
Proceedings of the 28th Annual Hawaii International Conference on System Sciences - 1995

HINT: A New Way To Measure Computer Performance*

John L. Gustafson and Quinn 0. Snell

Ames Laboratory, U.S. DOE, Ames, lowa 5001 1-3020

Abstract

The computing communi9 has long faced the problem
of scientifically comparing different computers and differ-
ent algorithms. When architectures, methods, precision, o r
storage capacity are very different, it is difficult o r mis-
leading to compare speeds using the ratio of execution
times. We present a practical and fair approach that pro-
vides mathematically sound comparison of computational
pelformance even when the algorithm, computer, and pre-
cision are changed. HINT removes the need for pseudo-
work measures such as “Mflop/s” or “MIPS.” It reveals
memory bandwidth and memory regimes, and runs on any
memory size. The scalability of HINT allows it to compare
computing as slow as hand calculation to computing as
fast a s the largest supercomputers. It ports to every se-
quential and parallel programming environment with very
little effort, permitting fair but low-cost comparison of any
architecture capable of digital arithmetic.

1. Introduction

From the days of the first digital computers to about the
mid-1 970s, comparing computer performance was not the
headache it is now. Most computers presented the user
with the appearance of the von Neumann model of a single
instruction stream and a single memory, and took much
longer for floating-point operations than for other opera-
tions. Thus, an algorithm with fewer floating-point opera-
tions (flop) than another in its sequential description could
be safely assumed to run in less time on a given computer.
It also meant that a computer with a higher rated capability
of flop/s would almost certainly run a given (same size) al-
gorithm in less time. The model wasn’t linear (halving the
operations or doubling the nominal computer flop/s didn’t
exactly halve the execution time), but at least it made pre-
dictions that were usually in the right direction.

*This work is supported by the Applied Mathematical Sciences Program
of the Ames Laboratory-U.S. Department of Energy under contract num-
ber W-7405-ENG-82.

It doesn’t work anymore. Most algorithms do more
data motion than arithmetic, and most current computers
are limited by their ability to move data, not to do arith-
metic. While there has been much hand-wringing over
misreportingof performance results [3] , there has not been
a constructive proposal of what should be done instead.
Scientists and engineers express surprise and frustration at
the increasing rift between nominal speed (as determined
by nominal MIPS or Mflop/s) and actual speed for their
applications. Use of memory bandwidth figures in
Mbytes/s is too simplistic because each memory regimc
(registers, primary cache, secondary cache, main memory,
disk, etc.) has its own size and speed; parallel memories
compound the problem.

1.1 The failure of other “speed” measures

The SPEC benchmark [3, 111 is popular among work-
station vendors. It is not an independent measure; a con-
sortium of vendors determine what is in SPEC and how to
report it. SPEC does not scale, and runs on a narrow range
of computers at any given time. It has had to be revised
once, as the first version proved too small for workstations
after a few years of technological progress. SPEC claims
to be the geometric ratio of the time reduction of various
kernels and applications to the time required by a
VAX-l1/780. Unfortunately, the VAX-I 1/780 currently
gets a SPECmark of about 3, indicating it is three times as
fast as itself! SPEC survives largely because of the lack of
credible alternatives.

The PERFECT Benchmark suite [3] , introduced in the
1980s, has over 100,000 lines of semi-standard Fortran 77
intended to predict application performance by timing
sample scientific applications. It has faded almost com-
pletely out of sight because it makes benchmarking more
difficult than converting the target application and running
it. PERFECT benchmark figures are only available for a
handful of computer systems.

Snelling [3] has explained how traditional measures of
scientific computer performance has little resemblance to
measures we use in every other field of human endeavor.

