model and the

actual orientation dynamics

ẏ =

[

0 1
−1 − 1

Tm

]

y +
Km

JTm

u (11)

Using the Lyapunov stability theory, it can be shown that

such a system is uniformly asymptotically stable. Candidate

Lyapunov function is chosen:

V (e, ζ) =
γ

2
eTe+

k

2
(ζ − ζ0)

2
(12)

with ζ0 as a steady state value of ζ and arbitrary chosen

gains γ and k so that its derivative can be:

dV (e, ζ)

dt
= γeT e+ k (ζ − ζ0)

(

dζ

dt
+ γueT

Km

TmJ

)

(13)

For the chosen adaptation rule (10), it can be shown that

the Lyapunov Candidate (12) is negative semi-definite if and

only if Tm > 0, which is always true, and γ > 0 which

can be arbitrary chosen. Although, the Lyapunov stability

analysis sets no upper bound for the correction factor γ, it is

still necessary to choose its appropriate value and to that end,

the approach in [6] is chosen. A practical implementation

requires that the upper and the lower bound for the adaptation

gain ζ, ζmax and ζmin are set. According to criteria (8),

the range of KD for which the system is stable can be

determined once the range of changes of the moment of

inertia J is known. In our case KDmax = 2KD0 and

KDmin = KD0/2 , with KD0 as the nominal value of

the control parameter KD. Since the adaptation mechanism

influences the system through multiplication KDζ (Fig. 6),

determination of ζ maximum and minimum is straightfor-

ward, i.e. in our case ζmax = 2 and ζmin = 1/2. Now,

one is able to estimate the range of the correction factor γ.

Rewriting equation (10) gives:

ζ(t) = −γ

∫

uPI−D(t)e(t)dt (14)

During the adaptation phase (Fig. 7), a set of pulses is gener-

ated by PI-D controller in order to perturb the system so that

new value of the adaptation parameter can be determined,

thus,

ζ(t) = −γ

∫

δ(t) [y(t)− ym(t)] dt (15)

As we already wrote, J and Km are two parameters that are

mostly influenced by aerial manipulation. Hence, including

inverse Laplace transform of the system and the model

(neglecting influence of Tm) in (15), one gets

ζ(t) = −γ

(

Km

J
−

KM

JM

)

t+ ζ0 (16)

Since dynamics of the adaptation loop must be slower

(usually 5 to 10 times) than the system dynamics, in case of
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Fig. 6: Attitude Model Reference Adaptive PI-D Control

large change of parameters, the adaptation parameter should

attain maximum/minimum value at t ≈ 5 · (5Tm), which

gives

ζmax ≈ −γ

(

Km

Jmax

−
KM

JM

)

· 25Tm + ζ0 (17)

ζmin ≈ −γ

(

Km

Jmin

−
KM

JM

)

· 25Tm + ζ0 (18)

Finally, lower of two values of the correction factor γ,

calculated from (17) and (18), should be included in the

MRAC.

Because Model Reference adaptation is highly susceptible

to disturbances, one has to take into account the static

and dynamic torque disturbances produced from the arm

movement. That is why the disturbance torque estimator

is introduced to the MRAC control schematics. Dynamic

disturbances are cancelled out by using a low pass filter

for the adaptation rule. Static torques however, cannot be

bypassed with a filter. Static torque is caused from the shift in

the center of mass of the aircraft and the gravity that affects

its unbalanced body. Learning from the results in [17], one

can find the unknown center of mass offset, in a least square

minimization sense, simply as an average over collected data:

ĈMx =
ū3

ū1

(19)

Where ū1 and ū3 are simply controller outputs for pitch and

height control respectively. The estimation results are then

fed to the MRAC model, thus minimizing the controller vul-

nerabilities to disturbances. Static toreque estimation works

well for steady state estimation, but fails to accurately

estimate the dynamic changes in the gravity torqe. Therefore,

we propose adding a dead zone to the adaptation rule, in

order to cancel out the estimation errors.

D. Hybrid automaton

To better utilize the MRAC adaptive capabilities, a hybrid

system based on a switching automaton shown in IV-D

is proposed. The hybrid system defines four phases of

aerial manipulation missions: Flight phase, Arm deployment

phase, Manipulation phase and Adaptation phase. The system

starts in the flight phase, where the MM-UAV flies to

the designated point. Once it arrives to the set point (i.e.

‖~x− ~xref‖ ≤ ∆x), and before switching to the manipulation

stage, the aircraft repositions the arms for the manipulation.

This is called the arm deployment phase. After the arms

are deployed, the UAV switches to the adaptation phase and

starts the self induced oscillations in order to fine tune the

controller. Once ready, the MM-UAV starts the manipulation

phase of the mission. The aircraft can leave the adaptation

phase once
∥

∥

∥

δζ
δt

∥

∥

∥
≤ ∆ζ .

