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Abstract

Labeling image collections is a tedious task, especially
when multiple labels have to be chosen for each image. In
this paper we introduce a new framework that extends state
of the art models in word prediction to incorporate infor-
mation from unlabeled examples, using manifold regular-
ization. To the best of our knowledge this is the first semi-
supervised multi-task model used in vision problems. The
new model can be solved using gradient descent and is fast
and efficient. We show remarkable improvements for cases
with few labeled examples for challenging multi-task learn-
ing problems in vision (predicting words for images and at-
tributes for objects).

1. Introduction
Semi-supervised learning is a special form of classifi-

cation that deals with the problem of learning from data

when not all the labels are available. Situations like this

arise when obtaining data is significantly less expensive

than manually labeling it. This can be due to the time con-

sumed labeling the examples, or because manual tagging

requires expertise in the problem. The explosion of search

engines on the Internet has also provided an inexpensive

source of images with no labels or low-quality labels; the

issue then is how can this trove of information be used to

improve vision algorithms.

Despite significant progress in the machine learn-

ing community, current semi-supervised algorithms make

strong assumptions about the distribution of the data: if

these are wrong then the algorithms will not benefit from the

unlabeled examples. In fact, it is common under these cir-

cumstances that the performance of the algorithm decreases
with the unlabeled data. There is no free lunch [32]: good

performance requires a matching of the model assumptions

with the problem structure, and usually a higher effort in de-

signing features and/or similarity functions than in regular

supervised learning.

So, how does semi-supervised learning perform its

magic? Most models use the distribution of the unlabeled

data to regularize the classifier. In other words, the geom-

etry of the unlabeled data may provide significant clues of

the structure of the classifier boundary. This can be formal-

ized by assuming the classifier “output” p(y|x) (the con-

ditional distribution) is influenced by the distribution of the

marginal p(x). There are far too numerous ways of translat-

ing this intuition into a learning algorithm to describe them

in this paper so we will refer the interested reader to a recent

survey [32]. As a summary, we will group many of these al-

gorithms as in [7], according to the assumption they make

about the geometry of the data:

Cluster assumption : Data points “in the same cluster”

tend to share the same label. Several classifiers are

based on this assumption, for instance Transductive

SVMs [16], Cluster-Kernel [8] or Low Density Sep-

aration (LDS) [9].

Manifold assumption : Even though the data lives in a

high-dimensional space, it is supported on a manifold
of much lower intrinsic dimensionality. ISOMAP [28],

LLE [26] and others estimate this structure explicitly,

while algorithms like LapSVM [27], ManifoldBoost

[20] and others do it implicitly, via a penalty term that

imposes smoothness conditions on functions restricted

to the manifold.

Semi-supervised learning also has attracted attention

recently in vision ([4],[13] and others)

Our model differs from most of these algorithms that have

been used to enhance “single”-task classifiers; it combines

manifold regularization in a multi-task learning setting.

It is also a significant improvement with respect to [18],

that introduces a semisupervised multitask learning model

by first using the unlabeled data to define neighborhoods

that are then used to learn classifiers that share a common

prior. Our model does not separate the stages, and is more

scalable: we present results with one order of magnitude

more datapoints and tasks.

The model we are going to use is a simple stack of linear

classifiers, one for each word we are going to predict.
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As in [19] we use the tracenorm regularization to prevent

overfitting by constructing an internal representation that

encourages sharing of features. It has produced state of the

art results in word prediction and scene discovery on the

Corel dataset [10]. As in implicit manifold learning algo-

rithms we use the Laplacian regularization, that encourages

sharing of label information by penalizing variability in

the classifier among neighbors, but we extend it to the

multi-task case.

Our contributions are manifold: We combine two pow-

erful frameworks, multi-task learning and semi-supervised

learning in a simple formulation by adding the required

regularization terms. The terms encourage (a) sharing of

features among the classifiers to improve generalization and

(b) propagation of label information among neighbors in

the manifold to learn from unlabeled examples. Moreover,

this formulation does not change the properties of the

original model: the cost is still convex and thus simple

gradient descent can be performed to arrive to the global

optimum. The new model both shares information from

different labels and uses unlabeled data, with remarkable

results on challenging problems, specially for cases with

few labeled samples.

In section 2 we describe the model and introduce the

manifold regularization term for semi-supervised learning.

We discuss the datasets used and the experiments ran in sec-

tion 3. Finally, in section 4 we present our conclusions.

