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Abstract— Reflected sunlight can significantly impact vision-
based object detection and tracking algorithms, especially
ones based on an aerial platform operating over a marine
environment. Unmanned aerial systems above a water surface
may be unable to detect objects on the water surface due to
sunlight glitter. Although the area affected by sunlight reflection
may be limited, rapid course corrections of unmanned aerial
vehicles (UAVs) – especially fixed-wing UAVs – is also limited by
aerodynamics, making it challenging to determine a reasonable
path that avoids sunlight reflection while maximizing chances
to capture a target. In this paper, we propose an approach for
autonomous UAV path planning that maximizes the accuracy
of the estimated target location by minimizing the sunlight
reflection influences.

I. INTRODUCTION

Autonomous target detection and tracking are two of the
most critical capabilities required of unmanned aerial vehi-
cles (UAVs) as they provide fundamental building-blocks for
higher-level algorithms such as target identification, behavior
recognition, and target geolocation, among many others. In
a marine environment, one of the major challenges to target
detection and tracking is the presence of sunlight (or other
light sources) reflected on the water surface, making target
detection/tracking much more problematic. Not only does
reflected sunlight distract target detection, the reflected light
can distort the target’s visual information or wash it out
completely. Figure 1 is a sample image presenting sunlight
reflection on water surfaces.

In order to predict where sunlight reflection occurs, we
use a bidirectional reflection distribution function (BRDF)
[1]. The BRDF is a model to estimate reflected radiance
using four different elements: azimuth and elevation angles
of an incident light ray, and azimuth and elevation angles of
an outgoing light ray. In the case of sunlight, the azimuth
and elevation of the incident light can be predetermined
based upon location, date, and time of day. However, given
the roughness of the ocean surface, the outgoing light will
be scattered in many directions. The BRDF allows us to
compute the strength of the reflected light in any of these
directions.

Well-accepted BRDF models for light reflection include
the Torrance-Sparrow model [2], the Phong reflectance
model [3], and the Oren-Nayar model [4]. Torrance and
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Fig. 1. An example image of sunlight reflection on water surfaces from
one of our flight tests

Sparrow proposed a reflection model for a roughened surface
consisting of v-shaped specular micro-facets [2]. Based on
that assumption, they provided an analytical solution to ex-
plain off-peak light reflection. Addressing the problem from
a real-time rendering perspective, Phong proposed a simple
three-component model, consisting of ambient reflection,
Lambertian diffuse reflection, and a specular component [3].
Oren and Nayar returned to the physical reflection models,
further developing the approach of Torrance and Sparrow to
model rough surfaces as v-shaped Lambertian micro-facets
and computing an accurate off-plane reflection model [4].
In an extension of their work with Wolff, they included the
effect of subsurface scattering to their model [5]. Sunlight
glint from sea surfaces is dominated by reflection at the
water surface. Cox and Munk emperically demonstrated that
surface roughness is linearly correlated with wind speed [6].

Since realistic light-reflection models are important, we
propose a variation on the Oren and Nayar’s reflection model
that includes both specular and diffuse components. The key
contribution of our work is providing a mechanism for light-
reflection avoidance to be incorporated into the UAV path
planning process.

There is a significant body of literature on UAV path
planning related to target detection/tracking. Due to space
limitations, we restrict our review to a few closely-related
works, focusing in particular on local path planning for fixed-
wing UAVs. In our context, local path planning addresses path
decisions made to effect the UAV’s short term path, reserving
the term global path planning (not covered here) with col-
lection of multiple path planning steps. Dobrokhodov et al.
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suggested a small UAV system which is capable of detecting
and tracking a mobile target on the ground with a gimbaled
camera system [7]. In order to compensate for brief periods
of lost detections, they used a linear parametrically varying
(LPV) filter. Theodorakopoulos and Lacroix proposed a
method using a lateral guidance law that adjusts the aircraft’s
roll angle to maintain a proper target view angle [8]. Quigley
et al. designed a hierarchical UAV control system to perform
multiple tasks: target detection, localization, and surveillance
[9]. Their method dealt with flight path planning with high-
level control and camera gimbaling with low-level control.
Rafi et al. developed a single follow-and-orbit strategy and
demonstrated in simulations that it kept a target vehicle in
view in spite of the vehicle moving at different velocities
while making turns in an urban environment [10]. Their work
provided a circular flight path strategy considering target
speed, UAV airspeed, and UAV maneuverability. Finally,
Skoglar provided a good review of the UAV path planning
literature in his thesis [11], as well as exploring several
directions for UAV control and tracking of ground targets.