392
US. Government Work Not Protected by US. Copyright

Proceedings of the 28th Annual Hawaii International Conference on System Sciences - I995

393

Scientists used to the hard currency of “meters per sec-
ond” or “reaction rate” are at a loss when they attempt a
scientific paper on the performance of their computing
method. The only well-defined thing they can measure is
time, so they fix the problem being run and measure the
run time for various numbers of processors or different
types of computers. We agree that speed is work divided
by time, but without a rigorous definition of “work,” the
approach has been to try to keep the work “constant” by
fixing the program and using relative speeds. Dividing one
speed by another cancels the numerator and leaves a ratio
of times, avoiding the need to define “work.”

Fixing the program is fallacious, however, since in-
creased performance is used to attack larger problems or
reach better quality answers. Whatever the time users are
willing to wait, they will scale the job asked of the com-
puter to fit that time. Contrary to the “speedup” studies
done in many papers on parallel processing, one does not
purchase a thousand-processor system to do the same job
as a one-processor system but in one thousandth the time.

We are therefore faced with having to define a numera-
tor for “computational speed.” In the past, “Logical
Inferences Per Second” has been proposed for artificial in-
telligence, but there is no such thing as a unit standard log-
ical inference. “VAX unit of performance” has been used
by those who would make a popular minicomputer from
1977 a baseline for comparison, but as the SPECmark
shows, that standard can vary by at least a factor of three
for a variety of reasons. What about Mflopls? There is no
standard “floating-point operation,” since different com-
puters expend different relative effort for square roots, a b
solute values, exponentiation, etc. with varying mantissa
lengths and varying amounts of error trapping.. . even
within the IEEE Floating Point Standard. Mflopls numbers
do not measure how much progress was made on a com-
putation; they only measure what was done, useful or oth-
erwise. It is analogous to measuring the speed of a human
runner by counting footsteps per second, ignoring whether
those footsteps covered any distance toward the goal.

If one reads advertising for personal computers, one
sees “MHz” as the universal indicator of speed. Buyers
have been led to believe that a 66 MHz computer is always
faster than a 40 MHz computer, even if the memory, and
hard disk speed are such that the 66 MHz computer does
far less in every clock cycle than the 40 MHz machine.
This is like a car advertisement noting only the largest
number that appears on the speedometer, and asking the
buyer to infer proportional net performance.

Is there any hope, then, for a definition of computation-
al “work”? We feel there is, if one defines the quality of an
answer. In Section 2, we define Quality Improvement Per
Second (QUIPS) as an example of a measure based rigor-
ously on progress toward solving a problem.

1.2. The precedent of SLALOM

SLALOM [5] was the first benchmark to attempt use of
answer quality as the figure of merit. It fixed the time for a
radiosity calculation at one minute, and asked how accu-
rately the answer could be calculated in that time. Thus,
any algorithm and any architecture could be used, and pre-
cision was specified only for the answer file, not for the
means of calculating. SLALOM was quickly embraced by
the vendor community [6], because for the first time a
comparison method scaled the problem to the power avail-
able and permitted each computer to show its application-
solving capability. However, SLALOM had some defects:

1. The answerquality measure was simply “patches,” the
number of areas into which the geometry is subdivid-
ed; this measures discretization error only roughly,
and ignores roundoff error and solution convergence.

2. The complexity of SLALOM was initially order N3,
where N is the number of patches. Published algorith-
mic advances reduced this to order N2, but it is still
not possible to say that a computer that does 2N patch-
es in one minute is “twice as powerful” as one that
does N patches in one minute. An order N log N
method has been found that does much to alleviate the
problem, but it leads to Defect 3:

3. Benchmarks trade ease-of-use with fidelity to real-
world problems. Ease-of-use for a benchmark, espe-
cially one intended for parallel computers, tends to de-
crease with lines of code in a serial version of the pro-
gram. SLALOM started with 1000 lines of Fortran or
C , but expanded with better algorithms to about 8000
lines. Parallelizing the latest N log N algorithm has
proved expensive; a graduate student took a year to
convert it to a distributed memory system, and only
got twice the performance of our best workstation. To
be useful, a benchmark should be very easy to convert
to any computer. Otherwise, one should simply con-
vert the target application and ignore “benchmarks.”