2. Model
Let {xi} denote a set of N (d-dimensional) vectors that

represent the features extracted from the image. The prob-

lem consists of learning to predict M words (tasks) from

these feature vectors. Each word can take one of three val-

ues for each image: 1 if the word describes the image, −1
if the word does not describe the image, and 0 if the label is

not provided (ym
i ∈ {−1, 0, 1}).

In this paper we will use M linear classifiers wT
mxi to pre-

dict the words from the images. In order to do so, we will

minimize a cost C

arg min
W

C(W ) = L(Y ; WT X)︸ ︷︷ ︸
Supervised loss

+ λmtRmt(W )︸ ︷︷ ︸
Multitask regularization

+ λssRss(W, X)︸ ︷︷ ︸
Semi-supervised (manifold) regularization

(1)

where W ∈ R
d×M is a matrix where each column in the

classifier wm, Y ∈ {0,±1}M×N is the matrix of labels

in which each column is a different image and each row a

word/task, X ∈ R
d×N is the observation matrix, λmt the

weight of the Multitask regularization and λss the weight

of the semi-supervised regularization.

The first term in eq. 1 represents the expected loss for

predicted labels; it will be described in detail in section

2.1. In section 2.2 we introduce the multitask regularization

term that promotes sharing features among word classifiers.

The manifold regularization to propagate label information

is described in section 2.3. In section 2.4 we put together

these components and finally we show how to minimize the

cost.

2.1. Loss

We want to produce a max-margin classifier W , so an

appropriate loss is the hinge function h(z) = max(0, 1−z).
The loss L can be expressed as the empirical risk

L(Y ; W, X) =
1

NM

N∑
i=1

M∑
m=1

Δ(ym
i )h(ym

i · (wT
mxi)) (2)

where Δ is a slack re-scaling term that deals with the imbal-

ance between positive and negative examples. Most words

are not present in a given image (the average in the datasets

we use is around 4 words per image) so Δ is introduced

to penalize errors differently: false negatives Δ(1) = n
n+p

and false positives Δ(−1) = p
n+p where n is the number of

negative examples for a word and p the number of positive

examples. If the datapoint is unlabeled, then Δ(0) = 0.

2.2. Multitask Regularization

Regularization is needed to prevent overfitting. One of

the simplest terms we can add to L is a matrix norm to con-

trol the complexity of the classifier. If we wanted to learn

independent SVMs for each word / task, then the L2 (or

Frobenium norm) regularization
∑

m ||wm||22 = ||W ||2F is

suitable.

Rmt(W ) =
1
2
||W ||2F

The tracenorm regularization is an alternative that

takes advantage of the natural correlation between words.

For instance, consider the labels “beach” and “sand”: these

labels tend to co-occur and the features needed to classify

one should help for the other task. One way to aid feature

sharing between the word classifiers is to control the rank of

W . Unfortunately, minimizing this constraint is too difficult

so we choose the tracenorm, a proxy for rank minimization.

The tracenorm can be used as

Rmt(W ) =
1
2
||W ||Σ = min

W=FG

1
2

(
||F ||2F + ||G||2F

)
(3)

This interpretation of the tracenorm is natural when tra-

cenorm is shown as equivalent to ||W ||Σ =
∑

l |γl| (where

γl is the lth singular value). Then the tracenorm minimiza-

tion is equivalent to minimizing the L1 norm of the singular

values of W , an approximation to minimizing the L0 norm
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Figure 1. This figure summarizes three components of our model: loss, multitask regularization, and manifold regularization. The super-

vised Loss term requires fully labeled data which is the most expensive to obtain. For this reason we might not be able to provide the

learner with enough training examples. The multitask regularization helps the learner to share information across correlated words. If we

want to learn “Beach” and the algorithm will realize “Beach” and “Sand” are highly correlated, and thus it will use the “Sand” examples to

improve the “Beach” classifier. This provides us more training examples to obtain better generalization. The manifold regularization term

goes one step further by making use of images with no labels. This type of data is cheap to obtain. This term penalizes variability in the

prediction of images that are close in the manifold. As we move up we require less supervision. This means we can use more training data

with improved results.

of the singular values. This leads to a low-rank solution, in

which correlated words share features.

