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Abstract— A ubiquitous problem in robotics is determining
policies that move robots with uncertain process and ob-
servation models (partially-observed state systems) to a goal
configuration while avoiding collision. We propose a new
method to solve this minimum uncertainty navigation problem.
We use a continuous partially-observable Markov decision
process (POMDP) model and optimize an objective function
that considers both probability of collision and uncertainty at
the goal position. By using information-theoretic heuristics, we
are able to find policies that are effective for both minimizing
collisions and stopping near the goal configuration. We addi-
tionally introduce a filtering algorithm that tracks collision free
trajectories and estimates the probability of collision.

I. INTRODUCTION
We propose a new motion planning algorithm to solve the

minimum uncertainty navigation problem for stochastic robot
systems. For deterministic robot systems, motion planning
research has progressed from considering strict feasibility to
computing optimum robot plans. Analogously, in the stochas-
tic case, different control policies will result in different
likelihoods of collision and uncertainty at the goal position.
Thus, it is natural to synthesize control policies that seek to
minimize these criteria. We address the problem of moving
a robot with stochastic motion and observation models from
a start configuration to a goal configuration with intent to
minimize expected distance of the robot from the goal and
likelihood of collision.

To cope with inherent noise in system components and im-
perfect modeling of sensors, robots, and environments, robot
motion and sensor models are typically formulated proba-
bilistically. Thus, many robot models fall into the class of
continuous partially-observable Markov decision processes
(POMDPs). Unless the models are of a special form, e.g.,
linear quadratic Gaussian, for this class of processes an
exact optimum feedback control law is hard to find due to
representation and computation issues. Our approach belongs
to a recently emerging class of methods, e.g., [1]–[3], that
use local policies or macro-actions to construct a POMDP
policy. Essentially, rather than optimizing single controls
(single time steps), we optimize the choice of controls for
a short time span (over multiple time steps). We use the
terminology local policy to make clear that our approach is to
use feedback policies (not open loop sequences of controls)
and our final product is a switched belief-feedback policy
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that uses local policies as modes. (This will be defined and
explained in Section II.)

Our general approach has been discussed in [3], so the
purpose of this paper is to discuss how this method can
be adapted to the continuously modeled state, control, and
observation spaces of the robot navigation task. We demon-
strate that using information-theoretic heuristics to guide
local policies results in a viable motion planning procedure.
This introduces a need for regularization kernels [4] to
adapt our particle filter representation of belief for use with
these information-theoretic heuristics. This leads to a novel
filtering algorithm that tracks collision-free trajectories of
a system and simultaneously estimates the probability of
trajectories leading to collision. We demonstrate the results
of our method in simulation.

Most realistic sensor models are not invariant to the
robot’s configuration and even if we could evaluate all
paths through the configuration space to determine the one
that provides the most localization information, we cannot
hope to follow that path exactly because of uncertainty in
the robot’s process model. Thus, a minimum uncertainty
path involves a trade-off between exploring regions of the
state space where more information about the state can be
gained and taking a path to the goal that introduces the
smallest amount of process noise into the estimate of the
system’s state. Elements of this trade-off can be captured
by incorporating ideas from information theory. (The use
of information theory in robotics and planning has been
explored in many contexts, e.g., [5]–[9].) Paths that minimize
entropy serve to reduce uncertainty. Goal-seeking behavior
can be achieved by minimizing the Kullback-Leibler (KL)
divergence between the expected future posterior pdf (i.e.,
the pdf over the robot’s state at some future stage) and
a pdf representing the goal. In practice, one can compute
controls that achieve one of these objectives over a short
time span, but no one of these heuristics is equivalent to our
objective. Our approach is to define a set of local policies
based on these criteria that specify closed-loop control laws
to be executed for a finite (but not fixed) period of time.
We then optimize the switching law of a switched policy,
whose modes correspond to the local policies, to synthesize
a composite policy to achieve the specified control objective.

Once an objective function, set of local policies, and belief
approximation method is in place, we employ our optimiza-
tion algorithm. Our approach is an anytime algorithm that
computes a belief-feedback policy in advance of the robot
moving. It is based on a method like value iteration to learn
a switching law. We use a Monte Carlo approximation to
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evaluate system behavior and optimize a switching law based
on sampling.