There is also more specific literature related to UAV
path control considering no-fly zones. Among a number of
publications, Bellingham et al. presented a receding horizon
control to optimize a UAV’s flight trajectory with no-fly zone
constraints [12]. Their method solved a modified Mixed-
Integer Linear Programming problem with two different
functional levels of trajectory planning algorithms. Zengin
and Dogan suggested a rule-based flight guidance strategy
in the situation of mobile target pursuit [13]. Their method
considered multiple factors of restricted region avoidance,
target proximity maintenance, and threat exposure level
minimization. In order to deal with multiple constraints,
they used a probabilistic threat exposure map and a gradient
search algorithm. Droge and Egerstedt proposed a solution
to the problem of flying to a known target with unknown
obstacles in the way [14]. In their paper, a UAV plans its
current trajectory based on obstacles within its field of view,
adaptively changing how far it looks ahead with its model-
predictive control based on recent past performance of the
various controllers.

Differently from the conventional methods mentioned in
the above paragraph, we do not deal with ‘no-fly’ zones,
but deal with ‘non-preferred-fly’ zones due to the sunlight
reflected areas, which are the areas that we would like to
avoid. Depending on location, date, time of day, the size
and position of the area, passing through a non-preferred-fly
zone could be the best decision. Our focus in this paper
is to determine a UAV path or trajectory that minimizes
the influence caused by sunlight-reflected background areas
around a tracked target by finding a path that minimizes
target detection uncertainty. Our novel approach proposes a
UAV path planning method that avoids sunlight reflection
around an estimated target location while maintaining ap-
propriate UAV motion and target detection feasibility.

The remainder of the paper is organized as follows:
Section II describes a relative geometry model with sun,
target, sunlight reflection and UAV components. In this

Fig. 2. Illustration of UAV motions related to sunlight reflection near a
target location

section, the restricted UAV motion model effects on target
detectability near sunlight reflection is described. Section
III explains the setup of the sunlight reflection model that
induces sunlight reflectance along UAV paths. Section IV
proposes a technique for finding a preferable UAV path
considering the sunlight reflection model, UAV motion, and
uncertainty of estimated target location. Finally, simulation
results validate our approach in Section V and Section VI
concludes the paper.

II. UAV MOTION PREFERENCE WITH TARGET
DETECTION

Throughout this paper, we define a sunlight reflected area
as an area where a UAV cannot see the target due to
sunlight reflection over the target location’s area of uncer-
tainty (see Fig. 2). Since the motion of a fixed-wing aircraft
is nonholonomic, there are possible situations where the
UAV needs to pass through target nonvisible areas due to
sunlight reflection around the target location so that the UAV
maintains an appropriate motion or distance to the target.
In this section, we present how to define a UAV motion
preference considering the UAV avionics and target detection
using an image sensor for a fixed-wing UAV. In our proposed
method, the UAV motion model assumes a constant velocity.
Therefore, the UAV model can be simplified as, ẋ

ẏ
ψ̇

=

 v · sin(ψ)
v · cos(ψ)

ψdev

 (1)

where x, y, and ψ are the UAV’s x-coordinate value, y-
coordinate value, and ‘yaw’ angle, respectively. And v is
the tangential velocity of the UAV and ψdev is the yaw angle
change from the previous estimation. The reference axis for
ψ is the coordinate axis toward north (y-axis) in the world
coordinate frame.

