
Combining Motion Planning and Optimization
for Flexible Robot Manipulation

Jonathan Scholz and Mike Stilman

Abstract— Robots that operate in natural human environ-
ments must be capable of handling uncertain dynamics and
underspecified goals. Current solutions for robot motion plan-
ning are split between graph-search methods, such as RRT
and PRM which offer solutions to high-dimensional problems,
and Reinforcement Learning methods, which relieve the need to
specify explicit goals and action dynamics. This paper addresses
the gap between these methods by presenting a task-space
probabilistic planner which solves general manipulation tasks
posed as optimization criteria. Our approach is validated in
simulation and on a 7-DOF robot arm that executes several
tabletop manipulation tasks. First, this paper formalizes the
problem of planning in underspecified domains. It then de-
scribes the algorithms necessary for applying this approach to
planar manipulation tasks. Finally it validates the algorithms
on a series of sample tasks that have distinct objectives, multiple
objects with different shapes/dynamics, and even obstacles that
interfere with object motion.

I. INTRODUCTION

Service manipulation is a critical direction for future robotics
research that will make it possible for robots to assist humans
in problems ranging from house cleaning to collaborative
factory automation. In contrast to traditional factory manip-
ulators, service robots will be faced with two challenges: (1)
unfamiliar objects and (2) abstract goals. Uncertainty about
the types of objects and their response to robot actions is
unavoidable when working in natural environments. Robots
must learn about objects in addition to planning interactions
with them. Robots must also accept abstract goals from a
user or programmer through intuitive mechanisms for a broad
range of domains such as setting a table. We propose an
approach that handles both of these challenges by expressing
service manipulation as task-space optimization and bridging
two forms of optimization through sampling-based planning.

Our approach combines the classical reinforcement learn-
ing (RL) formulation for abstract problems with efficient
model learning and model-based planning. In reinforcement
learning [21], robot goals are given as optimization criteria
that can be specified with intuitive rewards. Furthermore,
actions are allowed to have uncertain effects. However, as we
describe in Section II, standard methods for solving RL prob-
lems do not scale to high dimensional tasks such as service
manipulation. In contrast, research in model-based planning
[18], [19] explicitly addresses high-dimensional tasks, but
typically focuses on user-specified goal configurations and
deterministic actions. Our solution combines the strengths of

Interactive Computing, Georgia Institute of Technology, 801
Atlantic Drive,Atlanta, GA 30332 jkscholz@gatech.edu
mstilman@cc.gatech.edu

(a) Initial State, Plan (b) Final State

Fig. 1. Table configurations before and after executing a plan computed to
optimize the table-cleaning objective function. Colored outlines depict the
sequence of states visited during execution for each object.

both in order to accommodate uncertain models and abstract
goals in high-dimensional spaces.

In Sections II and III, we pose the service task problem
identically to model-free RL. However, instead of seeking
an optimal policy we focus on finding a feasible plan
that achieves the abstract task objectives. This trade-off
offers greater scalability to high-dimensional manipulation
problems than current methods in reinforcement learning.
Section II places our research in the context of existing
methods in planning and RL. Section III discusses the basic
requirements for planning in task-space, and present an
algorithm that meets these requirements. We conclude in
Section IV by showing an implementation of our method
on a robot arm which is required to set and clean a table.

II. RELATED WORK

Standard motion planning algorithms such as Probabilistic
Roadmaps (PRM) [13] and Rapidly-exploring Random Trees
(RRT) [14] rely on goals that are specified as exact states
and actions that have precisely known consequences. Both
of these limitations make it difficult to apply such planners
directly to service manipulation problems where goals and
dynamics are under-specified.

Model-free Reinforcement Learning provides a more suit-
able representation for service manipulation, because it offers
a mechanism for learning transition dynamics and reward
functions online [21]. However, these methods are difficult
to apply to manipulation problems due to the high cost of
exploring with a real robot [1]. Thus, even state-of-the-art
methods in RL are restricted to problems with much lower

2010 IEEE-RAS International Conference on Humanoid Robots
Nashville, TN, USA, December 6-8, 2010

U.S. Government work not protected by
U.S. copyright

80



dimensionality (2-3D) than ones that are commonly found
in service tasks.[17]

A common method that addresses the challenges of model-
free methods is to pre-specify a model or motion primitive
for robot actions [11]. Model-based learners [2], [3] can find
entire policies for high-dimensional spaces based on local
optimization over action primitives and their parameters.
However, these methods typically take the form of learning
from demonstration [7], [22], which imitates existing plans
generated by humans. This makes it difficult to generalize
primitive learning and autonomous planning to new types of
objects or novel tasks.