A. Problem Definition

We now formally define our minimum uncertainty nav-
igation objective. Let bt represent a belief, the posterior
probability distribution over the state space at time t. The
quantity pfail

t denotes the probability the robot collides with
an obstacle in the first t stages, and let cfail be a user-
defined constant in [0,+∞) that weights the importance of
safety from collision versus the eventual distance from the
desired goal state. We will quantify that distance using the
KL divergence, explicitly defined in (2), which measures the
dissimilarity between two probability density functions.

The target pdf bgoal will be selected based on target
positions in the configuration or workspace. This distribution
can be specified for a number of nontrivial goal objectives,
but we will consider it to simply encode the robot attempting
to reach xgoal, i.e.,

bgoal := δ(xgoal)

where δ(·) is the Dirac delta function. The planning ob-
jective1 is then to find a belief-feedback policy π∗ that
minimizes

J(b0, π) = E
[
cfailpfail

T + KL(bT ||bgoal)
]
. (1)

where b0 is the initial belief of the robot’s state and the policy
modifies the behavior of the system, i.e., the evolution of
bt and pfail

t . The planning objective is defined in terms of
a dynamically chosen (as part of the control law) stopping
time T .

B. Related Research

There has been a large volume of research on optimizing
systems modeled as POMDPs. Some work is directed to
specific robotics problems, while other methods focus on
computing optimal policies for general systems modeled with
stochastic difference equations. Consideration of uncertainty,
created by an uncertain process model, was first combined
with sampling-methods in [10] to predict the behavior of a
system. Rather than just predicting, in [11]–[13] attempts
were made to extend sampling-based algorithms to plan
for systems with uncertainty. The Belief Roadmap planner
(BRM) [9], [14] attempts to build a roadmap over a pa-
rameterized belief space by sampling configurations, lifting
them into the belief space, and connecting them using a local
planner. The Sampling Hyperbelief Optimization Technique
(SHOT) [15] uses a similar methodology in the space of
posterior probability functions over the belief space. A
similar approach can be used in a forward-based, diffusive
search of the reachable belief space, and several approaches

1This is a scalarized multi-objective cost function, where the two ob-
jectives are often in competition with one another. In principle, any multi-
objective optimization characterization could be used in place of scalar-
ization, e.g., computing a Pareto optimal set of policies. Our optimization
procedure allows separation each objective until the value is computed, so
it does not preclude other techniques.

using this design principle have been put forth, e.g., [1]–[3],
[16].

Other work in the robotics community generates plans to
minimize uncertainty for specific robot tasks. For example,
the active localization algorithms of [17] and [18] make
robot localization more effective by specifically considering
expected uncertainty of the localization algorithm while plan-
ning the next control the robot will receive. These algorithms
generate a control to minimize uncertainty at the next stage,
but unlike this work, do not optimize over a path.

The general POMDP optimization problem has a rich
history. In [19], it was shown that the optimal value function
of a finite POMDP is piecewise-linear and convex and, for
any finite horizon, one could construct the optimal value
function exactly by considering only a finite number of
points. While the structure of the value function and an
algorithm to exactly compute it is known, the intractability
of computing exact solutions is well-known [20]. While a
number of general methodologies have been proposed to
approximate exact solutions, the most popular trend has been
point-based approximation of the value function by Monte
Carlo sampling, e.g., [21]–[25]. However, these methods
have not been shown to scale to many robotic tasks in
continuous spaces.

II. BACKGROUND

The geometry of a robot system can be parameterized by a
configuration q ∈ Q. For a purely kinematic system model,
the system’s state x ∈ X is identical to the configuration.
If the system dynamics are also modeled, the state will be
x = [q, q̇]′. A robot system has a process model

xt+1 = f(xt, ut,nt)

where ut ∈ U is the control (action) and nt is a random
vector representing process noise which is drawn from an
iid random process. This model encodes the kinematic or
dynamic trajectory constraints of the robot system, and how
the process is affected by uncertainty nt. The observation
model dictates how the robot’s state affects its sensors, and
is modeled

yt = h(xt,mt)

where mt represents the sensor noise. For our analysis, we
will assume X , U , and Y are continuous. However, the
random vectors y, x, or u may also be discrete or mixed.
The same analysis can be applied in these cases with minor
modification.

