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Abstract – A first principles calculation for the

transfer capacitance of a Beldon cable is carried out

by the use of filamentary constant, dipole, quadru-

pole, and octopole unknown charges placed at the

center of each braid wire. Results are compared

with full electrostatic simulations and a phenomeno-

logical model.

1 INTRODUCTION

A review of the literature on development of

phenomenological models for penetration of cable

shields has been documented in [1]. These mod-

els have had considerable success in predicting the

penetration through cable shields; however, we oc-

casionally run into modifications of cable topology

that call into question the use of these models. It

would thus be useful to assemble a first principles

model of the shield, not only to handle changes

in topology from the standard geometry, but also

to form a theoretical underpinning for the existing

models. The commercially available Beldon cable

of Figure 1 was chosen as a generic test problem.

As a simpification, the braid is replaced by an infi-

nitely periodic quasi-planar braid. The relationship

between the transfer capacitance ( ) of the coax-

ial cable and planar shield is given by

 = −
0



20

ln() ln [(+ 0)]


where  is the potential difference between a

point far above the braid and the braid in the pla-

nar problem,  is the inner conductor radius,  is

the outer shield radius, and  is the effective ra-

dius to a ground outside of the braid. A similar

relationship holds between the transfer inductance

and the magnetic flux of the magnetostatic planar

braid problem.

The present work is an extension of [1] where

a planar approximation to the cylindrical braid

was modeled with Sandia’s electrostatic version of

EIGER . A unit cell for the two-dimensional infi-

nitely periodic problem is shown in Figure 2 . The

∗Electromagnetics Effects Department, Sandia National
Laboratories, P.O. Box 5800, Mail Stop 1152, Albuquerque,

NM, USA 87185-1152 e-mail:wajohns@sandia.gov, tel.: 1-

505-844-6329, fax: 1-505-284-6078. Sandia is a multi-

program laboratory operated by Sandia Corporation, a

Lockheed Martin Company, for the United States Depart-

ment of Energy under contract DE-AC04-94AL85000.

Figure 1: A commercially available Beldon cable.
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Figure 2: The unit cell of the two-dimensional infi-

nitely periodic braid.

diameter of a single strand is 0.005", the magni-

tude of both lattice vectors ρ and ρ is 0.2440474",

 = 244◦, and b is along the cable axis. The unit
cell area  is 0044 813 2 2 In [1], each of the

56 wires of the unit cell was meshed for simulation

with 30 segments along the length and 16 segments

around the circumference, giving a total unknown

count of 53,760. Due to the large number of un-

knowns and the need to ultimately set up the the

magnetostatic diffusion problem (to be considered

in future work), the use of a modal series for the 

varation of the currents on each wire was proposed

in [1].

The present work is similar in spirit to the modal
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series solution but is simpler in its implementation.

Piecewise constant filament charge densities, as well

as their dipole, quadrupole, and octopole counter-

parts (extending over each wire segment) are placed

along the center of each ( = 0) segment.

2 FORMULATION OF THE ELECTRO-

STATIC INTEGRAL EQUATION

We formulate the integral equation for the unknown

sources in a single unit cell. Ths sources have the

form

() (s0) =
X
=1

() (s
0) (1)

where

() =

½
1 if 0 in the  segment

0 otherwise
 (2)

We work in the coordinate system of the  seg-

ment which runs from −1 to  in the global coor-
dinate system and points in the local b direction.
The other unit vectors in the local wire segment co-

ordinate system are denoted by b and b. They

are chosen to make a right handed b b b triplet.
The index pair ( ) denotes the multipole index.

Thus, a charge filament has indices ( ) = (0 0).

A dipole charge unknown with indices (1 0) in-

dicates a charge displacement in the b direction
where (0 1) denotes a charge displacement in theb direction. For quadrupole charge distributions,
the indices (2 0) denote a quadrupole charge in

the b direction while (1 1) denotes a quadrupole
formed by dipole displacement in both the b andb directions. Due to the near linear dependency
of the (2 0) and (0 2) quadrupole source terms,

we do not use the (0 2) quadrupole source term.