The basic target tracking approach used in this paper is
shown in Fig. 2. While the UAV tracks a target on the
water surface, a certain range of the UAV’s path can be
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Fig. 3. Maximum and minimum UAV orbits at an altitude for target
detectability

affected by sunlight reflection. The camera sensor mounted
on the UAV is affected by sunlight reflection from the water’s
surface near the target along a portion of each UAV orbit. As
mentioned earlier, our goal is to find the UAV path around
the estimated target location which minimizes the uncertainty
of target localization.

Initially, the UAV persistently tracks the target, which
means that the UAV tries to maintain a circular orbit around
the target in order to have consistent target detection charac-
teristics. As illustrated in Fig. 2, depending on UAV altitudes,
the pattern of sunlight reflection for the same UAV orbit
radius changes. Besides the UAV altitude, different orbit radii
also provide different target detectability as shown in Fig. 3.

As depicted in Fig. 3, once a number of feasible altitude
candidates are selected, the minimum and maximum orbit
radii can be calculated for each altitude. The minimum radius
is restricted by the maximum UAV bank angle. The minimum
orbital radius rmin is calculated as

rmin =
v2

g · tanϕmax
(2)

where g is the gravitational acceleration (9.8 m/s2), and ϕmax
is the maximum UAV bank angle [15].

On the other hand, the maximum orbit radius rmax is
determined by the maximum distance to detect a target with
a designated sensor, which is an electro-optic sensor in our
approach. With the maximally allowable distance-to-target as
dmax (according to sensor capability), the maximum orbital
radius rmax becomes

rmax =
√

d2
max −h2

i (3)

where hi is the ith altitude candidate.
In our sensor system, target detectability is inversely

proportional to the size of target localization uncertainty
covariance. In order to compare two different covariance
matrices, we use traces of covariances in this paper. Since
the size of target localization uncertainty is proportional to
the distance-to-target and the elevation angle-to-target, rmin
with the lowest UAV altitude provides the best target de-
tectability. However, if sunlight reflected areas are involved,

Fig. 4. Different UAV orbit candidates according to sunlight reflection
ranges

any candidate orbit could be the best one. Figure 4 presents
four different cases where the target nonvisible area due to
sunlight reflection can affect an orbital radius between rmin
and rmax. In both of the cases shown in frames (a) and (b),
the minimum orbital radius will be the best choice because it
gives the best target detectability with no sunlight reflection
influence. In the case shown in frame (c), we compare the
orbital radius just outside sunlight reflected areas and other
radii in the sunlight reflected areas. Finally in the case shown
in frame (d), we must find an orbit radius with some minimal
cost since sunlight reflection covers all possible UAV radii.
Depending on the distribution of sunlight reflection, a certain
path in the thick (red in colored prints) line becomes the best
path in the cases shown in frames (c) and (d). In the following
section, we explain how to determine the sunlight reflected
area at each altitude along the UAV paths.

III. SUNLIGHT REFLECTION MODEL

In order to calculate accurate sunlight reflection affected
areas according to target locations and relative UAV posi-
tions, we need to first calculate the amount of sunlight reflec-
tion. In our system, we assume that the weather condition is
consistent. Therefore, when a UAV passes a sunlight reflected
area, the sunlight reflected pattern has not changed until the
UAV revisits the area.

Conceptually speaking, light reflection can be decom-
posed into various components: specular reflection, diffuse
reflection, diffuse back-scatter, retroflection, and ambient
components, to name a few. Since this paper deals with
surface target perception from an image sensor mounted
on a UAV, we simplify the light reflection model by using
two major factors, specular reflection and directional diffuse
reflection, as shown in Fig. 5.

