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Ahstract- We present a new method for continuously and 
accurately estimating the shape of a continuum robot during a 
medical procedure using a small number of X-ray projection 
images (e.g., radiographs or fluoroscopy images). Continuum 

robots have curvilinear structure, enabling them to maneuver 

through constrained spaces by bending around obstacles. Ac
curately estimating the robot's shape continuously over time is 
crucial for the success of procedures that require avoidance 
of anatomical obstacles and sensitive tissues. Online shape 
estimation of a continuum robot is complicated by uncertainty 
in its kinematic model, movement of the robot during the 
procedure, noise in X-ray images, and the clinical need to 
minimize the number of X-ray images acquired. Our new 
method integrates kinematics models of the robot with data 
extracted from an optimally selected set of X-ray projection 
images. Our method represents the shape of the continuum 
robot over time as a deformable surface which can be described 
as a linear combination of time and space basis functions. We 
take advantage of probabilistic priors and numeric optimization 
to select optimal camera configurations, thus minimizing the 
expected shape estimation error. We evaluate our method using 
simulated concentric tube robot procedures and demonstrate 
that obtaining between 3 and 10 images from viewpoints 
selected by our method enables online shape estimation with 
errors significantly lower than using the kinematic model alone 
or using randomly spaced viewpoints. 

I. INTRO DUCT ION 

Continuum robots have a continuously bending, curvilin

ear structure and have the potential to enable new medical 

procedures by maneuvering through constrained anatomical 

spaces in a snake-like manner. Examples of continuum robots 

with the ability to reach difficult-to-access sites in the human 

body include bevel-tip steerable needles [1], concentric tube 

robots [2], [3], superelastic backbone robots [4], and highly 

articulated robotic manipulators [5]. To fully harness the 

potential of these devices, physicians must know the entire 

curvilinear shape of the continuum robot inside the body. 

This shape information is required to guide the robot's end 

effector to the clinical site while ensuring that the robot's 

curvilinear shape avoids anatomical obstacles and sensitive 

tissues such as bones, arteries, and nerves. 

Accurately and continuously estimating the shape of a 

continuum robot over the duration of a procedure is chal

lenging using currently available tools. Kinematics models 
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Fig. 1. Our objective is to accurately estimate the shape of a continuum 
robot over time during a procedure using a small number of optimally 
selected 2 D  X-ray projection images. We assume the X-ray sensor is 
mounted on a C-arm (top), a commonly used medical device that rotates 
the X-ray sensor about the patient lying on an operating table. Our method 
computes optimal viewpoints for the X-ray sensor to maximize the quality 
of the online shape estimation of the continuum robot. We apply our method 
to concentric tube robots, a type of continuum robot (bottom). 

of continuum robots are imprecise. The curvilinear shape 

of a continuum robot inside the human body is difficult 

to predict due to the robot's compliance, noisy actuation 

resulting from miniaturization, and the uncertainties resulting 

from device/tissue interaction. The shape of the robot could 

be precisely reconstructed at discrete time points from a CT 

scan (or from multiple X-ray images), but these imaging 

modalities should ideally not be used continuously since 

they rely on ionizing radiation; an estimated 2% of cancers 

are attributable to excessive use of radiation-based medical 

imaging [6]. Other available imaging modalities are either 

prohibitively expensive for routine procedures (e.g. MRI) 

or do not offer sufficient resolution to accurately track a 

continuum robot (e.g. 3D ultrasound). 

In this paper, we propose a new method to continuously 

and accurately estimate the shape of a continuum robot over 

the duration of a procedure using only a small number of 

X-ray projection images (e.g., radiographs or fluoroscopy 

images). Our approach begins by estimating the continuum 



robot's shape using a kinematics model, and then refines the 

estimate using data extracted from X-ray projection images. 

Although the X-ray images are acquired one at a time at 

discrete time points, our method is capable of accurately 

estimating the robot's shape continuously over the duration 

of the procedure by integrating the kinematics model with 

data from previously acquired images. 

Our method is directly applicable to procedures involving 

continuum robots in which an X-ray imager is mounted on 

a C-arm, which is capable of rotating the imager in a circle 

around the patient, as shown in Fig. l. This type of imaging is 

often used in interventional radiology procedures. We assume 

the angle of the C-arm can be measured and controlled. 