We rely on the posterior probability function, referred to
as a belief, to act as a sufficient statistic of the information
state [26], i.e., the initial belief and the set of controls and
observations up to this point. We will denote the belief2 at
stage t as bt, i.e.,

bt(x) := fxt|Γx0 ,y1:t,u1:t
(x | Γx0 , y1:t, u1:t)

2In practice, we often cannot represent the exact pdf and instead use an
approximation. We will use b̂t to refer to an approximation of the exact
belief bt.
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where Γx0
is a pdf over the state space that represents the

initial condition of the system. The space of all possible
probability distributions on X is referred to as the belief
space Pb. Given a control u and observation y, the evolution
of the process in the belief space is well-defined and deter-
ministic. The belief transition operator, denoted φy,u for a
particular control and observation, for the POMDP is defined
bt+1 = φy,ubt and it corresponds to a standard Bayesian
filtering procedure. Thus, the POMDP can be viewed as an
MDP whose state variable is the belief, and observations act
as the source of uncertainty. A more detailed discussion of
MDP’s with continuous state variables and the precise form
of φy,u can be found in [27].

Since the sequence of observations y1:∞ will not be known
at planning time, the evolution of the POMDP in the belief
space remains a random variable. If we want to analyze the
complete behavior of a POMDP in the future, e.g., to evaluate
the possible effect of a control policy, we must consider all
sample paths that have nonzero probability. We accomplish
this by lifting the POMDP process to a higher dimensional
space of probability functions defined on the belief space.
We refer to this lifted space as the hyperbelief space and, in
the hyperbelief space, the system evolves deterministically,
thus eliminating (in some sense) the explicit consideration
of uncertainty during the planning process at the expense of
a much higher representational cost. A hyperbelief β is a
probability density functional defined over Pb.

βt(b) = fbt (b | b0, π)

The hyperbelief transition operator is well-defined.
For deterministic motion planning, the planner computes

a path. However, with a stochastic system we will not be
able to track a single path. Thus, the goal is to find a belief-
feedback policy π : Pb → U that minimizes the cost criterion
in (1). This implies that rather than computing a sequence
of landmarks or a path through the configuration space, our
goal is to compute a mapping from a sufficient statistic of
the information state to a control. This mapping should be
optimized for every possible information state that can be
reached during an execution. We will achieve this by using
a switched policy,

π : Pb ×Ψ× Z+ → U

where Ψ is a set of local policies available for use. A local
policy ψ = {π, a} is a 2-tuple where π is a belief-feedback
policy and the stopping condition a : Pb × Z+ → {0, 1}
indicates when the local policy should stop. The second
and third input parameters of the switched policy can be
considered to be the state of the policy. We will assume that
the policy can be implemented on the robot in a way that
makes use of some internal memory. Under this assumption,
the switched policy formulation above can be used in place of
a standard belief-feedback policy given a well-defined initial
condition, i.e., given a belief provide a control at every time
step with no other external manipulation of the policy.

In the development that follows, we will use a number of
concepts from information theory. A standard reference text

on information theory is [28]. The differential entropy (which
will subsequently be referred to as entropy) is a measure of
the uncertainty associated to a random variable

H(x) = −
∫
X
bt(x) log2 bt(x)dx.

The KL divergence is used in this paper as a pseudo-metric
of distance between two pdf’s

KL(bi||bj) =

∫
X
bi(x) log

bi(x)

bj(x)
dx (2)

as is common in the literature.

III. METHOD

Our solution to the minimum uncertainty navigation prob-
lem involves utilizing a set of local policies that specify
multi-stage trajectories through the hyperbelief space. To
avoid the computational intractability of optimizing the pol-
icy one control at time, we optimize the policy in a coarse
fashion. Specifically, we use a switched policy whose modes
and switching conditions are defined by a set of local policies
and optimize the switching law. However, since we are using
closed-loop feedback control policies at every stage, this is
not a straightforward conversion of the original POMDP to
a temporally abstracted POMDP. In this section, we begin
by describing the set of information-driven local policies.
We then demonstrate how we can modify the canonical use
of the stochastic Bellman equation into a form suitable for
optimizing a switched policy.

A. Local Policies

We use two kinds of local policies: those that are designed
to decrease uncertainty in the robot’s state, and those that
draw the robot toward the goal state. To reduce uncertainty
in the robot’s state, we use the policy that minimizes the next-
stage expected entropy. This local policy will proceed until
entropy has reached a local minimum, or a maximum number
of stages has elapsed. To implement target seeking behavior
for both the goal configuration and sampled configurations,
we use a policy that minimizes the KL divergence to a
sampled target, specified by a Dirac delta function centered
on a state space target. We will use this policy to draw
the robot towards the goal as well as other sampled target
points, to aid in obstacle avoidance. This policy executes
until progress can no longer be made, or again, a pre-
specified maximum number of stages elapses.

