

This project has received funding from the European Union's Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreement No. 859885.

FROM MACROMOLECULAR ARCHITECTURE TO FILM BLOWING PERFORMANCE OF L(L)DPE: AN OUTLOOK FOR RECYCLABILITY OF FLEXIBLES

A. Bashirgonbadi, L. Delva, E. Caron, K. M. Van Geem, K. Ragaert April 12, 2022

RECYCLING QUALITY CONCEPT

RESEARCH QUESTION

How can we quantify (and enhance) the Recycling Quality of the contaminated polyethylenes in film blowing applications?

Contaminations? For the moment, cross-polymer contaminations: other PEs, PP, PET, PS, and PA

$$\mathbf{RQ} = \frac{\text{Recycled Quality}}{\text{Virgin Quality}} = \phi_1 \times \text{Properties} + \phi_2 \times \text{Processability}$$

<u>Objective</u>: to be able to make a choice of film-blowable contaminated PEs

- 1. A technique to define and measure blowability needs to be developed
- 2. ϕ_1 and ϕ_2 coefficients should be assigned
- 3. RQ should be predictable for certain (distribution of) molecules/blends

PREDICTION OF RECYCLING QUALITY

STRUCTURE OF THE EXPERIMENTS

- 5 materials are tested
 - LDPE with high PDI
 - LDPE with medium PDI
 - LLDPE with low PDI

Blend 21=20%L21+80%LL
Blend 14=20%L14+80%LL

Grade	Mw [kg/mol]	Mn [kg/mol]	PDI	MFR [g/10min]	
LDPE21	332	16	20,75	1,58 ± 0,02	
LDPE14	297	21	14,14	0,96 ± 0,01	
LLDPE4	125	30	4,17	0,99 ± 0,01	

STRUCTURE OF THE EXPERIMENTS

PROCESSING PARAMETERS: BUR, TUR, AND FLH

BUR: Blow up ratio, TUR: Take up ratio, FLH: Frost line height

FILM BLOWING

What is done?

- Temperature: 180°C 185°C 190°C 190°C
- Constant throughput of around 1,68 kg/h
- Constant cooling air flow
- Investigation of the processing window
 - 5 materials, each processed at 30 different conditions
 - 6 different BUR (1.5 2 2.5 3 4 5)
 - 5 different TUR (3 6 9 12 15)

What is measured?

- If the condition was reachable?
- If stable? deformation profile...
- Type(s) of instability present?
- Quantified extent of stability?
 - Rate of geometrical evolutions over time

Materials	Screw speed [rpm]	l2 (dg/min)		
LDPE21	50	1,58		
BLEND21	80	-		
LLDPE4	83	0,99		
BLEND14	80	-		
LDPE14	58	0,96		

PROCESSABILITY INVESTIGATION

Qualitative

Quantitative

STRUCTURE OF THE EXPERIMENTS

RHEOLOGY INVESTIGATION

GHENT

UNIVERSITY

- At two different temperatures, 130 and 150 °C
- At twelve different strain rates, 0,001 \rightarrow 2 s⁻¹

Grade	Mw [kg/mol]	PDI	MFR [g/10min]	LVE [kPa s]
LDPE21	332	20,75	1,58 ± 0,02	322

LDPE 21, 150 °C

EXTENSIONAL RHEOMETRY RESULTS AT 150 °C

Maximum extensional viscosity [Pa s]

ო

Extensional viscosity at εH = [Pa s]

GHENT

UNIVERSITY

STRUCTURE OF THE EXPERIMENTS

PROCESSABILITY FOR LDPES

Maximum extensional viscosity at ɛH = 3 [Pa s]

Extensional viscosity [Pa s]