We note that our approach can be applied to continuum 

robots with or without embedded fiducial markers. To further 

improve shape estimation quality, we also optimize the 

viewpoint of the X-ray imager for each image in order 

to maximize the improvement in the quality of the shape 

estimation. This approach could provide physicians with a 

low-cost, high quality estimate of the robot's shape with 

minimal radiation exposure for the patient. 

To enable continuous shape estimation, we represent the 

shape of the continuum robot over time as a deformable 

surface which can be described as a linear combination of 

time and space bases. With the bases specified or learned a 

priori, our online problem becomes the optimization of the 

coefficients which correspond to the bases. We optimize the 

coefficients by using information from a sequentially optimal 

set of viewpoints. Our method takes advantage of Bayes' 

rule and numeric optimization to estimate the uncertainty 

of the continuum robot shape reconstruction and minimize 

reconstruction errors by minimizing the uncertainty. We 

apply our method in simulation to concentric tube robots, a 

class of thin, dexterous continuum robots. We can accurately, 

continuously estimate robot shape in simulation using only 

3 to 10 X-ray images over the duration of a procedure. 

II. REL ATE D WORK 

Our approach for online shape estimation of continuum 

robots integrates information from an uncertain kinematics 

model with computer vision methods for 3D reconstruction. 

In vision-based 3D reconstruction, a 3D shape model of 

an object is computed from projection images taken from 

multiple viewpoints, where the images can be optical or 

X-ray projection images. Such 3D reconstruction methods 

typically require images from at least two viewpoints as well 

as identification of corresponding points that are visible in 

each image [7]. 

Methods using epipolar geometry have been introduced to 

compute 3D reconstructions of curvilinear, tubular objects 

from optical or X-ray projection images. To address the chal

lenge of point correspondences, methods have used brute

force search [8], fiducial markers embedded in the tubes [9], 

self-organizing maps [10], and minimization of reprojection 

error subject to device-specific plausibility constraints [11]. 

Another approach used learning algorithms in conjunction 

with training data to map visual features identified in the 
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images to a shape estimate of the robot [12]. The above 

methods focus on creating a single 3D reconstruction, and 

new images need to be acquired to re-estimate the robot 

shape every time the robot moves. Consequently, for medical 

procedures relying on X-ray images these 3D reconstruction 

methods will require excessive radiation exposure to the 

patient over the course of a dynamic procedure. 

An alternative to optical and X-ray images is 3D ultra

sound imaging. Although the resolution of 3D ultrasound 

is low, recent algorithmic advancements based on geodesic 

active contours are enabling shape estimation of portions of 

continuum robots in 3D ultrasound [13], although errors are 

still substantially greater than when using projection images 

for 3D reconstruction. Another option is integrating into 

the continuum robot a Fiber Bragg Grating (FBG) sensor, 

which uses an optical technique to estimate the shape of a 

flexible device. To overcome the large errors that arise in 

practice when using FBG sensors, a filtering method was 

developed for articulated snake robots [14], but the method 

is not easily transferrable to other continuum robots. Another 

sensing modality is to use a magnetic tracker at the tip of the 

continuum robot [15], although this approach does not scale 

well to reconstructing the full shape of a continuum robot. 

When computing a 3D reconstruction of an object using 

projection images, the placement, and hence the view, of the 

camera or X-ray sensor for each image has a large impact on 

shape reconstruction accuracy. Methods have been developed 

to optimize sensor placement and camera parameter settings 

in order to minimize ambiguity in object recognition [16], 

minimize uncertainty in object tracking [17], [18], minimize 

pose estimation uncertainty of mobile robots [19], and esti

mate an object's configuration [20]. We focus on maximizing 

the quality of the 3D reconstruction of a continuum robot. 

Recent research has begun investigating 3D reconstruc

tions of moving objects. Paladini et al. and Xiao et al. 

[21], [22] used linear shape models to represent nonrigid 3D 

structures. This representation has been successfully applied 

to reconstructing facial and body motion, but it requires an 

orthographic camera and cannot handle missing information. 

Park et al. [23] reconstructed the 3D trajectory of a moving 

point by describing the motion as a linear combination of 

trajectory bases. With the bases known a priori, the problem 

is transformed into obtaining the coefficients of the bases, 

which significantly reduces the complexity and uncertainty. 

This method can also handle missing data. In our method, 

we represent the motion of the continuum robot in a similar 

manner, as a linear combination of bases. 