For octopoles we use the (3 0) and (2 1) source

terms. This gives  = 3, 5, or 7 indepen-

dent unknowns for each wire segment for dipoles,

quadrupoles, and octopoles, respectively. The po-

tential due to each source term is given by

(r) = (r) + (r) (3)

where the scattered potential is

(r) =
1

4

X
=1

X


() · (4)

Z µ
− 



¶ µ
− 



¶
(r− r0(0))(s0)0

Because the tangential component of the electric

field vanishes on the surfaces of the individual wires,

the total potential must be a constant. This fact is

used to solve for the line multipole moments of the

wires. The match points on the surface of the 

wire segment are described by

r() = r

 + (cos + sinb) (5)

where r is the centroid of the 
 segment, − 

 ≤  is a local coordinate angle at the wire and

 is the wire radius. Since we have  un-

knowns on each wire segment, we require 

match points per segment to generate the required

equations. We place the match points on the sur-

face of the wire at

 = 2
 (6)

where  is the polar angle in the coordi-

nate system of the  wire segment and  =

−−1
2

−−3
2

 · · ·  −1
2

.

In [1] it was shown that the problem of an 
 =

1 V incident field below the braid and zero incident

field aove the braid may solved by the superpo-

sition of two problems. The first problem has ab directed uniform incident field of 0.5 V/m with

zero total potential on the braid surface, the to-

tal charge  on that problem is computed (the

superscript ‘UF’ refers to the uniform field solu-

tion for the braid problem). The second problem

is that of zero incident field and a unit potential

on the braid 1 is computed. The total problem

is then solved by setting the braid voltage to be

 = −(0(1) +  )1 and incident

uniform field excitation 
 = 05 V/m to yield

a net field  = 1 V/m far below the braid and

 = 0 far above the braid.

2.1 Uniform Field and Zero Braid Potential

Problem

We now focus attention on the problem of the pla-

nar braid excited by a uniform field (3) where the

scattered potential (r) is given in (4) and the

incident potential is

(r) = −2 (7)

We set the (r) to zero on the braid surface in

(3) to obtain


¡
()

¢
=
b · r()

2
;  = 1   (8)

which is a square linear system for the×

unknowns. Once this system is solved for all the

charge sources, (3) is used to obtain the scat-

tered potential  (r0) at the observation point

r0 above the braid. The charge  is obtained

by summing the product of the charges 
(00)
 and

each segment length ∆
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2.2 Zero Uniform Field and Unit Potential

Braid Problem

Now a 1 V potential is applied to the braid with

zero incident field to yield

 (   ) = 1   = 1   (9)

which is again a square linear system for the×
 unknowns. Again (3) is used to obtain

1 (0) The total charge for this excitation 1

is again obtained by summing 
(00)
 ∆ for this ex-

citation. (Here the superscript ‘1V’ refers to the

unit potential braid solution.)

2.3 Planar Transfer Capacitance

The total problem has

 = −(0  ∗ 1 +  )1  (10)

and

() = ( ()− r
2
+ (1 − 10) )

(11)

The final () is scaled by 00254  since

the units of the braid geometry are provided in

inches.

3 EVALUATION OF THE GREEN’S

FUNCTIONS BY EWALD METHODS

If | − 0|   max ( ) as occurs for evalua-

tion of the system matrix elements, the evaluation

of the two-dimensional infinitely periodic Green’s

function is carried out by a static modification to

the Ewald methods discussed in [2]. These tech-

niques are used to obtain the doubly-infinite, pe-

riodic Green’s function for the three-dimensional

“planar” braid (r r0) and its gradients ∇(r r0),
∇∇(r r0), and ∇∇∇(r r0) that are needed for
the dipole, quadrupole, and octopole sources, re-

spectively. In what follows 0 0 are chosen so

that

 = |r− r0 − (ρ + ρ)|
is minimized and for simplicity we write r for r− r0
and the same for each of its components. Due to

space limitations, only a brief summary of the re-

sults for (r r0) and ∇(r r0) are given. Also we
need

k =
2


ρ × b + b × ρ

for the spectral representation of the Green’s func-

tions. The Green’s function is given by

(r) =
1

4

1

00

+ e(r) + e(r)