For LDPEs

GHENT

UNIVERSITY

PROCESSABILITY OF LDPES LOW TUR

- LDPE14: higher LVE + high SHF \rightarrow highest η_e

PROCESSABILITY OF LDPES HIGH TUR

- LDPE21: highest SHF \rightarrow highest η_e

PROCESSABILITY OF BLENDS LOW TUR

- BLEND14: earlier onset SH \rightarrow highest η_e

STRUCTURE OF THE EXPERIMENTS

X-RAY MORPHOLOGY RESULTS

 $\widehat{\blacksquare}$

GHENT

UNIVERSITY

Meridional lobes from oriented regularly spaced lamellae with uniform thickness

SAXS

irregular thicknesses

from oriented

lamellae with

and distances

Troisi et al., 2016

CONDITIONS FOR X-RAY INVESTIGATION

— <u>Stable Thick</u>

GHENT

UNIVERSITY

For all the materials the thickness of the stably produced films is measured. The common condition (within all the five materials) which delivers the most stable bubble, and at the same time the highest thickness is chosen.

BUR 2.5-TUR 3, t[~]70-75 μm

- <u>Stable Thin</u>

For all the materials the thickness of the stably produced films is measured. For each material, the thinnest stable film is chosen.

MORPHOLOGICAL PARAMETERS

			Increased strain rate			
		Lamellar thickness	Orientation	Crystallinity	Crystallinity	Crystallinity
		l_{C}^{SAXS} [nm]	$^{1}/_{FWHM}$ [deg ⁻¹]	x_{C}^{SAXS} [%]	x_C^{WAXS} [%]	x_C^{DSC} [%]
LDPE 21	Thin Thick	4.8 4.5	0.057 0.015	32 33	30 29	28 32
Blend 21	Thin Thick	4.2	0.040	34	32	32 37
LLDPE 4	Thin Thick	4.8 4.9	0.009 0.014	37 39	35 36	35 40
Blend 14	Thin Thick	4.2 4.6	0.011 0.014	37 37 -	33 33	37 39
LDPE 14	Thin Thick	3.9 4.4	0.031 0.020	36 36	35 36	34 38

• films of lower overall crystallinity

MORPHOLOGY OF LDPE21 VS LDPE14

PROCESSABILITY FOR LDPES

UNIVERSITY

LLDPE4 VS BLEND14

STRUCTURE OF THE EXPERIMENTS

MECHANICAL PERFORMANCE OF LDPE21 VS LDPE14

- LDPE14 is more ductile in MD, due to its lower orientation
- For both LDPEs, the ductility degrades upon increasing the TUR
- Higher orientation leads to higher tensile strain hardening factor
- Higher crystal density leads to higher haze

CONCLUSIONS

Can the closed loop (re)processability of L(L)DPEs be predicted by having an estimation over the macromolecular features??

THANKS!

Amir Bashirgonbadi E Amir.Bashirgonbadi@UGent.be Ghent University Faculty of Engineering and Architecture Department of Materials, Textiles and Chemical Engineering Laboratory for Chemical Technology (LCT)

Tech Lane Ghent Science Park Technologiepark 125, 9052 Zwijnaarde, Belgium https://www.lct.ugent.be/

FILM BLOWING INSTABILITIES

Draw resonance Instability

LDPE14 B4 T12

Helical instability

LDPE21 B4,5 T15

h

FLH instability

LLDPE4 B4 T12

С

Bubble tearing instability

LDPE14 B3 T15

d

Bubble breathing instability

BLEND21 B2 T9

e

Bubble sag instability

LDPE21 B4 T6

а

Kolarik et al., International Journal of Heat and Mass Transfer 56 (2013) 694–708, https://doi.org/10.1016/j.ijheatmasstransfer.2012.09.025

DEFORMATION PROFILE INVESTIGATION

- Strain rate in MD
 - Image analysis

BLEND21

- Frost line height
 - No further deformation beyond FLH
 - IR temperature probe
 - Clear to hazy transition

Bubble geometry BUR 3, TUR 9

LLDPE4

LDPE14

PROCESSABILITY OF BLENDS HIGH TUR

- BLENDs: high $\eta_e \rightarrow$ stable bubble?

■LDPE21 ■LDPE14 ■BLEND14 ■BLEND21 ■LLDPE4

GHENT

UNIVERSITY