In general, these strategies cannot be computed in closed
form, but numerical approaches such as Monte Carlo simu-
lation can be applied. In this paper, we have computed the
policies using a numerical brute force approach. However,
one can often do better by considering the approximated
structure of a belief, e.g., a set of particles combined with
kernel functions to represent the next-stage expected pdf. A
interesting direction of future research will be considering
general principles by which one can use this structure,
i.e., mixture of kernels, to approximate information-theoretic
heuristic policies in a efficient manner.
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B. Optimization
The POMDP planning objective can be stated as com-

puting the optimal policy and the cost under that policy. A
common tool for performing this optimization is the policy
value function V : Pb × Π → R, where the value function
encodes the expected cost-to-go from every belief in the
belief space. Thus, V (b, π) is the expected cumulative cost
if the process starts from b using π. The function V satisfies

V (b, π) = Ey [l(b, uπ) + V (φy,uπb, π)] (3)

where l is the one stage cost function and φy,uπb is the
belief generated by moving one stage forward from b with
the control from policy π. In principle, this equation could
be used to synthesize an optimal policy using policy or value
iteration [29]. Unfortunately, this procedure is typically too
expensive to compute in practice when computing optimal
controls one stage at a time.

We instead modify (3) to allow computation of the value
function over the evolution of a local policy, and use a policy
improvement algorithm to optimize the switching law of our
policy. Let the cost-to-go of an individual sample path for t
stages be denoted by jt, and let t denote the next switching
time of the switched policy for a particular sample path.
Define α : Pb → Ψ to be the switching law that chooses the
next local policy to use based on the current belief. Then,
(3) can be rewritten

V (b, π) = E
[
jt(bt, πα(b)) + V (bt, π)

]
= Jα(b)(b, πα(b)) +

∫
Pb
βt(bt)V (bt, π) dbt (4)

where Jα(b)(b, πα(b)) denotes the expected cost-to-go until
the next switch and he functional βt(bt) is a pdf over the
belief where the next switch occurs.

The two most computationally expensive parts of the
optimization procedure are simulating the system to compute
the effect of using a particular policy, and performing the
backup procedure over a very large search graph. Rewriting
(3) as (4) is useful because, if we can compute Jα(b)(b, πα(b))
and βt(bt), we can build a data structure that represents a
much coarser view of the system’s evolution. This form is
also particularly important because we can separate approx-
imation of the system evolution from computing the value
function. Thus, our gains in performance come firstly from
reducing the complexity of the search graph over which we
optimize by considering system evolution at a coarser level,
but also from being able to utilize approximation methods
that are standard in the robotics community, e.g., particle
filters.

A natural value iteration-like algorithm is characterized by
satisfying the equation

V (b, πi+1)=min
ψ∈Ψ

{
Jψ(b, πψ)+

∫
Pb
βt(b)V (b, πi+1)db

}
(5)

for every b ∈ Pb and then choosing the optimal switching
law

αi+1(b)=arg min
ψ∈Ψ

{
Jψ(b, πψ)+

∫
Pb
βt(b)V (b, πi+1)db

}
(6)

where αi and πi refer to the switching law and switched
policy at the ith planning iteration3. Since we minimize
over ψ, we are essentially choosing the best local policy
to be switched to at every belief and using that policy in
the switching law for π. Unfortunately, this procedure is
computationally infeasible. In the next section, we discuss
a sampling-based, anytime approach to approximate this
algorithm.

IV. APPROXIMATION ALGORITHMS

In a real implementation, we must approximate the method
of (5)-(6) in several ways Firstly, we turn to a particle
filtering approximation [4] of the belief. A standard par-
ticle filter approximates a function with a finite number
of weighted support points. However, for some operations,
e.g. computing collision probability, differential entropy,
and KL divergence, we require a continuous probability
distribution. To reconcile these two techniques, we convert
that set of particles to a continuous approximation of the
belief using regularization kernels [4]. Another problem is
computing the exact cost and hyperbelief evolution of the
POMDP for the duration of a local policy. This operation
requires exponentially increasing resources as the number of
stages for which the local policy executes increases. We can
approximate these quantities using sequential Monte Carlo
simulation or hyper-particle filtering [30]. Finally, we cannot
compute expansions (defined in Section IV-B) and value for
every belief in a continuous space. We again use a sampling-
based method to slowly vary the policy, and improve it via an
anytime approach. The remainder of this section addresses
the approaches discussed briefly here.

