This project has received funding from the European Union's Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreement No. 859885.

<u>Determination of Processability and Performance of Mechanically</u> <u>Recycled Flexible Plastics</u>

Amir Bashirgonbadi, Laurens Delva, Kim Ragaert, Kevin van Geem

July 4, 2023

SCHEME OF AMIR'S PHD

RECYCLING PATH FOR FLEXIBLES

GHENT UNIVERSITY Maastricht University

RECYCLING PROCESS

Sorted bales

GHENT

UNIVERSITY

QUALITY RECYCLING PROCESS

QUALITY RECYCLING PROCESS

Crysck for spoking

Quality evaluation and economic assessment of an improved mechanical recycling process for post-consumer flexible plastics

Amir Bashirgonbadi ^{a,c}, Irdanto Saputra Lase^b, Laurens Delva ^a, Kevin M. Van Geem ^a, Steven De Meester ^{b,c}, Kim Ragaert ^{c,*}

GHEN

UNIVERSITY

Scenario2 delivers a comparable yield to the baseline

Material flow analysis and recycling performance of an improved mechanical recycling process for post-consumer flexible plastics

Irdanto Saputra Lase ^a, Amir Bashirgonbadi ^{b,d}, Freek van Rhijn ^e, Jo Dewulf ^c, Kim Ragaert ^d, Laurens Delva^b, Martijn Roosen^a, Martine Brandsma^e, Michael Langen^f, Steven De Meester^a

Scenario 2: QRP with Tier-1 and Tier-2 Recycling

Check for updates

COST BALANCE OF THE PROCESS

- QRP scenario 2 is more self sustaining compared to the other scenarios.
- It provides regranulates of higher quality.
- And unlocks varied applications for the flexible regranulates

PERFORMANCE OF THE REGRANULATES

Properties of the PE-rich regranulate and its application demonstration

Courtesy of PepsiCo

DETERMINATION OF COMPOSITION

Will be submitted to the Polymer Testing journal (Summer 2023)

COMPOSITION OF RECYCLED FLEXIBLES

Cross contamination of PE and PP

A proper technique:

- Accurate
- Accessible
- Not time/cost intensive

DETERMINATION OF CRYSTALLINITY/COMPOSITION

In a blend with a known composition:

 $\varphi_{i} = \frac{\Delta H_{m,i}}{\Delta H_{m,i}^{0} \times \sqrt[6]{0} Xc, i} \times 100$

- If we want to determine the composition in a blend, we should have a known (or a relatively accurate estimation of) crystallinity for each constituent.
- <u>Remark</u>: Crystallinity of each constituent changes with its content in the blend

The enthalpy of fusion of a substance is a measure of the energy input, typically heat, which is necessary to convert a substance's crystals from solid to liquid state.

DIFFERENT TECHNIQUES BASED ON DSC

ARTIFICIAL INTELLIGENCE TECHNIQUE

Material	RMSE (%)	MAE (%)
LLDPE	1.47	1.05
LDPE	1.62	1.06
HDPE	1.58	0.91
РР	2.07	1.41

DETERMINATION OF PROCESSABILITY AND PERFORMANCE

Will be submitted to the Polymer Testing journal (Summer 2023)

RESEARCH QUESTION

How can we quantify (and enhance) the Recycling Quality of the contaminated polyethylenes in film blowing applications?

— Contaminations? Polypropylene

$$\mathbf{RQ} = \frac{\text{Recycled Quality}}{\text{Virgin Quality}} = \phi_1 \times \text{Properties} + \phi_2 \times \text{Processability}$$

1. A technique to define and measure blowability needs to be developed

- 2. ϕ_1 and ϕ_2 coefficients should be assigned
- 3. RQ should be predictable for certain (distribution of) molecules/blends

CORRELATION IN FILM BLOWING

PROCESS INSTABILITIES

FILM BLOWING INSTABILITIES

Kolarik et al., International Journal of Heat and Mass Transfer 56 (2013) 694–708, https://doi.org/10.1016/j.ijheatmasstransfer.2012.09.025

QUANTIFICATION OF PROCESSABILITY

PERFORMANCE OF THE FILMS

 Mechanical performance of the films is correlated to their morphology and the choice of processing conditions.

DETERMINATION OF RECYCLING QUALITY FOR PP CONTAMINATED PE STREAMS

Will be submitted to the Polymer Testing journal (Fall 2023)

INFLUENCES OF THE CROSS CONTAMINATION

- PE fraction: engineered blend of 8 different PEs
- PP fraction: engineered blend of 5 different PPs

— Materials: EB-PE and EB-PP (0%, 2%, 5%, 10%, 15%, 20%, 100%)

Mostly unstable Unstable

CONCLUSIONS

- Improvements in mechanical recycling processes can deliver high quality regranulates at a better cost balance
- Artificial intelligence assisted DSC can determine the composition of recycled blends accurately.
- We can quantify the processability of plastics for the production of films.
- We can determine the recycling quality of flexible regranulates by knowing their history and determining their composition.

THANKS!

Maastricht University Circular Plastics research group

Ghent University Laboratory for Chemical Technology (LCT)

Amir Bashirgonbadi E Amir.Bashirgonbadi@UGent.be

MATERIAL RECOVERY FACILITY

Indaver's plant in Willebroek , BE