4. SLALOM was unrealistically forgiving of machines
with inadequate memory bandwidth, especially in its
original LINPACK-like form. While this made it pop-
ular with computer companies that had optimized their
architectures to matrix-matrix operations, i t reduced
its correlation with mainstream scientific computing,
and hence its predictive value.

5 . While SLALOM had storage demands that scaled
with the computer speed, it failed to run for the re-
quired one minute on computers with insufficient
memory relative to arithmetic speed. Conversely,
computers with capacious memory could not exercise
it using SLALOM. Yet memory size is critical to ap-
plication “performance” in the sense of what one is
able to compute, if not in the sense of speed.

Proceedings of the 28th Annual Hawaii International Conference on System Sciences - 1995

2. The HINT benchmark

2.1 Definition and example

Except for SLALOM and the TPC/A and TPCB
database benchmarks [3], extant benchmarks are based on
the idea of measuring the time various computers take to
complete a fixed-size task. The SLALOM benchmark
fixes the time at one minute and uses the job size as the
figure of merit. The TPC benchmarks scale similarly to the
power available, measuring transactions per second for a
database that grows depending on the speed of the system
being measured.

The HINT benchmark is based on a fundamentally dif-
ferent concept. HINT stands for Hierarchical INTegration.
It produces a work measure we call QUIPS, for Quality
Improvement Per Second. HINT fixes neither time nor
problem size. Here is an English description of the task
measured by HINT:

Use interval subdivision to find rational bounds
on the area in the xy plane for which x ranges from 0
to 1 and y ranges from 0 to e. Subdivide x and y
ranges into an integer power of two equal subinter-
vals and count the squares thus defined that are com-
pletely inside the area (lower bound) or completely
contain the area (upper bound). Use the knowledge
that the function E is monotonedecreasing, so the
upper bound comes from the left function value and
the lower bound from the right function value on any
subinterval. No other knowledge about the function
may be used. The objective is to obtain the highest
quality answer in the least time, for as large a range
of times as possible.

Quality is the reciprocal of the difference between
the upper and lower bounds. Timing begins on entry
to the program that performs the task; quality iw
creases as a step function of time whenever an im-
provement to answer quality is computed. Maintain a
queue of intervals in memory to split, and split the
interval with the largest removable error. The amount
of error removable by further interval subdivision
must be calculated exactly whenever an interval is
subdivided. Sort the resulting smaller errors into the
last two entries in the queue. The subdivisions may
be batched or selected less carefully, for example, if
doing so assists vectorization or parallelism.. . but
doing so will trade against added latency and de-
creased quality for the same number of operations.

It can be shown that the function e makes a hierar-
chical integration method linear in its quality improve-
ment, because the function on 0 I x I 1 is self-similar to
that on 1 I x I 3 after scaling. The proof is omitted here to

save space. Most functions only approximate linear quali-
ty improvement. The area to bound is shown in Fig. 1.

Y
4

0 1 x

Fig. 1. Area to be bounded by HINT

At this point the reader may wonder at the fuss made
over an integration. Why use hierarchical refinement with
rigorous rational bounds instead of Gaussian quadrature,
or at least Simpson’s rule, with ordinary floating-point
variables? First, we are trying to capture characteristics of
many applications that use adaptive methods, including
Barnes-Hut or Greengard algorithms for n-body dynamics,
Quasi-Monte Carlo, and integral equations like those used
for radiosity. Those methods find the largest contributor to
the error and refine the model locally to improve answer
quality. Second, benchmarks (and well-written applica-
tions) must have mathematically sound results. HINT, as
defined above, has both characteristics in a concise form.