A. Filtering

We use a modified version of a standard particle filter al-
gorithm to track collision free trajectories of the system, and
simultaneously estimate the probability of collision. Thus,
we modify the canonical algorithm to estimate probability
of collision, given an approximated pdf over the state space,
and then resample from the collision free portion of that pdf.
The steps of the method are shown in Algorithm 1.

We begin by taking an approximate belief b̂t as input,
which is represented as a set of particles. Each particle
(x

(i)
t , w

(i)
t ) contains a state and associated weight. The first

task is to approximate Bayesian prediction by propagating
existing particles through the system’s process model and
to estimate the probability the system will collide with
workspace obstacles. Because the set of particles approxi-
mates a continuous distribution, but all the probability mass
is located on a finite number of support points, we have
observed that integrating this density over a projection onto
Qobst, the subset of the configuration space where collisions
occur, is often a poor approximation of the probability of col-
lision unless the process model is sampled with an extremely

3Previously, we have used subscripts to notate time stage indices of the
process (and conceptually related quantities). Here, we will use superscripts
to denote the evolution of the policy with respect to iterations of the
optimization algorithm.
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Algorithm 1: Filtering Algorithm

Input: b̂t := {(x(i)
t , w

(i)
t )|Ni=1}, ut, yt

Output: b̂t+1 := {(x(i)
t+1, w

(i)
t+1|Ni=1)}, pcollide

// Propagate process model probability distribution
b̂t+1|t ← ∅
foreach (x

(i)
t , w

(i)
t ) in b̂t do

x̄
(i)
t+1|t ← f(x

(i)
t , ut,E [nt])

b̂← b̂ ∪ {(x̄(i)
t+1|t, w

(i)
t }

// Evaluate collisions and sample process noise
pcollide ← 0, b̂t+1|t ← ∅
foreach (x̄

(i)
t+1|t, w̄

(i)
t+1|t) in b̂ do

Γqt|t+1
(·)← projection of κ(x̄

(i)
t+1|t, ut, ·) onto Q

c←
∫
Qobst

Γqt|t+1
(q)dq

pcollide ← pcollide + w̄
(i)
t+1|t · c

w
(i)
t+1|t = w̄

(i)
t+1|t · (1− c)

Sample x(i)
t+1|t according to κ(x̄

(i)
t+1|t, ut, ·)

while x(i)
t+1|t is in collision do

Sample x(i)
t+1|t according to κ(x̄

(i)
t+1|t, ut, ·)

b̂t+1|t ← b̂t+1|t ∪ {(x
(i)
t+1|t, w

(i)
t+1|t)}

// Update using observation model
foreach (x

(i)
t+1|t, w

(i)
t+1|t) in b̂t+1|t do

w
(i)
t+1|t ← w

(i)
t+1|t · P

[
yt|x(i)

t+1|t

]
// Resample to avoid degeneracy
b̂t+1 ← ∅
for i = 1:N do

Sample x(i)
t+1 from b̂t+1|t w.p. w(i)

t+1|t

b̂t+1 ← b̂t+1 ∪ {(x(i)
t+1,

1
N )}

large number of particles (and then condensed down to a
number of particles appropriate for filtering). Alternatively,
we have had increased success by transforming the particle
set to a continuous approximation of the pdf using kernel
functions. Given a particle set b̂ := {(x(i), w(i))|Ni=1}, the
approximate pdf is

f̂xt|t+1
(b̂, u, x) =

N∑
i=1

κ(x(i), u, x) · w(i)

where κ(x, u, ·) is a kernel representing the one-step tran-
sition pdf of the system. Ideally, κ(x, u, ·) is the exact pdf
of the random vector that is the result of the transformation
f(x, u,nt). It is important to note that κ will only meet the
requirements of a true regularization kernel under certain
fairly general assumptions on the transition probabilities of
the robot system model.