The amount of directly reflected luminance depends on
incident azimuth/elevation angles of sunlight rays to the wa-
ter surface and reflected azimuth/elevation angles. Figure 6
illustrates a general light reflection with incident/reflected
sunlight rays. In the figure, θi is the elevation angle of the
incident light with respect to the surface normal, and ϕi is
the corresponding azimuth angle with respect to any axis
on the ground coordinate frame (e.g. the x-axis or y-axis).
The reflected elevation and azimuth angles (θr and ϕr, resp.)
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Fig. 5. Proposed sunlight reflection model

Fig. 6. Angles of incident/reflected light rays

depend on the location of the UAV. Our model is based on
Oren-Nayar’s model [4], adjusted to include specularities.
Equations 4 and 6 describe specular reflectance, LS

r , and
directional diffuse reflectance, LD

r , respectively in our light
reflection model.

LS
r (θr,θi,ϕr,ϕi) =

ρ
π

Li cosθi ·δw (θr −θi,ϕr −ϕi −π) (4)

where ρ is albedo, Li is the incident sunlight strength,
and δw (x,y) is a cylinder-like function with the following
property.

δw (θ ,ϕ) =

{
1, if |θ |< θth and |ϕ |< ϕth

0, otherwise
(5)

where θth is the threshold of elevation angular deviation and
ϕth is the threshold of azimuth angular deviation between
the incident light and the corresponding reflected light. If
the angular deviation is larger than a certain threshold, we
can consider that the view or target detection is not affected
by the sunlight reflection. Although specular reflection is
the most influential part, on an ideal flat water surface it
affects a very narrow range of reflection angles. However,
in practical cases, conditions such as roughness1 of the
water surface, make the affected region wider. The diffuse
reflectance component, LD

r , of our reflection model comes
from [4], obtained through

1We assume that a rough estimate of the target’s location is available,
either from another sensing platform, or, in the case of tracking, from a
previous observation.

Fig. 7. Sampling strategy of the proposed method

LD
r (θr,θi,ϕr,ϕi) =

ρ
π

Li cosθi{C1 +C2 sinα tanβ

·max(0,cos(ϕr −ϕi −π))} (6)

where

C1 = 1−0.5
σ2

σ2 +0.33
, (7)

C2 = 0.45
σ2

σ2 +0.09
, (8)

α = max(θi,θr) , (9)

and
β = min(θi,θr) . (10)

where σ is the roughness of the surface. Finally, the total
light reflectance, Lr, for each surface region with a certain
perspective becomes,

Lr (θr,θi,ϕr,ϕi) = LS
r (θr,θi,ϕr,ϕi)+LD

r (θr,θi,ϕr,ϕi) . (11)

Based on the light reflection mentioned above, we can
consider the following situation. Suppose that we have an
estimated location of a target from another sensor platform,
and that the UAV is approaching this location (or alterna-
tively that the UAV is in the process of tracking the target).

To model the sunlight reflected area around the target’s
location on the water surface, we sample the sunlight re-
flected area on the water surface with S = {Sx,y} as shown
in Fig. 7. And to plan the corresponding UAV’s trajectory,
we also sample the feasible area with U = {Ui, j}. U contains
expected sunlight reflected areas on the UAV’s paths, which
cover between rmin and rmax. Eventually, the search region
is determined by a combination of feasible UAV paths, the
estimated target location, and sun orientation. How to deter-
mine the UAV path candidates to avoid sunlight reflection
was already described in Section II.

Finally, at each sampled cell, Ui, j, the predicted light
reflectance LRe f is calculated as,

LRe f (Ui, j) = ∑
x

∑
y

LR (Ui, j | Sx,y) (12)

where LRe f (Ui, j | Sx,y) is light reflectance from Sx,y to Ui, j.
As already represented in Fig. 1, if the target is in the

area of full saturation of sunlight reflection or in a partially
reflected area, it is difficult to detect small targets. Therefore,
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(a) Actual distribution

(b) Thresholded distribution

Fig. 8. Sunlight reflectance over the sampled area

if LRe f (Ui, j) is more than a threshold (obtained from exper-
iments and the corresponding image analysis), we consider
Ui, j as a “Target-Detection-Impossible-Section.” Figure 8(a)
shows a sample of sunlight reflectance distribution over
the sample area, U, and Fig. 8(b) shows the corresponding
thresholding from Fig. 8(a).