This task adjusts to the precision available, and has un-
limited scalability: By this we mean that there is no mathe-
matical upper limit to the quality that can be calculated,
only a limit imposed by the particular computer hardware
used (precision, memory, and speed). The lower limit is
extremely low; about 40 operations yield a quality of
about 2.0. A human can get that far in a few seconds. The
quality attained is order N for order N storage and order N
operations, so the scaling is linear.

Maintenance of a queue of errors needs little pointer
management. A simple one-dimensional data structure
holds a pointer to the beginning (which should be the
largest error) and the end (where new error information is
placed). The program for HINT is available by Internet
(see last section) for readers interested in specific details.

We illustrate by showing an ultra-low-precision HINT
computation with eight-bit data. For a given word size of
bd bits, the x and y axis will be represented by Lbd /21 and
bd - Lbd 121 size quantities. For example, an eight-bit byte

394

Proceedings of the 28th Annual Hawaii International Conference on System Sciences - I995

conveniently represents values from 0 to 255, so it could
represent a grid 16 by 16 on which the graph of the func-
tion is superimposed. The program avoids the need to rep-
resent the overflow value of 256. Two precisions are need-
ed: the precision of the data used to count units of area
above and below the function, and the precision of the in-
dexing of the intervals. The index must have at least
enough bits b, to specify any position in the x or y direc-
tions, which means b, 2 6, - Lb, I 2 bits. For eight-bit
data, we need only four-bit indexes since there will be at
most 16 subintervals.

If n, and n, are the numbers of area units in the x and y

directions, and i is the number of the column, then

can be computed as the fraction (n,+r) divided by ny
without overflow for all whole numbers i in the open inter-

val (0, n,). Rounding the division in e up or down
gives upper and lower bounds, respectively. For example,

x = V2 is represented by i = 8. Then

4 h r - l)

q b - 1)

\(n - 1) .
is

16' (16 - 8) l (16 + 8) = lZ8/24.

This last division makes the maximum use of the eight-
bit precision, because the numerator takes all eight bits to
express. This is the reason the numerator is scaled by ny.
The quotient is 5 with remainder 8, so the function is
bounded by

5/16 < f('/2) < 6/16

1

0
0 I

Known to contnbute ' to lower bound

Limited by ' anthmetic precision

Available for
further refinement

bute to upper bound
Known no! to contn-

Y +

Fig. 2. Integration with byte-precision numbers,
two subintervals

Fig. 2 shows the state of the bounds after subdivision
into two intervals. The areas in the upper left and lower
right contain 87 and 47 squares, respectively. One square
in each region is due to imprecision and cannot be elimi-
nated by subdivision. To reduce the error, the 87-square
region should be subdivided. The 47-square error will then
move to the front of the queue of subintervals to be split.

A key idea of HINT is the use of whole number arith-
metic to preserve the associative property. The need for
associative arithmetic stems from the way the total error is
updated. Whenever a subinterval is split, the error contri-
bution of the parent subinterval is subtracted and the two
smaller child errors added to the total error. This must be
done without rounding, or else roundoff would accumulate
as HINT runs.

For floating-point arithmetic, it is not generally true
that (a + b) + c = a + (b + c). However, most machines can
guarantee that this equality is true if the sum and interme-
diate sums are all whole numbers within the mantissa
range. For example, 32-bit IEEE floating-point arithmetic
effectively has 24 bits of mantissa. It can express the
whole numbers

0, 1, 2, ..., 16777214, 16777215

exactly, much as 2's complement arithmetic can for an un-
signed 24-bit integer. By restricting the computations in
HINT to whole numbers, we can make use of any hard-
ware for fast floating-point arithmetic. It is quite possible
for the floatingpoint hardware to be faster than the integer
hardware, especially for multiplication. Yet, the same
problem can be run with either type. By writing the kernel
of HINT in ANSI C with extensive type declaration in the
source text (including type casting every integer that a p
pears explicitly), we need only change the preprocessor
variable DSIZE from f l o a t to long to run HINT for
the two data types! We are not aware of this degree of
portability having been achieved in other programs.

