

This project has received funding from the European Union's Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreement No. 859885.

<u>Determination of polyethylene (PE) and polypropylene (PP) content in</u> <u>post-consumer recycled flexible plastics using machine learning assisted</u> <u>differential scanning calorimetry (DSC)</u>

Amir Bashirgonbadi, Yannick Ureel, Laurens Delva, Kevin M. Van Geem, Kim Ragaert

September 19, 2023

COMPOSITION OF RECYCLED FLEXIBLES

Cross contamination of PE and PP

A proper technique:

- Accurate ۲
- Accessible ۲
- ۰

Waste Management 153 (2022) 41-51 Contents lists available at ScienceDir Waste Management

journal homepage:

Check for updates

Quality evaluation and economic assessment of an improved mechanical recycling process for post-consumer flexible plastics

Amir Bashirgonbadi^{a, c}, Irdanto Saputra Lase^b, Laurens Delva^a, Kevin M. Van Geem^a, Steven De Meester^{b, c}, Kim Ragaert⁶

ELSEVIER

DETERMINATION OF CRYSTALLINITY/COMPOSITION

In a blend with a known composition:

 $\varphi_{i} = \frac{\Delta H_{m,i}}{\Delta H_{m,i}^{0} \times \sqrt[6]{0} Xc, i} \times 100$

- If we want to determine the composition in a blend, we should have a known (or a relatively accurate estimation of) crystallinity for each constituent.
- <u>Remark</u>: Crystallinity of each constituent changes with its content in the blend

The enthalpy of fusion of a substance is a measure of the energy input, typically heat, which is necessary to convert a substance's crystals from solid to liquid state.

CALIBRATION LINES IN THE LITERATURE

Kisiel et al., 2018 https://journals.sagepub.com/doi/10.1177/1477760618797541

CRYSTALLINITY CHANGES AGAINST COMPOSITION-RQ DATA

- Co-continuous vs sea-island morphology
- For example, the crystallinity of LDPE+PP blends:

--Xc LDPE ---Xc PP ---Xc Total

DEVELOPMENT OF A CALIBRATION CURVES

PREPARATION OF CALIBRATION BLENDS

- Extrusion temperature: 210 °C (PE>70%), 230 °C (PE<70%)</p>
- Screw speed: 100 rpm
- Residence time: 80 s

Ī

UNIVERSITY

Feeding amount: 2.8 g

Maastricht University

- PE fraction: 50:50 blend of LDPE (i2= 1.0 dg/min) and LLDPE (i2= 0.9 dg/min) (both conventional film blowing grades)
- PP fraction: Homo PP (i2=3.0 dg/min) (conventional (biaxially) oriented PP film extrusion grade)
- 19 compositions, 3 extrusions at each composition, 2 sets of blending

INTEGRATED DATA ANALYSIS TECHNIQUE

GHENT

UNIVERSITY

PP CRYSTALLINITY EVOLUTION AGAINST COMPOSITION

PE CRYSTALLINITY EVOLUTION AGAINST COMPOSITION

VALIDATION BLENDS

PREPARATION OF VALIDATION BLENDS

- Extrusion temperature: 210 °C (PE>70%), 230 °C (PE<70%)</p>
- Screw speed: 100 rpm
- Residence time: 80 s

 $\widehat{\blacksquare}$

UNIVERSITY

- Feeding amount: 2.8 g
- PE fraction: engineered blend of 8 different PEs
- PP fraction: engineered blend of 5 different PPs
- 9 compositions, 4 extrusions at each composition, single set of blending

COMPOSITION DETERMINATION FOR VALIDATION BLENDS

MACHINE LEARNING ASSISTED COMPOSITION DETERMINATION

MACHIN LEARNING METHODOLOGY: DATA

Inputs:

- 429 Datapoints per curve between 30.5-245°C (0-42.8 min) •
- Composition ٠

MACHIN LEARNING METHODOLOGY: MODEL

• PLS: Partial Least Squared Regression (16 components)

Finds a linear transformation P&Q between X (variables) and Y (output) to ensure a linear relation between Q.X and P.Y

$$PY = A(QX) + B$$

• 10-Fold Cross-validation (no bias on reported error)

MACHINE LEARNING TECHNIQUE, TRAIN: MAIN DATA

GHENT

UNIVERSITY

CONCLUSIONS

- A non-linear calibration curve based on the crystallinity of the constituents gives a higher accuracy for the determination of the composition. However, it can be used only if the material under investigation is of the same nature as the calibration curve; e.g., both being from the film applications.
- Al-assisted technique gives even a higher accuracy as it takes more features into account when determining the composition. Additionally, by (reasonably) improving the training dataset the model can become independent from the choice of the materials in the training dataset.
- AI-assisted can differentiate between not only PE and PP, but also to distinguish the subcategories namely LDPE,
 LLDPE, and HDPE, which is not possible by the conventional DSC-based technique, neither via FTIR-based techniques.

THANKS!

Ghent University Laboratory for Chemical Technology (LCT)

Maastricht University Circular Plastics research group

Amir Bashirgonbadi E Amir.Bashirgonbadi@UGent.be

CRYSTALLINITY IN SEA-ISLAND STRUCTURES

 the particle size will be smaller when the volume fraction of the dispersed phase is smaller. Again, as the concentration of the dispersed phase decreases, the probability that a collision will result in coalescence becomes minimum.

$$R^* = \frac{12pv\phi_{\rm d}}{\pi\sigma} \left(1 - \frac{4p\phi_{\rm d}E_{\rm dk}}{\pi\sigma}\right) \tag{7}$$

where $R^* = \text{radius}$ of particles, $\sigma = \text{shear}$ stress, v = interfacial tension, $\gamma = \text{shear rate}$, $\phi_d = \text{volume fraction}$ of the dispersed phase, $E_{dk} = \text{bulk breaking energy}$ and p is the probability that a collision will result in a coalescence.

Jose et al., 2004 https://doi.org/10.1016/j.eurpolymj.2004.02.026

PE MELTING ONSET TEMPERATURE

UNIVERSITY

RESULTS AND DISCUSSION (PUBLISH II)

• Cross-validation on **validation** data trained on **all data**

Material	RMSE (%)	MAE (%)
LLDPE	1.19	0.99
LDPE	1.15	0.87
HDPE	1.07	0.86
РР	0.94	0.66

RESULTS AND DISCUSSION

• Validation on validation data trained on main data

(training on main + other is worse)

Material	RMSE (%)	MAE (%)
LLDPE	11.48	9.56
LDPE	7.29	5.89
HDPE	6.14	5.00
РР	3.98	2.54

RESULTS AND DISCUSSION

• Validation on validation data trained on main data

Material	RMSE (%)	MAE (%)
LLDPE	1.19	0.99
LDPE	1.15	0.87
HDPE	1.07	0.86
РР	0.94	0.66

All Data

Material	RMSE (%)	MAE (%)
LLDPE	11.48	9.56
LDPE	7.29	5.89
HDPE	6.14	5.00
РР	3.98	2.54

MACHINE LEARNING TECHNIQUE, TRAIN: ALL DATA, CROSS VALIDATION

Material	RMSE (%)	MAE (%)
LLDPE	1.47	1.05
LDPE	1.62	1.06
HDPE	1.58	0.91
РР	2.07	1.41

MODEL INSIGHTS

Time×10 (min)