IV. INTEGRATED UAV PATH PLANNING

By using information defined in Section II and Section
III, we can define the best UAV path to minimize target lo-
calization uncertainty. First, we define the target localization
uncertainty. When the UAV’s sensor has a target in its field
of view, the UAV can localize the target with localization
uncertainty as shown in Fig. 9. The uncertainty σ in the
sensor view induces the uncertainty Σ around the target on
the water surface.

If we set uncertainty in the sensor view as a circle with
radius σ , the uncertainty Σ becomes an ellipse. We define
the length of the major axis of the ellipse as λmax, that of
the minor axis as λmin, the corresponding eigenvector to λmax
as v⃗max, and the corresponding eigenvector to λmin as v⃗min.
Then, the covariance matrix Σ will be

Fig. 9. Target localization uncertainty

Σ =V
[

λmax 0
0 λmin

]
V T (13)

where V =
[

v⃗max v⃗min
]
.

After we initialize the uncertainty Σ, each additional
observation generates a measurement uncertainty Σmeas for
the same target with the same approach. Then the updated
uncertainty Σupdated becomes

Σupdated =
[
Σ−1 +Σ−1

meas
]−1

(14)

Or due to sunlight reflection, if the UAV loses track
of a target, the uncertainty increases with target motion
uncertainty value λt .

Σupdated =V
[

λmax +λt 0
0 λmin +λt

]
V T (15)

Along the selected paths shown in Section II, we calculate
cumulative covariance changes. Then we select the path
which indicates the smallest peak covariance or the smallest
average covariance. If the mission goal is to limit the
covariance as much as possible, we choose the smallest peak
covariance. On the other hand, if the mission goal is to have a
more accurate target localization on average during the whole
orbit, the smallest average covariance should be considered.

The summary of the proposed method is shown in Algo-
rithm 1.

V. SIMULATION RESULTS

In this simulation to track a stationary target, we used the
following realistic parameters:

• Target location: 37◦23’35.63”N, 124◦15’34.57”W (Near
San Francisco Bay)

• UAV altitude: 125 – 175 m
• UAV velocity: 20 m/s
• UAV maximum bank angle: 18◦

• Sensor frame rate: 5 frames/sec
• Date: March 15, 2013
With the attitude choices of 125 m, 150 m, and 175 m

above sea level, and the time around 12:00 PM (azimuth of
sun is 173.12 degrees and its elevation is 50.21 degrees),
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Algorithm 1 Proposed algorithm
Determine S around the estimated target location.
Determine candidates of feasible UAV altitudes.
for each UAV altitude

Find rmin and rmax.
Determine the sunlight reflection area U.

end
for each x,y

Estimate LR (Ux,y).
end
Threshold LR (Ux,y).
for each UAV altitude

for each UAV path
Estimate Σ’s along each UAV path.

end
end
Choose the optimal UAV path.

the path candidates are shown in Fig. 10(a) through (c).
The circular contours are UAV path candidates and irregular
contours (in magenta in colored prints) are the sunlight
reflected areas. Solid line paths (in blue in colored prints)
are non-optimal UAV paths, and the path with ◦-symbols (in
red in colored prints) is the optimal path chosen with the
proposed criteria. The locations of the ◦-symbols show the
point where the image is taken.

In order to depict the change of sunlight reflection and
its related UAV path change, Figures 11 through 14 show
simulation results for different times. Figure 11(a) shows a
three dimensional visualization of the UAV path candidates
with the corresponding sunlight reflection areas. The path
with ◦-symbols is the optimal path which is chosen when
it is 10:00 AM (azimuth: 133.22◦, elevation: 39.21◦). Fig.
11(b) shows a comparison of covariance changes for each
UAV path. For a better view of the covariance changes, each
value is shown as the log-value of the traces of covariance
matrices. The thick solid line (in red in colored prints)
shows the optimal candidate and the dashed lines show other
candidates. Fig. 12, Fig. 13, and Fig. 14 show results at
12:00 PM (azimuth: 173.12◦, elevation: 50.21◦), 2:00 PM
(azimuth: 216.83◦, elevation: 43.91◦), and 4:00 PM (azimuth:
245.83◦, elevation: 25.33◦), respectively. Readers can see that
the higher elevation of the sun provides the wider sunlight
reflected area near the estimated target location, which results
in the more complicated path selection.