During the manipulation phase, the shift in the center of

mass or the change of moment of inertia could drive the

vehicle unstable. Therefore, the vehicle is allowed to switch

back to Adaptation phase if such a problem occurs. After

successfully picking up an object and before flying back to

the base, the air robot once again changes to the Adaptation

phase. Because the load changed the center of mass and

moment of inertia of the body, it is necessary to fine tune

the controller once again, before flying off. Once tuning is

complete, the aircraft switches back to flight phase and flies

back to the base.

V. SIMULATION

The simulation model for MM-UAV must incorpo-

rate quadrotor dynamics and propeller aerodynamics from

Sec. III, together with a complete dynamic model of the

arms (Sec. II), controlling the system with a PI-D controller

from Sec. IV. Figure 8 shows the layout for the simulation

model used in this paper. The attitude controller takes angle

reference values and quadrotor feedback signals as input. A

PI-D algorithm then calculates the necessary rotor speeds that

power the propeller dynamics block that produces respective

torques and forces applied to the body. A recursive Newton-

Euler dynamic model is used to model the arms as a

disturbance to the quadrotor control loop. This recursive

model calculates the torques and forces based on movements
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Fig. 7: Hybrid system automaton

Fig. 8: Simulation Scheme

Fig. 9: Matlab Simulation (Take off with arms stowed ,

Oscillations settled ; Deploying arms move): Roll and

pitch angles

of the arms and quadrotor dynamics. Matlab was used for

simulations and a recursive Newton-Euler dynamics model

of the manipulators was implemented using the Robotics

Toolbox [26].

In our previous work, we have showed how with a poorly

Fig. 10: Matlab Simulation (Take off with arms stowed ,

Oscillations settled ; Deploying arms move): Propulsion

system thrust and torque values

Fig. 11: The adaptive gain ζ changes as the oscillations occur,

and brings the system back in the stability region

Fig. 12: Left to right, MM-UAV arm transition from stowed

to fully deployed

designed PID controller air robot becomes unstable during

manipulation tasks, even though it is perfectly stable during

the flight [23], [24]. In this paragraph, we put the adaptive

control to the test, trying to stabilize the same system from

our previous work. Figures 9 and 10 show the results of one

of the performed tests where the quadrotors roll controller

was tuned close to the stability boundary. The aircraft takes

off with arms tucked and stowed. After the vehicles settles

to a hover, the arms are deployed down and fully extended

(Fig. 12), thus increasing the moments of inertia. This change

in the moment of inertia tries to destabilize the system and

thus produces undesired oscillations in the roll angle control

loop. The oscillations trigger the MRAC that changes the

overall control loop gain, and therefore stabilizes the system.

According to the stability criteria (8), the adaptive gain ζ
needs to increase the derivative gain KD to account for

972



the rise in J . Figure 11 shows how the adaptive gain

ζ changes throughout the simulation,and Fig. 10 show the

system response and the produced forces and torques.

VI. CONCLUSIONS

The Model Reference Adaptive Controller proposed in this

paper is used to control a multi-arm manipulating aerial

vehicle implementend on a small, off-the-shelf quadrotor.

Previous experimental results prooved that such a vehicle

is not necessarily stable for all the possible chnages in the

moment of inertia. Therefore, the additional adaptive loop

for attitude stabilization is proposed. Using the Lyapunov

stability theory, the controller is proven to be stable. The

simulation results proved that the MRAC is capable of

stabilizing the oscillations produced from the unstable PI-

D attitude control loop.

Finally a high level control system is proposed in order to

ensure the saftey of the aerial manipulation missions. It is

based on a switching automaton with four distinct mission

phases.

In the future, the MRAC controller will be implemented

and tested on the experimental platform. Also, other adaptive

and robust control techniques should be tested both in

simulation and experiment. Using adaptive and robust control

greater flight stability should be achivede, which would

enable fully dexterous manipulation.
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[3] K. Åström and B. Wittenmark, Adaptive Control, ser. Addison-Wesley
Series in Electrical Engineering. Addison-Wesley, 1995. [Online].
Available: http://books.google.hr/books?id=FJ4eAQAAIAAJ

[4] I. Landau, Adaptive Control, ser. Communications and Control
Engineering. Springer London, 2011. [Online]. Available:
http://books.google.hr/books?id=fb1GVyJHeBgC

[5] H. Butler, Model reference adaptive control: from theory to

practice, ser. Prentice Hall international series in systems and
control engineering. Prentice Hall, 1992. [Online]. Available:
http://books.google.hr/books?id=SUlSAAAAMAAJ

[6] Z. Kovacic, S. Bogdan, and M. Puncec, “Adaptive control based on
sensitivity model-based adaptation of lead-lag compensator parame-
ters,” in Industrial Technology, 2003 IEEE International Conference

on, vol. 1, dec. 2003, pp. 321 – 326 Vol.1.