We can project f̂xt|t+1
(bt|t+1, ut, ·) onto the configuration

space and integrate over Qobst. In practice, f̂xt|t+1
(bt|t+1, ·)

is an approximation and the integration will be computed
numerically, so we have only an approximate probability

of collision. We then re-weight each particle, removing
from it the portion of the particle’s weight corresponding to
configurations in collision with obstacles. We then resample
each particle from within the collision free portion of its
kernel function. This leaves us with a predicted estimate of
the robot’s state from the set of collision free trajectories.
The rest of the filtering procedure is standard.

B. Expansion Approximation

We define an expansion to be the transformation

ϑ : Pb ×Ψ→ R+ × Pβ

that maps every b ∈ Pb and ψ ∈ Ψ to the Jψ(b, π) and
βt̄ thats describes the evolution of the POMDP. Determining
the values of an expansion exactly is not practical, since
the value of the hyperbelief at a point is a continuous
functional over an infinite dimensional space, and it typically
cannot be represented with a finite number of parameters.
Furthermore, there is an exponentially growing number of
observations that must be considered as the number of stages
to termination increases. Thus, we turn to a sampling-based
approximation of the hyperbelief.

To curb the exponential growth of support points in Pβ ,
we represent βt with an approximated β̂t with a finite
number of weighted support points. To approximate Jψ
and βt, either sequential Monte Carlo or particle filtering
on the belief space, e.g., hyper-particle filtering [30], can
be used. Sequential MC may be particularly useful if the
approximation will be computed incrementally, rather than
in a single shot. Hyper-particle filtering has benefits if the
approximation will be computed using a fixed number of
sample paths, as it can enforce some dissimilarity between
parallel sample paths. Extra algorithmic bookkeeping must
surround either or these algorithms as we must keep track
of the likelihood of collision with obstacles along the multi-
stage evolution and local policies may evolve over an unequal
number of stages.

C. Planning Approximation Algorithm

Now that we have presented the techniques for filtering
and approximating expansions, the underlying approach to
main optimization algorithm will be discussed. For a discus-
sion with more implementation details on the POMDP opti-
mization algorithm, see [3]. The core idea is to implement a
version of the algorithm specified by Equations (5)-(6) that
can be computed in an incremental, sampled manner.

We store of the set of beliefs where a switch may occur
in the set Bi (with initial condition B0 = {b0}), and a
collection of sets of expansions started from each belief
E i(b). At iteration i + 1, we sample a belief from Bi and
an expansion starting from b not currently explored in E i(b).
We then compute an approximation of ϑ and store the
values in a graph structure, where the nodes correspond to
beliefs, edges correspond to sample paths, and bundles of
edges correspond to expansions. The edges are augmented
with information on likelihood of the sample path the edge
represents, and probability of collision along the sample path.

6106



(a) (b) (c) (d)

Fig. 1. Plots of Planned Paths and Stopping Points for Sample Path Simulations

New stopping beliefs for this expansion are added to Bi+1

and the new expansion to E i+1(b). This data structure can
be used to optimize the switching law of the switched policy
since it represents the evolution of the POMDP process,
given particular policy decisions (switching laws) are chosen.
We optimize over the graph using dynamic programming.
Bellman-Ford, or a variety of other graph search algorithms
can also be used. The switching function is possibly im-
proved, and the sampling algorithm continues iterating in this
fashion until an external signal is sent to stop optimization.

At some point, optimization will terminate and the robot
will use the switched policy. A switching function is con-
structed by mapping every b ∈ B to a local policy in Ψ.
The robot then operates by choosing the belief in the graph
closest to the current filtered belief of the robot. The robot
chooses among the local policies sampled at this point by
using the one corresponding to the expansion with the lowest
expected cost. This local policy is used until its stopping
condition is met. The same procedure is again performed
until the robot reaches a belief during a switching operation
where the terminal cost is smaller than the expected cost of
any expansion emanating from that point. At this point, the
robot stops.

V. EXPERIMENTS

We use a simple example to present simulation results
that demonstrate the planner is computing intuitively useful
policies We consider a point robot in a planar environment,
characterized by the process model

xt+1 = xt + ut + nt

where ut is bounded, and {nt} is an iid sequence of random
vectors drawn from a mean zero, truncated normal distribu-
tion. We will consider several nonlinear sensing models that
are models of range sensors.