− e(0)− e(0)

where

e(r) =
1

4

∞X
=−∞

∞X
=−∞

 

 =

µ
−|| erfc(



2
− ||)

+|| erfc(


2
+ ||)

¶
cos(k · ρ)







00 = −2

"
|| erf(||) + −(||)

2


√


#


e(r) =
1

4

∞X
=−∞

∞X
=−∞

 

; =
erfc()





and



00 =

− erf(0
0 )

00



The gradient of the Green’s function is

∇(r) = 1

4
∇ 1

00

+∇ e(r) +∇ e(r)

where

∇ e(r) =
1

4

∞X
=−∞

∞X
=−∞

[b+ b] + b
 

 = −
∙
−|| erfc(



2
− ||)

+|| erfc(


2
+ ||)

¸
sin(k · ρ)





and


 = (−−|| erfc(



2
− ||)

+|| erfc(


2
+ ||)) cos(k · ρ)sgn()

+
2



√

−||−[


2
−||]2

− 2



√

||−[


2

+||]2 



00 = −sgn() erf(||)

2

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∇ e(r) =
1

4

∞X
=−∞

∞X
=−∞

 ∇

 =

"
−erfc()

2

− 2
−[]

2

√


#


and



00 =

"
erf(0

0 )

200

− 2
−[0

0 ]
2

√
 00

#


If | − 0|  max ( ) as occurs for evalu-

ation of the potential far above the braid, a sta-

tic spectral series approach is used to evaluate the

Green’s functions.

e(r) =

∞X
=−∞

∞X
=−∞

cos(k · ρ)

2


where

 =
−||







00 = − || 

∇ e(r) =

∞X
=−∞

∞X
=−∞

Ã£
b+ b¤

 + b 


2

!



 =

−−||



sin(k · ρ)

 
 = −sgn() cos(k · ρ)−


||

and



00 = −sgn()

2


4 Results

We choose the point 0 = (0 0 0) above the

braid and use (10) and (11) to obtain the trans-

fer capacitance for the case sources up to dipoles,

quadrupoles and octopoles. The results for the to-

tal braid problem (a superposition of the uniform

field and the unit voltage on the braid problem) are

summarized in Table 1.

The first example considered is cable whose unit

cell contains half the wires in the full Beldon unit

cell as illustrated in Figure 3. As illustrated in

Table 1 excellent agreement is obtained between

models. The full EIGER simulation [1] with

12 and 16 elements around the circumference gave

Figure 3: Cable braid model consisting of half

(14+14) the wires in the unit cell of the Beldon

cable. The individual lines correspond to the cen-

ter lines of the wires. The wire thickness due to

the radius  is not shown.

Table 1: (1) for half (14+14) and full

(28+28) Beldon cable with r = 80bz.
Half (14+14) Full (28+28)

fil 5.26×10−5 -2.60×10−7
dip 5.10×10−5 3.60×10−7
quad 4.86×10−5 -7.66×10−8
oct 4.87×10−5 -5.72×10−8

1


equal to 9.11×10−8 and 8.67×10−8,
respectively. The semi-emperical formula gave

1.3×10−7 Since coupling to a braid with high op-

tical coverage will be dominated by magnetic flux

penetration through the braid, the acuracy of the

small numbers for the planar braid transfer capac-

itance is not a concern. A similar formulation for

the magnetostatic transfer inductance will be pre-

sented in the talk but is omitted here due to space

considerations.
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