The tracenorm regularization has been used successfully

in the past in problems like collaborative filtering [25], mul-

ticlass classification [1] and multitask learning [20].
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2.3. Manifold Regularization

To impose the manifold regularity on our classifier, we

will assume that over regions of high data density, the clas-

sifier varies slowly. In other words the output of the clas-

sifier fm(x) = wT
mx should not change abruptly between

neighbors in the manifold. This means that if two images

look similar under a suitable metric, then the words pre-

dicted should not be too different. Thus if one of the im-

ages is labeled this will “propagate” the labels to the other

image.

One way to do this is to penalize the norm of the gradient

of fm(x). We further assume the support of the marginal

p(x) lies on a domainM⊂ Rd (i. e. the “manifold”).

Rss =
1
M

M∑
m=1

∫
M
||∇Mfm(x)||2p(x)dx (4)

where∇M is the gradient operator over the manifold.

Assuming sufficient regularity, and using the first Green

identity, ∫
||∇Mfm(x)||2p(x)dx =∫

fm(x)T∇2
Mfm(x)p(x)dx (5)

where ∇2
M is the Laplace-Beltrami operator (i. e. negative

Laplacian).

Our regularization term is similar to that of [3], but it op-

erates in several tasks simultaneously, encouraging smooth-

ness of each word classifier in regions of high probabil-

ity density. This term tries to make the predictions in

each “connected” component as smooth as possible for each

word.

Discrete approximation. During learning we usually

do not know the distribution p(x), so eq. 5 has to be dis-

cretized and integrals over x become summations over the

datapoints. The Laplacian operator in equation 5 also has to

be discretized. A usual approximation for this regulariza-

tion term is the graph Laplacian L (the definition is beyond

the scope of this paper, [3] describes it in detail). It consists

of a weighted difference between the function at a point and

its K nearest neighboring points; it is a generalization of

the square lattice Laplacian discretization commonly used

in numerical analysis and image processing.

Rss =
1

MNK

M∑
m=1

N∑
i,j=1

fm(xi)Li,jfm(xj) (6)

where K is the number of neighbors for each datapoint.

In our experiments, we chose to use Euclidean distance to

compute nearest neighbors, and we used binary weights on

the edges of the graph Laplacian. We also chose to use the

normalized Laplacian [3] formulation.

2.4. Putting it all together

The hinge loss in eq. 2, the tracenorm in eq. 3 and the

manifold loss in eq. 6 are all convex in the parameters of

the classifier W . Therefore any local minimum of eq. 1 will

be global. It is tempting then to solve for W using gradient

descent techniques. Unfortunately neither the hinge loss or

the tracenorm are differentiable. Thus, we follow [19] and

use smoothed approximations of the hinge loss and absolute

value.

We will consider a smooth approximation hρ(z) of the

hinge loss h(z) that is exact for |1 − z| ≥ ρ, and is twice

differentiable everywhere. Likewise, For the tracenorm we

use ||W ||Σ ≈ ||W ||S =
∑

l aσ(γl), where the smoothed

absolute value aσ(x) = |x| for |x| ≥ σ and is twice differ-

entiable everywhere. In our experiments we use ρ = σ = 1.

The final problem is approximated by

C(W ) ≈ CS
σ,ρ(W ) = LS(Y ; WT X) + λmtR

S
mt(W )

+ λssR
S
ss(W ; X) (7)

where the loss is

LS(W ; Y, X) =
1
N

N∑
i=1

M∑
m=1

Δ(ym
i )hρ(ym

i · (wt
mxi)) (8)

the multitask regularization,

Rmt(W ) = ||W ||S (9)

and the manifold regularization,

RS
ss =

1
MNK

M∑
m=1

N∑
i,j=1

(xT
i wm)Li,j(wT

mxj) (10)

Using the SVD decomposition W = UDV T ,

∂RS
mt

∂W
= Ua′

σ(D)V T (11)

For the manifold regularization term,

∂RS
ss

∂W
= XLXT W (12)

and the gradient of the data loss term is,

∂LS

∂W
= −X(Δ(Y ) · h′

ρ(Y ·WT X) · Y )T (13)

where (A · B) is the Hadamard or element-wise product:

(A ·B)ij = aijbij .

We used limited-memory BFGS for minimization. The

algorithm is very efficient and the only step with O(N2)
complexity is the computation of the graph Laplacian that

is completed before learning starts.
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3. Experiments and discussion
The main goal of this paper is to show the benefits of us-

ing unlabeled data with few labeled examples in cases when

we have multiple correlated labels for each example. We

evaluate our method in two challenging problem in com-

puter vision which suffer from the limitations of labeled

examples and have multiple labels per example; predicting

word annotations in Corel dataset and predicting attributes

for Pascal08 objects.