III. PROBLEM STATEMENT 

Our objective is to accurately and continuously estimate 

the shape of a continuum robot during a procedure by 

integrating information from kinematics modeling and a 

small finite number of X-ray images. We assume that we are 

given a kinematic model of the robot, but due to modeling 

errors and unexpected forces from the environment, the 

actual robot shape will differ from the model's prediction. We 

also assume that we have an X-ray imaging sensor that can 



acquire perspective projection images from viewpoints that 
we select, as shown in Fig. 1. To limit radiation exposure to 
the patient to clinically acceptable doses, we cap the number 
of images taken to 10, with fewer images being better. 

We define the shape of the continuum robot as a curve 
over time: 

T 1' t(s) = [1' t,l (S) , 1' t,2(S) , 1' t,3(S)] (1) 

where 1't : [0, S(t)] -+ JR3, S E [0, S(t)] parameterizes the 
curve spatially at a given time t E [0, TJ, S(t) is the length 
of the curve, T is the duration of the procedure, and 1't,j : 
[O,S(t)]-+ JR for j E {1,2,3} are the corresponding x,y,z 
components of the curve. 

Due to uncertainty, the actual shape of the robot may 
not match the kinematic model. We represent the real-world 
shape as a perturbation from the kinematic model, namely, 

(2) 

where 1'[< is the kinematic model and 1'[ is the perturbation 
of the actual shape relative to the kinematic model. 

We assume that the imaging sensor can make observations 
(i.e., acquire images) of the continuum robot from various 
configurations. The configuration of the imaging sensor at 
time t is defined by the variable Ct := (Rt, dt), where Rt = 

[Rt,l , Rt,2 , Rt,3 ]T and dt = [dt,l , dt,2 , dt,3 ]T are the 
rotation and translation that define the position of the sensor. 
For a point on the curvilinear device, its 3D coordinates X 
and 2D projection ht(X) satisfy 

(3) 

where f is the focal length for the perspective projection. 
Over the duration of the procedure, we assume that NI 

images are taken: {Ctn I tn = (n - 0.5)TjNI' n = 

1,,,, ,NI}. 

X-ray images are inherently noisy. To quantify the uncer
tainty in our observations, we define our observation at time 
tn, Ptn : [0,1] -+ JR 2 , as: 

(4) 

where 'T}tn (s) models the noise in the image as a 2-

dimensional vector composed of i.i.d. random variables with 
distribution N(O, O'�). 

Our objective is to estimate the shape 1't of the deforming 
continuum robot. To maximize the quality of this estimate, 
our variables are the sensor configurations, Ctn, i.e. the 
locations from which we will acquire X-ray images. We 
define the following objective function at any given time t: 
Ft(1't) = E [111't -itl12 I (Ptn, Ctn) for ° < tn ::; t], (5) 

where it is our estimate of the robot's shape at time t. 
This objective function quantifies the expected error at time 
t given the current and prior observations. The output of 
our method is a sequence of sensor viewpoints Ctn and the 
resulting shape estimate it for the robot as a function of 
time. 
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IV. METHO D 

We represent the trajectory of a curvilinear device over 
time as a surface l' in 4D (space and time), as shown in 
Fig. 2. Under the assumption that perturbations to this surface 
can be captured by a linear combination of known basis 
functions (see Sec. IV-A), then estimating the shape of a per
turbed surface is equivalent to finding the coefficients of the 
corresponding bases (see Sec. IV-B). Furthermore, reducing 
the uncertainty on these coefficients by selecting appropriate 
sensor configurations translates into higher precision in shape 
estimation (see Sec. IV-C). 

First, we focus on the case where markers are present 
in the continuum robot. We assume Nm(t) markers are 
present at discrete values {sd �:}t) in Eqn. 1. Then, we 
turn to the markerless case by introducing a simple method 
to automatically find correspondences between points on a 
3D model and its 2D projections (see Sec. IV-D). 

A. Surface Representation 

Park et al. [23] present a linear representation for the 3D 
trajectory of a moving point. Based on this representation, 
they provide a linear solution to reconstruct the 3D trajectory 
of a moving point from a series of 2D projections. 