An approach to solving high-dimensional problems that
does not require human examples relaxes the demands on
global optimality. Kaelbling et al show that planning can be
accelerated in MDP’s by narrowing the state-space according
to the time the planner has available [6]. Katz uses a
relational RL approach for compactly representing states in a
planar manipulation task [12]. However, the basic challenge
with these approaches is that optimality is fundamentally
harder to achieve than feasibility when computing a plan.
In contrast, model-based planners learn and use dynamic
models to identify collision-free paths between start and goal
states [4], [5], [19]. The drawback to these methods is that
in giving up the pursuit of an optimal plan they also remove
the ability to easily specify abstract goals.

Evidence supporting the scalability of optimization over
a space action primitives can also be found in the domain
of motor neuroscience. Wolpert [24] shows that humans use
primitives and forward models to plan motor tasks for highly
redundant systems. Motor basis functions underly much of
biological motion [9] and tool use [10] in the human brain.
Furthermore, there exists strong evidence that humans solve
task-level and motor-level challenges though optimization
processes. A good overview is given by Todorov[23].

Our algorithm is inspired by the modern understanding
of reinforcement learning, and analogous processes in the
human brain. We combine model-based planning with op-
timization. Our method accepts the original formulation of
reinforcement learning where both the goal states and the
consequences of actions are under-specified. We achieve
task-space planning by learning the dynamics of a set of
motion primitives, which we refer to as forward models
following [24]. We then utilize the efficient search properties
of RRT to quickly find plans that lead to optimal states.

III. PLANNING AS OPTIMIZATION

In the context of service manipulation, the two key advan-
tages of reinforcement learning over classical path planning
are that abstract goals can be specified through intuitive
rewards and that actions can have uncertain outcomes. Be-
cause tasks like cleaning a table require the robot to displace
multiple objects, the configuration space for planning has
exponential dimension in the number of objects [20]. This
makes it infeasible to apply standard RL strategies. Yet, we
observe that reaching an optimal world configuration is more
important than finding the optimal way to reach it. We use

this insight to decouple the RL problem into three tasks:
(1) determining the goal, or the optimal configuration, (2)
finding forward models for robot actions and (3) planning to
use the actions to reach the goal.

In this paper, Sect. III-A and III-B describe optimization
procedures. Sect. III-C describes a planning algorithm which
seeks a feasible, but not necessarily optimal plan for robot
actions. We consider a common service task: cleaning a table.
Cleanliness is naturally expressed as an objective function
over object poses. We focus on cases in which the objective
function is provided by a human programmer. However,
as with reward-function learning in RL, these criteria can
also be extracted from interactions with humans or the
environment. First, we present a method for formulating the
objective function. Second, we present a method for learning
forward models of object motion. Finally, we combine these
elements with sampling-based planning.

A. Objective Function Specification
Table-setting for an arbitrary number of guests is an abstract
goal. This goal is fundamentally distinct from positioning
plates at desired locations since it is the spacing between the
dinnerware that matters to the guests rather than their precise
locations. Using our method, the programmer can specify the
goal as an abstract optimization metric.

Without loss of generality, consider a dinner where n
guests must be given n plates and m platters must be placed
at the center of the table. The programmer should be able to
state the following objectives:

1) The plates should be located far from each other.
2) The platters should be at the center of the table.
3) The platters should be aligned parallel to the table.