[7] S. Bellens, J. De Schutter, and H. Bruyninckx, “A hybrid pose /
wrench control framework for quadrotor helicopters,” in Robotics and

Automation (ICRA), 2012 IEEE International Conference on, may
2012, pp. 2269 –2274.

[8] M. Lorenzo and N. Roberto, “Control of aerial robots: Hybrid force
and position feedback for a ducted fan,” Control Systems, vol. 32,
no. 4, pp. 43–65, 2012.

[9] M. Lorenzo, N. Roberto, and L. Gentili, “Modelling and control of
a flying robot interacting with the environment,” Automatica, vol. 47,
no. 12, pp. 2571–2583, 2011.

[10] M. Bernard, K. Kondak, I. Maza, and A. Ollero, “Autonomous
transportation and deployment with aerial robots for search and rescue
missions,” J. Field Robotics, vol. 28, no. 6, pp. 914–931, 2011.

[11] M. Bisgaard, A. la Cour-Harbo, and J. Bendtsen, “Adaptive control
system for autonomous helicopter slung load operations,” Control

Engineering Practice, vol. 18, no. 7, pp. 800–811, 2010.

[12] I. Palunko, R. Fierro, and P. Cruz, “Trajectory generation for swing-
free maneuvers of a quadrotor with suspended payload: A dynamic
programming approach,” in Robotics and Automation (ICRA), 2012

IEEE International Conference on, may 2012, pp. 2691 –2697.
[13] L. Sandino, M. Bejar, K. Kondak, and A. Ollero, “On the use of

tethered configurations for augmenting hovering stability in small-size
autonomous helicopters,” Journal of Intelligent and Robotic Systems,
pp. 1–17, 2012. [Online]. Available: http://dx.doi.org/10.1007/s10846-
012-9741-2

[14] P. Pounds, D. Bersak, and A. Dollar, “The yale aerial manipulator:
Grasping in flight,” in Robotics and Automation (ICRA), 2011 IEEE

International Conference on, may 2011, pp. 2974 –2975.
[15] P. E. I. Pounds, D. R. Bersak, and A. M. Dollar, “Grasping from the

air: Hovering capture and load stability,” in Proc. IEEE Int Robotics

and Automation (ICRA) Conf, 2011, pp. 2491–2498.
[16] P. Pounds, D. Bersak, and A. Dollar, “Stability of small-scale uav he-

licopters and quadrotors with added payload mass under pid control,”
Autonomous Robots, vol. 33, pp. 129–142, 2012.

[17] D. Mellinger, Q. Lindsey, M. Shomin, and V. Kumar, “Design, mod-
eling, estimation and control for aerial grasping and manipulation,”
in Proc. IEEE/RSJ Int Intelligent Robots and Systems (IROS) Conf,
2011, pp. 2668–2673.

[18] D. Mellinger, M. Shomin, N. Michael, and V. Kumar, “Cooperative
grasping and transport using multiple quadrotors,” in Proceedings

of the International Symposium on Distributed Autonomous Robotic

Systems, Nov 2010.
[19] Q. J. Lindsey, D. Mellinger, and V. Kumar, “Construction of cubic

structures with quadrotor teams,” Robotics: Science and Systems, June
2011.

[20] M. Orsag, C. Korpela, and P. Oh, “Modeling and control of MM-UAV:
Mobile manipulating unmanned aerial vehicle,” in Proc.International

Conference on Unmanned Aircraft Systems, ICUAS, 2012.
[21] S. McMillan, D. E. Orin, and R. B. McGhee, “Efficient dynamic

simulation of an underwater vehicle with a robotic manipulator,” IEEE

Transactions On Systems, Man, and Cybernetics, vol. 25, pp. 1194–
1206, 1995.

[22] H. Hahn, Rigid Body Dynamics of Mechanisms: Theoretical basis, ser.
Rigid Body Dynamics of Mechanisms. Springer, 2002.

[23] M. Orsag, C. Korpela, M. Pekala, and P. Oh, “Stability in aerial
manipulation,” in Proc. of IEEE American Control Conference (ACC),
2013, To appear.

[24] C. Korpela, M. Orsag, M. Pekala, and P. Oh, “Dynamic stability of
a mobile manipulating unmanned aerial vehicle,” in Proc. IEEE Int

Robotics and Automation (ICRA) Conf, 2013, To Appear.
[25] N. Miskovic, Z. Vukic, M. Bibuli, M. Caccia, and G. Bruzzone, “Ma-

rine vehicles’ line following controller tuning through self-oscillation
experiments,” in Proceedings of the 2009 17th Mediterranean Confer-

ence on Control and Automation, ser. MED ’09. Washington, DC,
USA: IEEE Computer Society, 2009, pp. 916–921.

[26] P. I. Corke, Robotics, Vision & Control: Fundamental Algorithms in

Matlab. Springer, 2011.

973