Inspired by their work, we represent 1'[ as: 

Nb 
1'::(s) = 'Lbi1/Ji(s,t), (6) 

where {'IJ'!i} are the space and time basis functions, Nb is the 
number of bases, and b is the vector of coefficients for each 
basis function. Each bi is assumed to come from a normal 
distribution N (0, O'G i)' 

The first step ol our method is to identify appropriate 
basis functions {'IJ'!;} and corresponding variance {O'G,i} ' 
One approach is to use a standard set of basis functions, such 
as two-dimensional sine and cosine basis functions, and tune 
the variance parameters. Alternatively, the basis functions 
can be learned through the use of functional data analysis 
[24]. In particular, if we are given several realizations of 
the shape of a curvilinear robot over time, we can estimate 
the basis functions by computing the covariance of the 3D 
coordinates of sample points on the curve. The eigenvectors 
of this matrix provide an estimate to the basis functions, and 
the eigenvalues are estimates to O'G i' Hereafter, we assume 
that the bases are known, which simplifies the complexity 

Fig. 2. Shape of the curvilinear device over time can be represented as 
a surface. The horizontal axis denotes time and the vertical axis denotes 
shape of the device in space. 



of the shape recovery problem to the estimation of the 
coefficients b. 

Before discussing our algorithm in detail, we summarize 
the inputs and outputs at a given time t E [0, T]: 

Input 

Output 

• Duration of task: T 
• Number of images: NJ 
• Times of image acquisitions: tn = (n - 0.5)T IN! for 

n = 1, ... , NJ 
• Number of markers visible at time t: Nm(t) 
• Kinematic model: ,f for t E [0, T] 
• Prior sensor configurations Gtn for 0 < tn ::; t 
• Prior observations: Ptn for 0 < tn ::; t 
• Variance of observation noise: O"� 
• Number of perturbation bases: Nb 
• Perturbation basis: {1I>d � b 

{ 2 }Nb • Variance of perturbation bases: 0" b,i i=l 

• Estimated shape: it 
• Next sensor configuration: Gtn" n' = min{n I tn > t} 

B. Coefficient Estimation 

Based on Eqns. 2 and 6, li,t -i't112 = (b -b)T Mt(b-- 1 T b) where Mt,ij := Jo 1/Ji(S, t) 1/Jj(s, t) ds. Hence, we can 
rewrite Eqn. 5 as: 

Ft(b) = J (b -b) T Mt(b -b) ft(b I Ptn, Gtn) db, (7) 

where ft(b I Ptn, Gtn) is the conditional probability distri
bution of having b as the correct coefficients given all the 
observations and sensor configurations up to time t. 

In this section, we find an estimator that minimizes the 
objective function above. That is, we are after 

bt = arg mJn Ft(b). 
b 

(8) 

Our derivation resembles in spirit to that of the Extended 
Kalman Filter [25]. 

The optimal value bt must satisfy \7 F(bt) = 0, which 
implies that 

bt = 
J b ft(b I Ptn, Gt,,) db 
J ft(b I Ptn, Gtn) db (9) 

By Bayes' rule, ft(b I Ptn,Gtn) · ft(ptn I Gtn) 
ft (Ptn I b, Gtn) . ft (b I Gtn)· Furthermore, since b is 
independent of the sensor configurations then ft(b I Gt,) = 

f(b). These observations imply that 

bt = 
J b ft(Ptn I b, Gtn) . f(b) db (10) J ft(Ptn I b, Gt.,} . f(b) db 

Note that by definition of our model, 

ft(Ptn I b, Gt,,) . f(b) ex exp (-� (L�l � + ... b,) ",n'-l ",N=(tn) IIPtn(Sk)-hlnhtn(Sk))112 )) L...-n=l L...-k=l 0"; , 
(11) 

where n' = min {n I tn > t}. Since this is a complicated 
function to evaluate, we assume that (J;,i is small and 
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linearize htn (rtn (s )) around b = O. That is, htn (rtn (s)) � 
htn (rt, (s)) + \7 htn ( rt, (s)) Li 1/Ji( S, tn)bi, where 

[ f RT - f (R�,X+d"Il RT 1 
\7ht(X) = 

(R !3X+dt,3) t,l 
f
(R

(R
!t

.

X
X
+

+
d

d
',3 )2

) 
t,3 

. f RT " 2 1,2 RT (R,',3X+d,,3) t,2 - (R,',3X+dt,3)2 t,3 
Hence, we have that 

where Atn(s) := \7htn ( rt,(s)) [1/Jl (S,tn), ... ,1/JNb(S,tn)] 
and Ctn (s ) : = Ptn (S) -htn (rt, (S) ). Furthermore, if we 
let Ctn := [Ctn(sdT, ... ,Ctn(SNm(tn))T]T and Atn := 

[Atn (sd T, ... ,Atn (SNm(tn)) T]T, then 

Ln Lk I lptn (Sk) -htn (rtn (sk))112 
� Ln (Ctn -Atn b) T (Ctn -Atn b). 