The same plate positions will not satisfy these criteria
for different numbers of guests. However, the optimization
criteria indicated by the objectives are easily formulated with
Eq. 1-3. We define two sets of objects: plates, P , and platters,
Q. Each object location is parameterized by position and
orientation {x, y, θ}. For a rectangular table, parallel to the
frame of reference its center is (xG, yG).

cdist = −
∑

p1∈P

∑
p2∈P

√
(xp1 − xp2)2 + (yp1 − yp2)2 (1)

cpos =
∑
q∈Q

√
(xq − xG)2 + (yq − yG)2 (2)

cortho =
∑
q∈Q

|(mod(θq,
π

2
)| (3)

The programmer or high-level planner should also specify
environment constraints. For example, Eq. 4 limits all objects
to the table dimensions:

xmin ≤ x ≤ xmax, ymin ≤ y ≤ ymax, (4)

More generally applicable optimization criteria can also be
specified. For instance, the table center (xG, yG) can be
inferred from the table dimensions as shown in Eq. 5.

xG = argmaxx(min (x− xmin), (xmax − x))
yG = argmaxy(min (y − ymin), (ymax − y)) (5)

81



The overall objective for cleaning a table is simply the sum
of our intuitive criteria as given in Eq. 6. The weights α, β, γ
must be specified with regard to the relative importance of
the subtasks.

Ctable = α cdist + βcpos + γcortho (6)

B. Action Model Learning

The second optimization problem we consider is determining
the relationship between robot actions and their effects on
objects. Here we consider only collision free motions, and
handle collision-avoidance in the planner. This approach re-
quires significantly less data than when modeling all possible
contacts between an unbounded number of objects. We now
describe the action model learning procedure which allows
the planner to reason about the outcomes of its actions in
various states.

In our implementation, the robot was equipped with a ball-
shaped end-effector that could only push objects. In other
domains, the robot might grasp objects. In either case, a
service robot will encounter new objects. Different pushes or
grasps will have distinct effects on object displacement. For
simplicity, consider the pushing domain. Our actions change
the pose of an object, O, placed on the table at {xO, yO, θO}.

In order to encode uncertainty in action outcomes we
follow the definition of Markov Decision Processes (MDP).
Our action model is a function that maps state and action to
a probability distribution over states. Given some state-space
S and actions A, a planner must know the probability of a
given outcome of any action in any state:

P (s′|a, s) ∀ s ∈ S, a ∈ A (7)

Our approach automatically generates P (s′|a, s) from data
obtained by exploration. In our domain, object displacement
has a direct relationship to the motion of the end-effector
relative to the object rather than relative to the world. We
defined six actions relative to the object as shown in Figure 5.
We then compute probability models of displacement:

P (∆s|a, o) ∀o ∈ O, a ∈ A (8)

To estimate P (∆s|a, o) for every action applied to every
object, we implemented the optimization algorithm shown in
Figure 2. LEARN MODEL incrementally completes a tabular
probability distribution that relates each action, a ∈ A, to the
displacement, ∆s, for the object, o ∈ O. On each iteration,
the robot applies an action to the object, observes the result
using an overhead camera, and uses UPDATEDISTR to update
the probability distribution, P (∆s|a, o), as shown in Eqs. 9-
10. Our model represents the probability of displacement
with a normal distribution. This requires UPDATEDISTR to
update the distribution mean and variance. For each variable
in state s, {v = x, y or θ}, the nth update is given as follows:

µn
v =

nµn−1
v + ∆v

n
(9)

σn
v =

√
(n − 1) σ

2(n−1)
v + (∆v − µn

v ) (∆v − µn−1
v )

n
(10)

LEARN MODEL(o,A, sinit)
1 s = sinit

2 for i← 1 to |A|
3 do while σ2 > σ2

ref

4 do (∆s, s) = APPLY ACTION(ai, O)
5 P (∆s|ai, o) = UPDATEDISTR(P (∆s|ai, o), ai,∆s)
6 σ2 ← VARIANCE(P (∆s|ai, o))

Fig. 2. Pseudo-code for learning forward models. Note that ∆s encodes
state transitions in object coordinates.

Iteration terminates when the variance of the distribution
reaches a desired threshold, σ2

ref . This criterion identifies
that the model is sufficiently accurate for planning. In our
experiments, we empirically determined that σ2

ref = 0.4
yielded a reasonable compromise between execution times
for learning and plan execution for our table-top domain.