TABLEs I through IV show quantified results of the
number of frames that lost track of the target, the average
distance-to-target, the average elevation angle to the target
from the UAV, and the maximum trace of covariance in rela-
tion to the UAV’s altitude and orbital radius. The candidates
marked with ∗ show the optimal choice with the smallest
maximum trace of covariance (bold fonts).

VI. CONCLUSION

In this paper, we presented an approach for UAV path
planning that maximizes target detection feasibility while
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Fig. 10. UAV path candidates for each altitude at 12:00PM

TABLE I
SIMULATION TEST RESULT FOR 10:00AM

Orbital Target Distance Elevation Maximum
Altitude radius loss to target to target trace of

(m) (m) (frames) (m) (◦) covariance
*125.0 119.6 0 173.0 46.28 18.99
150.0 119.6 0 191.8 51.44 19.92
175.0 119.6 0 211.9 55.66 21.21
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Fig. 11. Result for time 10:00AM

TABLE II
SIMULATION TEST RESULT FOR 12:00PM

Orbital Target Distance Elevation Maximum
Altitude radius loss to target to target trace of

(m) (m) (frames) (m) (◦) covariance
125.0 116.8 8 171.1 46.93 197.28
125.0 126.8 5 178.1 44.57 139.95
*125.0 136.9 0 185.4 42.39 21.41
150.0 116.8 8 190.1 52.08 199.26
150.0 126.8 8 196.4 49.77 201.50
150.0 136.9 8 203.1 47.60 203.91
150.0 147.1 9 210.0 45.55 226.54
150.0 157.1 0 217.2 43.66 24.65
175.0 116.8 5 210.4 56.27 141.91
175.0 126.8 8 216.1 54.05 203.85
175.0 136.9 9 222.2 51.95 225.94
175.0 147.1 9 228.6 49.94 228.20
175.0 157.1 9 235.2 48.07 230.59
175.0 167.2 10 242.0 46.30 253.13

minimizing sunlight reflection. In order to estimate sunlight
reflection, we used our customized light reflection model
containing specular and directional diffuse reflectances and
sampled sunlight reflected regions near the estimated target
location and the corresponding areas along UAV paths. In
order to find the best UAV path, we estimated target lo-
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Fig. 12. Result for time 12:00PM

TABLE III
SIMULATION TEST RESULT FOR 2:00PM

Orbital Target Distance Elevation Maximum
Altitude radius loss to target to target trace of

(m) (m) (frames) (m) (◦) covariance
125.0 120.0 7 173.2 46.16 178.10
125.0 132.2 7 181.9 43.39 181.44
125.0 145.0 8 191.4 40.76 205.29
125.0 157.2 6 200.8 38.49 169.29
125.0 170.0 0 211.0 36.32 26.91
*150.0 120.0 0 192.0 51.34 19.97
175.0 120.0 0 212.1 55.56 21.25

TABLE IV
SIMULATION TEST RESULT FOR 4:00PM

Orbital Target Distance Elevation Maximum
Altitude radius loss to target to target trace of

(m) (m) (frames) (m) (◦) covariance
*125.0 119.5 0 172.9 46.28 18.99
150.0 119.5 0 191.8 51.45 19.92
175.0 119.5 0 211.9 55.67 21.21

calization uncertainty covariances along feasible UAV paths
considering target detectability. We then found the path
which presented the smallest peak covariance or average
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Fig. 13. Result for time 2:00PM

covariance, depending on the mission requirement. Simula-
tion tests validated our approach. Future work includes a
path planning approach with mobile target tracking and a
sunlight reflected area compensation using computer vision
techniques.
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