If we let D := diag((Jb,�"" ,(Jb,7vJ then 

1 '" '" 2 '" b; 
0"2 L...-n L...-k I lptn (Sk) -htn (rtn (Sk))11 + L...-i a'L 

o � 

(13) 

� ;2 Ln (Ctn -Atn b) T (Ctn -Atn b) + b T Db 
= (b -v)T At(b -v) + -h Ln ci"Ctn -v T Atv 

where v := At l (-h L��-/ Ai" Ctn) and At := D + 
1 ",n' -1 AT A cr2 L.....-- n=l tn tn· 

° Therefore, by replacing the previous approximations into 
Equation 10, we come up with the following estimate: 

A Jb exp(-�(b-v)TAt(b-v)) db bt � 
J exp (-�(b -v)T At(b -v)) db ' (14) 

which yield 

C. Optimal View Selection 

In order to determine an optimal sensor configuration, we 
define the following cost function: 

G(Gt) = E [I bt -1t112 I (Ptn, Gt,,) for 0 < tn :s: t, Gt] . 
(16) 

This cost measures the expected estimation error before the 
image is acquired given that a configuration Gt is chosen. 

Note that: 

G(Gt) = J J li,t -1t112 ftn,_, (Ph blptn, Gtn, Gt) dpt db, 
and 

ftn,_, (Pt, blpt", Gtn, Gt) 
= A" -1 (Pt I b, Ptn, Gtn, Gt)ftn, -1 (blptn, Gtn, Gt) 
= f(Ptlb,Gt)ftn,_,(bI Ptn,Gtn)' 

The last equality follows from the fact: (1) the observation 
Pt is independent of previous observations Ptn given the 
coefficients b, and (2) b is independent of the configuration 
Gt if no image Pt is provided. 



Hence, we have 

Let us define 

J J I ll't -itl12 f(ptlb, Gt) dpt· .. 
ftn' -1 (blptn, Gtn) db. 

G1(Gt, b) = aJ Mtao + J r{rT MtrTit!(Tit) dTit 

(l7) 

= aJ Mtao + trace(J TitTii f(Tit) dTit rT Mtr) 
= aJ Mtao + O"� trace(rT Mtr). 

We are left with the task to compute 

G(Gt) = JGl (Gt,b)ftn,_"(bI Ptn,GtJ db 
= O"� trace(rT Mtr) + . . . (19) 

J aJ MtaOftn'_l (blptn, GtJ db. 
We proceed, as before, by performing some approxima
tions. Then, ao � b - � (L��-12 Al, Ctn + Ai Atb) = 

A ( A-I T ) A H(b -bt , ) + h, where h:= 1- --::S-At At bt , -
A-I (�-; ) ( A(Y�l ) n-2 
;� L��l Ai:, Ctn and H : = I - ;� Ai At . Hence, 

J aJ Mtaoftn, -1 (bl Ptn, Gtn) db· .. 
T A T T � h Mth + J(b -btn,_") H Mt· · ·  

H(b -btn' -1 )ftn, -1 (blptn, Gtn) db 
= h T Mth + trace(J(b -bt",_J . .  . (20) 

A T T (b -btn' -1 ) ftn' -1 (bI O"t", Gtn) db H MtH) 
� h T Mth + trace (Atn�_lHT MtH) . 

Finally, we have that 

G(Gt) � O"� trace(rT Mtr) + h T Mth + ... 
trace(AZ.'�_l HT MtH). (21) 

We select optimal sensor placement by minimizing G(Gt) 
via a sampling based search over the configuration space. 
The shape of the device is then estimated by using the 
methodology presented in Sec. IV-B. 

D. Markerless Scenarios 

In the previous subsections, we assumed that there are 
N m (t) markers along the 3D model at time t and we 
are provided with observations of these markers. That is, 
correspondence between observations and the 3D model is 
known, which is required for Eqns. 15 and 2l. For the 
more general case, we place Nm(t) virtual markers on our 
3D kinematic model and find the correspondence to each 
observed image. 