The model achieved by the algorithm for three objects is
illustrated in Figure 3. The figure shows mean displacements
and confidence intervals when the robot applies our six
actions to each object. Notice the significant variation in
these parameters. This is precisely the reason that learning
object models is essential to the construction of valid plans.

C. Task-Space Planning

Given a task-level goal and a forward model that relates
robot actions to world effects, the remaining challenge is to
produce a planner that efficiently finds a sequence of actions
that achieves an optimal configuration. In order for this
optimization process to be useful it must respect the physical
limitations of the environment/robot and be reachable from
the initial state of the problem. The first condition is satisfied
by imposing collision and boundary constraints (Eq. 4). To
satisfy the second, the optimizer must also respect the motion
constraints specified by our models.

We present a motion planning algorithm that directly
searches the optimization landscape using models of the
robot’s actions. By combining optimization and motion plan-
ning into a single search, we restrict the search to states that
are relevant given the robot’s available actions. Our algorithm
prevents the planner from aiming towards optimal configu-
rations that are unreachable. Furthermore, since the planner
always knows the best state in its search graph, it offers
more reliable anytime characteristics than approaches that
separate goal optimization from planning. The remainder of
this section describes the basic functionality of the algorithm,
as well as an extension which makes it more efficient when
searching large spaces.

Our algorithm, given in Figure 4, extends RRT [15], [14], a
probabilistically complete method that is commonly applied
to motion planning in high-dimensional spaces. Basic RRTs
produce a tree of valid, collision-free configurations for n-
dimensional spaces through incremental expansions of the
tree towards random configurations. Application of the basic
RRT to problems such as manipulator control relies on some
form of inverse model for the system to determine how to
reach a child node from its parent. When working in task

82



(a) Eraser (b) Remote (c) Scale

Fig. 3. Model learning results with three objects: a chalkboard eraser, a TV remote, and a digital scale. Bars show the mean and 95% confidence intervals
extracted from each object for all degrees of freedom. Actions are those illustrated in Figure 5.

TASK SPACE RRT(sinit,A)
1 for i← 1 to |O|
2 do Model← LEARN MODEL(Oi,A, sinit)
3 T.init(sinit)
4 for i← 1 to max nodes
5 do sGD ← DIRECTGD(T )
6 if RAND() > ε
7 then ssamp ← sGD

8 else ssamp ← RANDOM CONFIG()
9 snear ← NEAREST NEIGHBOR(ssamp)

10 a∗ ← ARGMINa(ρ (MODEL(snear, a), ssamp))
11 snew ← MODEL(snear, a

∗)
12 if not IN COLLISION(snew)
13 then ADD VERTEX(snew)
14 ADD EDGE(snear →

a∗
snew)

Fig. 4. Pseudo-code for RRT-based task space planner using forward
models. T is the search tree, and ρ is the distance function defined in Eq. 11.

space, however, we have no clear model for how to transition
between nodes. Instead we modify our approach to perform
a forward search over the robot’s possible actions. The core
idea is that by confining the search to a set of pre-defined
actions for which we have controllers, we can both restrict
the search to reachable states, and relieve the need for an
inverse model. A similar approach is given by Frazzoli [8].

Our method preserves the rapidly exploring characteristics
standard RRT search with two modifications. First, rather
than growing the tree directly towards sampled states, we
select the state-action pair which results in a node closest
to a sample point according to a weighted distance metric.
If this state is valid, we add a directed edge labeled with
the appropriate action to the tree. Since the best action can
fail the subsequent collision check, we maintain state-action
pairs in a queue ordered by distance. The planner iterates
through this list and adds the first collision-free pair that is
closer than the parent node. This modification yields efficient
extensions to new states using only forward models.

The second unique modification is the addition of a con-
ventional gradient descent optimization routine, DIRECTGD,

during the planning process. DIRECTGD is a heuristic that
searches the objective function directly, without branching
over robot actions. Periodically executing this search from
leaf nodes in the tree provides a way to quickly discover the
nearby local minima of the objective function. Empirically,
we found that this heuristic significantly speeds up search
towards the global minimum while the random action of the
RRT prevents the overall planner from getting stuck in any
local minimum. Our technique is inspired by existing RRT
heuristics like RRT-CONNECT [14] which try to extend the
tree towards a goal or a goal tree. However, in our case the
“goals” are the modes of the optimization landscape, and
DIRECTGD allows us to explore this space more efficiently.
If DIRECTGD returns a more optimal state than one that
currently exists in the planner’s search tree, it attempts to
apply RRT-CONNECT using the robot’s actions to find a path
to this state.