Consider the example environment shown in Figure 1(a)-
(b). In this simulation, we consider a system with a fixed
orientation range sensor, oriented along the +y axis (the “up”
direction) of the plot. The sensor reports a noisy distance
bearing to the closest obstacle. The noise is mean zero and
Gaussian, and the variance increases as the distance to the
obstacle the robot is measuring increases. Since there is
little localization information from the sensor once entering
between the two large obstacles, the robot (displayed in red)
in Figure 1(a) is able to decrease uncertainty by moving
past the goal (displayed in green), localizing at the edge

of the obstacle, and then returning to the goal4. The heat
map displayed around the true position of the robot is a plot
of the continuous belief approximation (pdf of the robot’s
state) used at that stage as feedback. Figure 1(b) shows a
plot of stopping positions for 200 trials using the policy
generated by our method (lower plot) versus a plot of 200
trials using the policy that moves directly to the goal. Clearly,
the policy generated by our method is significantly better at
placing the robot near the goal position. We can quantify this
by examining the Frobenius norm of the sample covariance
matrix of the stopping position of the trials, which is 0.132
for our method versus 4.19655 for the comparison policy.
Another measure of the quality of the method is the average
entropy of the filtered belief at the stopping time. Our method
produced an average entropy of 7.428 versus 9.080.

We also present a second environment in Figure 1(c)-
(d). This model used two range sensors that point along the
+x and +y axes of the plot. Both sensors have fixed noise
variance, but saturate at a maximum distance measurement.
Results on this environment are plotted in Figure 1(c)-(d)
similarly to manner used for Environment 1.

We discuss three types of sample path characteristically
generated by three policies evaluated by the planner on a par-
ticular optimization trial. The policy labeled 3 in Figure 1(c)
is the most straightforward route to the goal. However, little
localization information is available on this route. The policy
labeled 2 moves between the obstacles, and receives the most
localization information. The average uncertainty along these
paths tends to be smallest. However, the planning algorithm
determines that enough information is available localizing on
the boundaries of the bottommost obstacle. This in concert
with the smaller distance traveled from the last point where
a discontinuity in the observation model is present makes the
policy labeled 1 the policy our method predicts as optimum.
Sample path simulations confirm this, and Figure 1(d) shows
a plot of stopping positions for 200 trials for each policy,
with policy 1 on the bottom, 2 in the middle, and 3 on
top. The Frobenius norm of the sample covariance matrix
and average entropies for policies 3, 2, and 1 were (0.228,
7.684), (0.0597, 7.382), and (0.026, 7.038), respectively.

Planning times vary significantly based on the environ-
ments and system models tested, and less significantly from

4The final belief state of the robot in Figure 1(a) is broken out of the
plot so it can be examined separately from the first time the robot passes
the goal.
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experiment to experiment mainly due to randomized sam-
pling. The optimization algorithm, executing on a standard
desktop workstation, frequently found good policies within
a matter of minutes. Though we make no claims about
convergence to an optimal policy, the paths shown above
were characteristic of paths generated by policies found on
nearly all planning runs on these problems, i.e., the algorithm
consistently produced paths that demonstrated the same high
level behavior.

VI. DISCUSSION AND FUTURE DIRECTIONS

We have presented a minimum uncertainty planner for
stochastic robot models. We use a POMDP framework and
an optimization routine that performs a coarse optimization
using a switched policy. The local modes of the switched
policy are guided by information-theoretic quantities, which
heuristically find paths that may lead to a belief-feedback
policy that minimizes a criterion based on the uncertainty
of the robot at the goal and probability of collision along
the path to the goal. Though the optimization procedure
is expensive and cannot be performed in real time on to-
day’s workstation hardware, we have demonstrated that good
policies can often be computed on the scale of minutes on
typical desktop hardware. Furthermore, although formulated
in this paper as a single-query planning method, a multiple-
query planning method can also be formulated which could
potentially drastically speed up individual planning queries.

Our goal is to optimize a switching law over the belief
space, which is continuous and infinite dimensional. We
condense nearby beliefs to a single belief point for the
purpose of filling volume within the domain of the switched
policy. This approximation works well in most cases, but can
be improved by the addition of sensitivity functions along
the hyperbelief trajectory. This would essentially convert a
computation that provides a point-wise view of the value
function to a view of a small piece of the value function. This
process can be thought of as constructing “tubes” around
simulated trajectories inside which the system will remain
with high likelihood at execution time. Efficient computation
of sensitivity functions and integration into the algorithm is
an additional avenue of future investigation.
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