3.1. Annotation prediction for Corel

Corel dataset: This dataset [10] has been extensively

used as a standard benchmark dataset for annotation pre-

diction tasks. This subset of Corel images consists of 5000

images grouped in 50 different sets (CDs). These images

are separated into 4500 training and 500 test images. The

vocabulary size of this dataset is 374, out of which 371 ap-

pear in train and 263 in test set. The annotation length varies

from 1 to 5 words per image.

Features: We employ features used in the PicSOM [30]

image content analysis framework. These features convey

image information using 10 different, but not necessarily

uncorrelated, feature extraction methods. Feature vector

components include: DCT coefficients of average color in

20x20 grid (analogous to MPEG-7 ColorLayout feature),

CIE LAB color coordinates of two dominant color clus-

ters, 16 × 16 FFT of Sobel edge image, MPEG-7 Edge-

Histogram descriptor, Haar transform of quantized HSV

color histogram, three first central moments of color distri-

bution in CIE LAB color space, average CIE LAB color, co-

occurrence matrix of four Sobel edge directions, histogram

of four Sobel edge directions and texture feature based on

relative brightness of neighboring pixels. The final image

descriptor is a 682 dimensional vector. We append a con-

stant value 1 to each vector to learn a threshold for our linear

classifiers. 1

Procedure: The task is to predict word annotations for

images. To be able to test the benefits of unlabeled data

in our model we remove ground truth annotations from im-

ages. In particular, for images in some subset of the training

set, we remove all labels. In this setting we observe some

portion of the training images and their corresponding an-

notation labels. However, we still use all of the training

images, without their labels for the manifold term. The rest

of the experimental settings mirror those of [19] so that re-

sults are comparable. Table 2 shows the gain achieved by

considering the manifold term in optimization 2. In this

table the first column shows the percentage of labeled train-

ing examples considered. The second column shows the F1

1Note: some of the results (e.g. PicSOM) are not directly comparable

as they limit the annotation length to be at most five (we do not place this

limit as we aim to complete the annotations for each image. See [19] for

details.

Method P R F1 Ref

Co-occ 0.03 0.02 0.02 [23]

Trans 0.06 0.04 0.05 [10]

CMRM 0.10 0.09 0.10 [14]

TSIS 0.10 0.09 0.10 [6]

MaxEnt 0.09 0.12 0.10 [15]

CRM 0.16 0.19 0.17 [17]

CT-3×3 0.18 0.21 0.19 [31]

CRM-rect 0.22 0.23 0.23 [12]

InfNet 0.17 0.24 0.23 [22]

Independent SVMs 0.22 0.25 0.23 [19]

MBRM 0.24 0.25 0.25 [12]

MixHier 0.23 0.29 0.26 [5]

MatFact (Linear) 0.27 0.27 0.27 [19]

This work (Linear) 0.21 0.40 0.28

MatFact (Kernel) 0.29 0.29 0.29 [19]

Label Transfer 0.27 0.32 0.29 [21]

PicSOM 0.35 0.35 0.35 [30]

Table 1. Comparison of the performance on the Corel dataset

using all 4500 training examples with that of Co-occurrence

model (Co-occ), Translation Model (Trans), Cross-Media Rele-

vance Model (CMRM), Text space to image space (TSIS), Max-

imum Entropy model (MaxEnt), Continuous Relevance Model

(CRM), 3×3 grid of color and texture moments (CT-3×3), In-

ference Network (InfNet), independent SVMs on the PicSOM

features, Multiple Bernoulli Relevance Models (MBRM), Mix-

ture Hierarchies model (MixHier), Matrix Factorization (MatFact)

with linear and kernelized classifiers, Greedy Label transfer and

PicSOM with global features1.

Labeled ratio 1.00 0.50 0.10 0.01

Frob. norm no Manif. 0.233 0.183 0.126 0.028

Tracenorm no Manif. 0.278 0.228 0.138 0.028

Tracenorm w/ Manif. 0.278 0.227 0.171 0.051
Table 2. F1 scores on Corel dataset word prediction. The first row

is the ratio of images labeled (from 100% to 1%), the second row

are the F1 of independent linear SVMs (Frobenius norm and no

manifold term), the third row are the F1 scores of the multitask

model without the manifold term, and the last row is with this

term. It is clear the manifold term increases performance espe-

cially when there are very few labels (for 1% there are less than

50 images to learn almost 400 words - hence the low F1 scores).