As with a conventional RRT, our planner contains an
ε parameter that trades exploration and exploitation. The
planner takes greedy steps towards the lowest-cost state
identified by DIRECTGD with probability 1 − ε. In our
domain we empirically determined that ε = 0.8 gave the
fastest convergence to a global optimum.

In addition to the two RRT algorithm modifications we
must design a distance metric that accurately reflects the
similarity between states:

ρ : f(s1, s2) → R (11)

This distance function is used to query nearest neighbors in
TASK SPACE RRT (line 9). In task space, the parameters
used to describe state are specified by the programmer.
They are not required to share a coordinate frame or scale.
For our table-top manipulation experiments we empirically
determined that weighing orientation parameters 40 : 1 over
position produced the most consistent alignment of objects.

D. Executing Motion Primitives

We designed a set of six simple motion primitives for
2D manipulation with a single-point contact end effector
(Figure 5). In order to minimize the branching factor of the

83



Fig. 5. Six motion primitives defined with respect to a bounding box
around a sample object. Arrows indicate motion vectors for the end-effector
as defined in the object frame.

planner, we defined actions based on relative motions with
respect to simplified object geometry.

The robot identified objects in its workspace using a sim-
ple threshold-based segmentation scheme with an overhead
camera. Objects were extracted by finding closed contours in
a mask image. Each object was represented by a bounding
box aligned with its long axis and then classified based on
the size and aspect ratio of the bounding box. The position
and orientation parameters were taken as the centroid and the
angle of the box from horizontal, respectively. We defined
six primitives to control the three degrees of freedom as
independently as possible, one for increasing and one for
decreasing each parameter.

Each of the six primitives was defined by a workspace vec-
tor in the object frame (Figure 5). During action execution,
the robot lifted and lowered its end-effector to the point on
the bounding box along the vector direction. It then pushed
the object by tracking the vector in workspace for a dis-
tance of 5cm. The robot transformed the nominal workspace
trajectory into the arm’s joint-space with analytical inverse
kinematics and tracked the reference with PD control. In
order to produce mostly linear translations of the object,
actions 1-4 were set as vectors normal to the bounding box
at the midpoint of each face. Actions 5-6 were set as the
two opposing vectors at 90% of the box length along the
long-axis box faces, targeting rotation.

The effect of primitive actions on each of three classes
of objects is given by Figure 3. During learning, we found
that each action’s influence was largely confined to the state
parameters it was designed to influence. However, the extent
of influence varied greatly due to differences in physical
properties. For the scale, rotation actions also produced
significant changes in position terms. This was due to the
rubber feet on the corners of the scale, which tended to break
loose and skip all at once as the robot pushed from the end.
One advantage of our approach is that observable dynamics
which are difficult to model explicitly are captured through
learning and accounted for at plan time.

IV. EXPERIMENTS

We conducted four experiments using the TASK SPACE RRT
planner. The first two experiments were simulated table-
setting tasks. These were performed in SRLib, which repli-
cated a real world task domain with dynamics and visually
perceived object states [16]. We used the SRLib block and

(a) Initial Plan (b) Result

Fig. 6. Execution of the table-setting planner in the srLib simulator with
two plates and one platter. Colored outlines depict the sequence of states
visited during execution for each object.

cylinder primitive shapes to represent plates, platters, and
a table. In both tasks the problem was to optimize the
table-setting function (Eq. 6). Figure 6 and 7 present two
manipulation plans from our algorithm that generate neat
tabletop configurations from random configurations of three
and six objects. Notice that the planner gracefully adapts
to object quantity and geometry resulting in different final
configurations under different circumstances. Figure 10 gives
the planning statistics and shows the performance improve-
ment from the GD heuristic. The greatest challenge in
larger problems was collision detection when the free-space
became increasingly taken up by objects. Most RRT steps,
both greedy and random, fail when the planner becomes
deadlocked, reducing the algorithm to a slow random search.