As Eqn 2 suggests, the actual model is a perturbation 
around the kinematic model. Since the basis functions 'l/Ji and 
the distribution of b are known a priori, we try to generate 
an estimation of the 3D model it based on Eqn 2. it is then 
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projected into 2D space via Eqn 4. Let us call the projected 
curve Pt. 

By defining the distance between a point x and Pt as 
d( x, Pt,) = minx' Ep" I lx - xiii . Then, we quantify the re
projection error as Jsd(f5tt(s),pt,)ds. We generate multiple 
(rv 100) models of it by generating random coefficients 
b. The one that minimizes the reprojection errors will be 
selected, and its projection in 2D space will be considered 
as the projections of virtual markers. 

V. RESULT S 

We apply our online shape estimation method to contin
uum robots in simulation. We focus on concentric tube robots 
[2], [3], a class of continuum robots composed of several 
nested, pre-curved tubes that can each be axially translated 
and rotated at the robot's base. As each tube is translated and 
rotated, the tubes elastically interact, enabling the robot to 
achieve a wide variety of curvilinear shapes. Concentric tube 
robots have the potential to enable new minimally invasive 
surgical procedures for cases in which straight instruments 
cannot reach the clinical target, including procedures in the 
brain [26], [27], lung [28], and heart [29]. 

A. Evaluation Scenarios 

We assume a C-ann rotates a projection image sensor (e.g. 
X-ray imager or optical camera) around the continuum robot 
in a circle (see Fig. 1). The sensor's configuration space 
is parameterized by an angle Gt E [0°,360°] at time t. 

As is typical with clinical C-arms, the radius of the circle 
is 40 cm. We set the focal length of the sensor to 1 cm 
so projections of the model into the image domain are in 
the range of [-Mp, Mp] where Mp = 0.0375 cm is the 
projection magnitude. 

For our kinematic model of concentric tube robots we 
use a mechanically accurate model that considers both the 
elastic and torsional interactions of the component tubes [30]. 
To model uncertainty in the actual robot shape relative to 
the kinematic model, we note that much of the error in 
kinematic modeling is likely due to the modeling assumption 
that inner tubes and outer tubes share the same tangent vector 
at the point where the inner tube protrudes from the outer 
tube [31]. Hence, we represent modeling noise as a random 
deviation in the tangent vector of each tube's protrusion from 
its enclosing tube. We used a Gaussian distribution with a 
standard deviation of 0.08 radians, which resulted in average 
tip errors between the kinematic model and actual shape 
of between 0.25 cm and 0.5 cm, which is consistent with 
physical experiments [31]. 

We consider two scenarios shown in Fig. 3 in which a 
concentric tube robot is used to reach a specific location 
within a lung. The final configuration in each scenario is 
approximately 7.5 cm in length. The model had Nm(T) = 
138 for scenario 1 and Nm(T) = 108 for scenario 2 and 
present results for the markerless approach. 

We compare three methods for estimating robot shape 
over the course of a procedure: (1) the kinematic model, 



t = 1st image, Ct = 1570 t = 2nd image, Ct = 1750 t = 3rd image, Ct = 2580 Scenario 1, t = T 
(a) Scenario 1 

t = 1st image, Ct = 1660 t = 2nd image, Ct = 2490 t = 3rd image, Ct = 3140 Scenario 2, t = T 
(b) Scenario 2 

Fig. 3. Scenarios 1 and 2 involve maneuvering a concentric tube robot, which is deployed via a bronchoscope (cyan), through bronchial tubes in a human 
lung to clinical targets in simulation. We show the actual concentric tube robot shape (green), the kinematic model (blue), and the 3 D  reconstructed shape 
using our optimal method (red dots) after each image acquisition and at the final time T. lnlayed are the simulated camera views from the viewpoint 
selected by our approach. The camera views include the actual concentric tube robot shape (green), simulated noisy segmented points along the image of 
the actual concentric tube robot that are used for the reconstruction (black dots), and the kinematic model for reference purposes (blue). 

(2) the shape estimate obtained via our method using ran

dom sensor placements in which images are captured by 
selecting random sensor configurations Ct from a uniform 
distribution between 0° and 360°, and (3) the shape estimate 
obtained using our method with optimal sensor placements. 
We also vary NJ (the number of images taken during the 
procedure) between 1 and 10, and we assume images are 
taken at equal time intervals. We compute the error between 
a shape estimate M E {kinematic, random, optimal} and 
the continuum robot's actual shape at time t as 

(22) 

B. Learned Basis Functions 

We used the learning approach in Sec. IV-A to define 
the basis functions. This approach used 200 simulated runs 
with the noise models described above. Fig. 4 illustrates a 
set of basis functions learned for our first scenario. As a 
representative set, we show the first 3 learned basis functions 
for the y-coordinate of the continuum robot, which explain 
over 99% of the total variance in the data. We note that due 
to the variable length of the device over time, the bases are 
not defined over a square domain. Furthermore, these bases 
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are not smooth. Ridges are present at locations associated 
with the junction between concentric tubes. 