Unlabeled data is useful for word prediction.

measure of predicting word annotations when we are not us-

ing the manifold term, and the third column is the same F1

measure with a manifold term incorporated. For example,

if we use only 1% of the training labels, the F1 measure of

predicting annotations without using the manifold is 2.8%,

compared to F1 measure of 5.1% when we use the mani-

fold term. This is an extremely challenging task. We are

only using 45 training examples to train word predictors for

more than 300 words. The manifold term offers a signifi-
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cant boost in the F1 measure of predicting annotations. As

expected, if both methods observe enough training data the

manifold term doesn’t help significantly. The gap between

using and not using the manifold term become smaller as

we add more training examples. As in [19], the effect of the

tracenorm is clear in this case.

3.2. Attribute prediction for objects in Pascal08

Another challenging task which is well suited to demon-

strate our method is to predict visual attributes of objects.

Recently a new dataset of object attributes was made avail-

able [11]. This dataset is collected for a different purpose,

but it is well defined for our task as well. In particular,

there are multiple correlated attribute labels per object in

this dataset.

Attribute dataset: This dataset provides a list of 64 at-

tributes annotated for the objects in the Pascal VOC 2008

dataset. These attributes describe parts, shapes, or materi-

als, for example “has head”, “is cylindrical”, or “is furry”,

respectively. The object classes in Pascal VOC 2008 are:

people, bird, cat, cow, dog, horse, sheep aeroplane, bicycle,

boat, bus, car, motorbike, train, bottle, chair, dining table,

potted plant, sofa, and tv/monitor. The number of objects

from each category ranges from 150 to 1000, along with

over 5000 instances of people.

Features: We employ features similar to [11]. We use

color and texture, which are good for materials; visual

words, which are useful for parts; and edges which are use-

ful for shapes. Each of these four features are collected in a

bag of words feature. Texture descriptors [29] are computed

for each pixel, and quantized to the nearest 128 kmeans cen-

ters. The texture descriptor is extracted with a texton filter-

bank. Visual words are constructed with an HOG spatial

pyramid, using 8x8 blocks, a 4 pixel step size, and 2 scales

per octave. HOG descriptors are quantized to 256 kmeans

centers. Edges are found using a standard canny edge de-

tector and their orientations are quantized into 8 unsigned

bins. Finally, color descriptors are densely sampled for each

pixel, and quantized to the nearest 64 kmeans centers. The

color descriptor consists of the LAB values.

Having quantized these values, local texture, HOG, edge,

and color descriptors inside the bounding box are binned

into individual histograms. To represent shapes and loca-

tions, we also generate histograms for each feature type

for each cell in a grid of two vertical blocks. These

seven histograms are stacked together resulting in a 1371-

dimensional feature; we appended a 1 to learn the linear

classifier threshold.

Procedure: throughout our experiments, similar to [11],

we are assuming that the bounding boxes are provided for

objects in Pascal08. This means that we are not addressing

the problem of object localization or detection. We are in-

stead interested in predicting attributes for objects. Similar

Labeled ratio 1.00 0.50 0.10 0.01

Frob. norm no Manif. 0.317 0.286 0.239 0.178

Tracenorm no Manif. 0.337 0.322 0.265 0.174

Tracenorm w/ Manif. 0.337 0.329 0.294 0.229
Table 3. Attribute prediction results for Pascal08 objects. Again,

the influence of the manifold term is clear, mainly for low numbers

of labeled examples.

to the Corel experiment, we remove attribute labels from

training examples to see how manifold term helps in case

of insufficient labeled training examples. Table 3 shows F1

measures for predicting attributes for Pascal objects. As ex-

pected, the manifold term offers a considerable gain in F1

measure when there is not enough labeled training data. For

example, when learning with only 1% of the labeled data,

we get an F1 measure of 17.4% without the manifold term

which increases to 22.9% with the manifold term. This is

a challenging task. As observed in the Corel experiment,

as more training data becomes available the effects of the

manifold term diminish.

4. Conclusions

We have introduced a new framework for learning

correlated tasks in the presence of unlabeled data. As

far as we know this is the first model used in the vision

community that combines these two powerful approaches.

Our max-margin formulation shares features between tasks

and also propagates label information for learning from

unlabeled examples. Our experiments show that unlabeled

data makes a large contribution to performance of the

classifier, especially when the ratio of labeled examples is

low.
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