

UNIVERSITEIT GENT CAMPUS KORTR'JK

THE POTENTIAL OF SOLVENT-BASED RECYCLING

TO ACHIEVE CLEAN RECYCLED POLYMERS

Rita Kol - CAPTURE Event – 24th August 2022

ARISTOTLE UNIVERSITY OF THESSALONIKI

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No. 859885

CHALLENGES IN PLASTIC RECYCLING

SOLVENT-BASED RECYCLING

Solvent-based recycling

(physical recycling):

Composition of the polymer is not changed \neq chemical recycling

DISSOLUTION-PRECIPITATION TECHNIQUE

- **Colored** plastic
- Filtration/Centrifugation
- Addition of antisolvent
- **Recovered polymer**

SELECTIVE DISSOLUTION

Separation of different polymers
Changing solvents
Temperature
Xylene @25°C for PS

- Xylene @85°C for LDPE
- Xylene @150°C for HDPE

Figure from J. Sherwood (2020) Closed-loop recycling of polymers using solvents. Johnson Matthey Technology Review. pp. 4-15

OVERVIEW OF (OPERATIONAL) PLANTS

Technology	Principle	Current state and capacity	Current application	Source
VinyLoop [®] & Texyloop [®]	Dissolution and precipitation of flexible PVC	Italy: pilot scale at 10.000 tons/year (closed in 2018)	Recycling of flexible PVC.	(VinylPlus)
Polyloop®	Dissolution and precipitation of PVC	Mobile (container) solution, treating 300 kg in 3h intervals	Recycling of PVC composite materials, continuing from Texyloop®	(Polyloop, 2020), (Ferrari, 2021)
CreaSolv [®] Technology, PolyStyreneLoop	Dissolution and precipitation of EPS	The Netherlands: capacity of 3300 tons/year	Removal of banned, legacy flame retardant HBCDD.	(Polystyreneloop, 2022)
CreaSolv [®] Technology, Lober	Dissolution and precipitation of PE and PP from multilayer laminates	Germany: pilot scale at 5 m ³ per day, with 15x industrial up-scaling in a second phase	Separation of multilayer laminates	(CreaCycle, 2018)
PureCycle Technologies [™] , P&G	Dissolution and precipitation of PP	The United States: industrial-scale demonstration plant at 119 million pounds (≈ 54.000 tons) per year by 2021	Removal of colour, odour and other contaminants.	(PureCycle Technologies, 2019)
Newcycling [®] , APK AG	Dissolution and precipitation of PE multilayer films	Germany: pilot scale at 8.000 tons/year	Separation of multilayer films (PE/PA). Additional separation of PP, PET, PS, PLA and aluminium fractions possible.	(Niaounakis, 2020), (Wohnig, 2018), (Coker, 2019)

DISSOLUTION-PRECIPITATION TECHNIQUE

Economical balance: amount of solvent

High amount of antisolvent (typical ratio: 3:1)

CONCENTRATION RANGE

Literature: 5 – 20 wt%

<u>Experimental results</u>: $c_e = 13 - 15$ wt%

Solvent-Based Recycling

and Steven De Meester*

Cite This: Ind. Eng. Chem. Res. 2022, 61, 10999–11011

c_e - entanglement concentration

Toward More Universal Prediction of Polymer Solution Viscosity for

Rita Kol, Pieter Nachtergaele, Tobias De Somer, Dagmar R. D'hooge, Dimitris S. Achilias,

REMOVAL OF COLOURANTS FROM PLASTIC WASTE

MUSHROOM TRAYS

Dissolution

Food-contacting packaging (polystyrene)

SOLVENT INFLUENCE

Clean polymer

Additive hardly any solubility in limonene

POLYMER RECOVERY

Powder

AS/S combination

• AS/S ratio

• Temperature

Solid-liquid separation process

CONCLUSIONS & NEXT STEPS

- Solvent-based recycling promising route for plastic recycling.
- Solvent choice plays an important role.
- Currently: optimizing a process for the removal of colourants from plastic waste.
- Assess polymer properties.
- Work with other polymers.

Chapter Intechopen, 2021 Recent Advances in Pre-Treatment of Plastic Packaging Waste

Rita Kol, Martijn Roosen, Sibel Ügdüler, Kevin M. Van Geem, Kim Ragaert, Dimitris S. Achilias and Steven De Meester

Review 🖸 Open Access 💿 🖲 🚍 😒

State-Of-The-Art Quantification of Polymer Solution Viscosity for Plastic Waste Recycling

Rita Kol, Tobias De Somer, Prof. Dagmar R. D'hooge, Fabian Knappich, Prof. Kim Ragaert, Prof. Dimitris S. Achilias Prof. Steven De Meester 🔀

First published: 29 July 2021 | https://doi.org/10.1002/cssc.202100876

Rita Kol PhD student

LCPE	 Laboratory for Circular Process Engineering
E	Rita.DuarteKoldeCarvalho@UGent.be
Т	+32 56 32 21 93

f UGent C
✓ @ugent
Ø @ugent
in Ghent U

www.lcpe.ugent.be www.c-planet.eu

ARISTOTLE UNIVERSITY OF THESSALONIKI

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No. 859885

UGent Campus Kortrijk @ugent //@ITN_CPLANET

Ghent University // C-PlaNet // ritakol

REFERENCES

Slides 3-8,11-13: adapted from R. Kol, Solvent techniques for closed loop recycling of plastics, Microteaching, C-PlaNet EU H2020 project (2021), https://doi.org/10.5281/zenodo.5710332

Coker, R. (2019) APK deploys downstream melt processing system. Available at: https://www.eppm.com/industry-news/apk-deploys-downstream-melt-processing-system/ (Accessed: 23 March 2020).

CreaCycle (2018a) Circular Packaging (2018). Available at: https://www.creacycle.de/en/creasolv-plants/circular-packaging-2018.html (Accessed: 25 March 2020). Ferrari, S. (2021) Serge Ferrari partner of the Polyloop Start up for a new recycling project. Available at: https://www.sergeferrari.com/ms-my/serge-ferrari-partner-polyloopstart-new-recycling-project (Accessed: 15 March 2021).

Niaounakis, M. (2020) '7 - Solvent- and/or Chemical Agent-Based Separation', in Niaounakis, M. B. T.-R. of F. P. P. (ed.) Plastics Design Library. William Andrew Publishing, pp. 211–264. doi: https://doi.org/10.1016/B978-0-12-816335-1.00007-4.

Polyloop (2020) Composite PVC regeneration. Available at: https://polyloop.fr/en/ (Accessed: 15 March 2021).

PolyStyreneLoop (2022). Facilities. Available at: https://polystyreneloop.org (Accessed: 12/8/2022).

PureCycle Technologies (2019) PureCycle Technologies Celebrates Successful Run of Groundbreaking Plastics Recycling Technology. Available at: https://purecycletech.com/2019/09/successful-run-of-feedstock-evaluation-unit/ (Accessed: 1 April 2020).

VinyIPlus (no date) Feedstock recycling. Available at: https://vinyIplus.eu/recycling/recycling-options/feedstock-recycling (Accessed: 20 March 2021). Wohnig, K. (2018) From Recycling to Newcycling. Available at: https://gpcaplastics.com/wp-content/uploads/2018/10/Klaus-Wohnig.pdf (Accessed: 23 March 2020).