For the first demonstration on the physical robot we de-
signed a simple task of positioning an object in the presence
of a stationary obstacle. We reused the distance (Eq. 2) and
orthogonality (Eq. 3) terms from the previous experiment,
and added an additional constraint in the form of a fixed
obstacle. The eraser was used for the mobile object, and
the hole-punch was labeled as an obstacle (Figure 8). After
learning a motion model for the eraser, the robot found a plan
that involved pushing the object up and around the obstacle
to a goal point on the left side of the table (Figure 8).

To demonstrate a more practical application, the goal our
final experiment was to make the robot straighten up a desk.
The scale, the remote, and the eraser were distributed ran-
domly around the workspace at the start of the experiment,
and it was the robot’s job to find a sequence of actions which
minimized an objective function for “table-cleaning” with
the same form as (Eq. 6). The planner execution for this
task can be seen in Figure 1. After learning models for the
three objects, the robot proceeded to push the three objects
into orthonormal alignment with a center of mass less than
two inches from the center of the table. Execution took 13
minutes, and required re-planning 4 times (Figure 9).

V. CONCLUSION

We have presented an algorithm that addresses two out-
standing challenges for object manipulation in human en-
vironments. By defining tasks as constrained optimization,
we gave an alternative mechanism to reinforcement learning
for handling abstract tasks. We also introduced an approach
to learning motion models on-line for efficient planning in
arbitrary task domains with a focus on planar manipulation.

84



(a) Initial Plan (b) Result

Fig. 7. Execution of the table-setting planner in the srLib simulator with
four plates and two platters. Colored outlines depict the sequence of states
visited during execution for each object.

(a) Initial Plan (b) Correcting from error

Fig. 8. Manipulation in the presence of obstacles

These methods allow for flexible task-space planning inde-
pendent of the MDP formalism. Our experiments show that
the proposed algorithms are able to generate plans for robots
that perform abstract tasks over multiple unknown objects.

Future work will explore broader tools and domains that
increase the generality of task-space planning by combining
planning, learning and optimization. Navigation tasks will
globally minimize the distance to tables, power outlets, or
maximize distance to obstacles. Manipulation, such as object
clustering by similarity, will be expressed compactly as a
minimization of differences over a set of object features.
The common property between these examples is the need
to satisfy a task objective posed as a function rather than a
state. Our proposed solutions to problems that are typically
addressed through reinforcement learning will broaden the
range of intuitive high degree-of-freedom tasks that can be
solved by autonomous robots.

REFERENCES

[1] B.D. Argall, S. Chernova, M. Veloso, and B. Browning. A survey of
robot learning from demonstration. Robotics and Autonomous Systems,
57(5):469–483, 2009.

[2] C.G. Atkeson and S. Schaal. Robot learning from demonstration. In
Machine Learning-International Workshop then conference, pages 12–
20. Citeseer, 1997.

[3] D.C. Bentivegna and C.G. Atkeson. Learning from observation
using primitives. In IEEE International Conference on Robotics and
Automation, volume 2, pages 1988–1993. Citeseer, 2001.

[4] S. Brown and C. Sammut. An architecture for tool use and learning
in robots. In Australian Conference on Robotics and Automation.
Citeseer, 2007.

[5] P. Cheng, J. Fink, and V. Kumar. Abstractions and Algorithms for
Cooperative Multiple Robot Planar Manipulation. Robotics: Science
and Systems IV, page 143, 2009.

[6] T. Dean, L.P. Kaelbling, J. Kirman, and A. Nicholson. Planning with
deadlines in stochastic domains. In Proceedings of the Eleventh Na-
tional Conference on Artificial Intelligence, pages 574–579. Citeseer,
1993.

[7] B. Dillman and P. Steinhaus. ARMAR II–a learning and cooper-
ative multimodal humanoid robot system. International Journal of
Humanoid Robotics, 1(1):143–155, 2004.