C. Shape Estimation Results 

For each scenario and online shape estimation method, we 
ran 200 trials with the actual robot shape being determined 
by the kinematic model with random noise as discussed 
above. For each trial we computed the error as a function 
of time using equation 22. We illustrate the error for the 
case of NJ = 3 for scenarios 1 and 2 in Fig. 5. When using 
the kinematic model (top), the error grows as the procedure 
progresses. For shape estimates obtained using our method, 
at every time point where an image is obtained (shown by the 
red bar) the error in reconstruction declines. As the amount 
of time increases since the last acquired image, the error 
slowly rises as imaging data gradually becomes obsolete and 
the estimation becomes more dependent on the kinematic 
model. After 2 images, the error drops as more images are 
acquired until sub-millimeter error is achieved. 

We also evaluated the error of the tip location of the device 
at the end of the procedure. Using the kinematic model, the 
tip error averaged 2.9 mm for scenario 1 and 3.7 mm for 
scenario 2. For scenario 1, using our approach the tip error 
was reduced to 1.1 mm with NJ = 5 images and less than 1 

mm with NJ = 8 images. For scenario 2, using our approach 
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Fig. 4. Basis functions for the y-coordinate of the continuum robot. 

the tip error was reduced to 1 mm with NJ = 5 images 

and less than 0.8 mm with NJ = 8 images. Our method 

accurately estimates the entire shape of the continuum robot, 

including the tip location. 

We also evaluated 3D shape estimation accuracy as a 

function of the number of X-ray images NJ taken during 

the procedure. For each trial, we compute the average error: 

EM = iT EM (t) dt. 
t=O T (23) 

In Fig. 6, we display the mean of the average error over 

the 200 trials for each scenario for the three methods for 

estimating robot shape. In both scenarios, our estimation 

approach with optimal viewpoint selection performs better 

than our approach with random sampling of viewpoints 

and substantially better than the kinematic model alone for 

any given positive number of images chosen. As expected, 

accuracy improves as the number of images increases, but 

the improvement levels off quickly. The results indicate that, 

when using our approach with optimal viewpoint selection, 

only a small number of X-ray images is required to ac

curately and continuously estimate continuum robot shape 

during a task. 

VI. CONCLUSIONS AN D FUTURE W ORK 

We presented a new method for continuously estimating 

the shape of a continuum robot over the duration of a medical 

procedure while using a small number of X-ray projection 

images (e.g., radiographs or fluoroscopy images). Our new 
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Fig. 5. Mean error EM (t) as a function of time for scenarios 1 and 2 
for three shape estimation approaches: the kinematic model, our estimation 
approach with random sampling of viewpoints, and our estimation approach 
with optimal viewpoint selection. We set N[ = 3 and acquire images at the 
times of the red bars. The shaded envelope shows the range of the middle 
50% of the data. 

method represents the shape of the continuum robot over 

time as a deformable surface which can be described as a 

linear combination of time and space bases. We estimate the 

bases by effectively combining the robot's shape estimate 

from its kinematics model with data extracted from X

ray projection images as they are taken. We optimize the 

viewpoint of the X-ray sensor for each image to maximize 

the quality of the shape estimate. 

We evaluated our method using simulated concentric tube 

robot procedures. We demonstrated that, using only 3 to 10 
projection images, we can estimate continuum robot shape 

continuously over time with significantly higher accuracy 
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Fig. 6. Mean average error EM as a function of the number N[ of 
images acquired for scenarios 1 and 2 for three shape estimation approaches: 
the kinematic model, our estimation approach with random sampling of 
viewpoints, and our estimation approach with optimal viewpoint selection. 
With only a small number of X-ray images, our method can accurately 
estimate continuum robot shape. 

than kinematics modeling alone. In future work, we plan 

to investigate methods to further improve accuracy and 

to evaluate our approach in new scenarios and for other 

continuum robots. 
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