TSet 6 TSet 3 Obst Clean
n-nodes w/ GD 2161 1438 541 981

n-nodes w/o GD 1898 1399 549 954
time (m:s) w/ GD 0:32 0:18 7:22 13:40
time (m:s) w/o GD 1:34 0:33

n-steps w/ GD 114 122 44 89

Fig. 9. Selected statistics on planning for 6 object table-setting, 3 object
table-setting, 1 object obstacle, and 3 object cleaning.

Task TSet 6 TSet 3 Obst Clean
DOF 18 9 3 9

# replans 1 1 2 4

Fig. 10. Degrees of freedom (DOF) and the number of required re-plans
for each problem in Figure 9

[8] E. Frazzoli, M.A. Dahleh, and E. Feron. Robust hybrid control for
autonomous vehicle motion planning. In Proceedings of the 39th IEEE
Conference on Decision and Control, 2000, volume 1, 2000.

[9] SF Giszter, FA Mussa-Ivaldi, and E. Bizzi. Convergent force fields or-
ganized in the frog’s spinal cord. Journal of Neuroscience, 13(2):467–
491, 1993.

[10] H. Imamizu, S. Miyauchi, T. Tamada, Y. Sasaki, R. Takino, B. Putz,
T. Yoshioka, and M. Kawato. Human cerebellar activity reflecting an
acquired internal model of a new tool. Nature, 403(6766):192–195,
2000.

[11] L.P. Kaelbling, M.L. Littman, and A.W. Moore. Reinforcement
learning: A survey. Journal of Artificial Intelligence, 4(1):237–285,
1996.

[12] D. Katz, Y. Pyuro, and O. Brock. Learning to manipulate articulated
objects in unstructured environments using a grounded relational
representation. In Robotics: Science and Systems. Citeseer, 2008.

[13] L.E. Kavraki and J.C. Latombe. Probabilistic roadmaps for robot path
planning. Practical Motion Planning in Robotics: Current Approaches
and Future Directions, 53, 1998.

[14] JJ Kuffner Jr and SM LaValle. RRT-connect: An efficient approach
to single-query path planning. In IEEE International Conference on
Robotics and Automation, 2000. Proceedings. ICRA’00, volume 2,
2000.

[15] S. LaValle and J. Kuffner. Rapidly-exploring random trees: Progress
and prospects. In Algorithmic and computational robotics: new
directions: the fourth Workshop on the Algorithmic Foundations of
Robotics, page 293. AK Peters, Ltd., 2001.

[16] Frank C. Park and Jaeyoung Haan. srlib - snu robot dynamics library.
http://r-station.co.kr/srlib/.

[17] J. Peters, S. Vijayakumar, and S. Schaal. Reinforcement learning for
humanoid robotics. In Proc. 3rd IEEE-RAS Intl Conf. on Humanoid
Robots, pages 29–30. Citeseer, 2003.

[18] A. Safonova, N.S. Pollard, and J.K. Hodgins. Optimizing human
motion for the control of a humanoid robot. In 2nd International Sym-
posium on Adaptive Motion of Animals and Machines (AMAM2003).
Citeseer, 2003.

[19] A. Shkolnik, M. Levashov, S. Itani, and R. Tedrake. Motion planning
for bounding on rough terrain with the littledog robot. In Submitted to
the International Conference on Robotics and Automation, Anchorage,
Alaska. IEEE/RAS, 2010.

[20] M. Stilman and J.J. Kuffner. Navigation among movable obstacles:
Real-time reasoning in complex environments. In Proc. IEEE Int.
Conf. on Humanoid Robotics (Humanoids’04), 2004.

[21] R.S. Sutton and A.G. Barto. Reinforcement Learning: An Introduction.
MIT Press, 2004.

[22] A.L. Thomaz and C. Breazeal. Reinforcement learning with human
teachers: Evidence of feedback and guidance with implications for
learning performance. In Proceedings of the National Conference
on Artificial Intelligence, volume 21, page 1000. Menlo Park, CA;
Cambridge, MA; London; AAAI Press; MIT Press; 1999, 2006.

[23] E. Todorov. Optimality principles in sensorimotor control. Nature
Neuroscience, 7(9):907–915, 2004.

[24] D.M. Wolpert and Z. Ghahramani. Computational principles of
movement neuroscience. nature neuroscience, 3:1212–1217, 2000.

85