Fig. 3 shows four splittings, with steady improvement
in the quality of the integral.

1/2 1
Partition 2 Partition 3 Partition 4 Partition 5

Split error 256/256 Split error 87/256 Split error 47/256 Split error 27/256
Quality = 2561136 Quality = 256/96 Quality = 256/76 Quality = 256/64

= 1.88 ... = 2.66 ... = 3.36 ... = 4.00

Fig. 3. Sequence of hierarchical refinement
of integral bounds

By tracking the total error in this manner, a scalar can
record the total error at any time without requiring an
order N traversal of the tree. The control structure of HINT

395

Proceedings of the 28th Annual Hawaii International Conference on System Sciences - 1995

is explicitly order N for N iterations, and HINT makes
steady progress to quality that is order N . Thus, a comput-
er with twice the QUIPS rating can be thought of as “twice
as powerful”; it must have more arithmetic speed, preci-
sion, storage, and bandwidth to reach that rating.

If there were no loss of precision, with each function
value exactly representable on the computer, the Quality
would always equal the number of the partition. The deci-
sion about which subinterval to split next takes into ac-
count the squares lost through insufficient precision.
Finding the error that can be removed is not just a matter
of multiplying the width by the difference between upper
and lower bounds and then subtracting the two comers.
When the width becomes one square or the upper and
lower bounds differ by less than two squares, nothing is
gained by refinement. This exception is easily handled by
computing with boolean variables and need not involve
explicit conditional branches that often degrade perfor-
mance. Ultimately, there is no error left that can be elimi-
nated by subdividing intervals. The HINT run then termi-
nates with an “insufficient precision” condition. Fig. 4
shows the limit of an 8-bit precision computation.

1

0

0 1

Known to contribute
to lower bound

Limited by arithmetic
precision

Known not to contri-
bute to upper bound

Fig. 4. Precision-limited last iteration,&bit data

2.2 Memory and operation requirements

While it is possible to do integration with little more
memory than an accumulator and a few working registers,
the goal of steady progress toward improved quality
means we must compute and store a record of each upper-
lower bounding rectangle. The main data structure of
HINT is the record describing a subinterval. It contains the
left and right x values x1 and x,, the upper and lower
bounds on the function of those values, the number of
units in the upper and lower bounds, and the width of the
interval (to avoid recomputation).

If b, is the number of bits required for a data quantity
and b, is the number of bits required for an index, then the
storage required for n iterations is (9b, + 4bJn bits.
Similar measures apply for non-binary computers; simply

replace “bits” with digits in whatever number base is used.
For example, a vintage 1978 minicomputer with 4-byte
floating-point data and 2-byte indexing would take
(9 x 4 + 4 x 2)n = 44n bytes for the data. [Program storage
varies widely, but HINT is not designed to exercise the
handling of large program executables. Users of programs
believed to stress instruction caching should not use HINT
as a performance predictor.]

By traditional “flop” counts using methods like those
suggested by McMahon [8] (a divide counting as four
floating-point operations, for example), each HINT itera-
tion takes about 40 operations. This may seem high, but
considerable work is expended rigorously computing the
potentially removable error remaining in a subinterval.
One is free to elect any data type, so a HINT iteration with
64-bit integers will measure no floating-point operations.
Our initial experiments show that performance in QUIPS
is remarkably similar for different data types on a comput-
er, for comparable execution times; see Section 4.1. The
“personality” of a computer is partially revealed by its
higher performance using integer or floating-point data. A
much higher performance for integer operations might re-
flect less hardware emphasis on scientific simulation and
more on functions such as editing and database manipula-
tion (i.e., business versus scientific computing).

A compilation of the HINT kernel for a conventional
processor revealed the following operation distribution for
indices and data:

Index operations: Data operations:
39 adds or subtracts 69 fetches or stores
16 fetches or stores 24 adds or subtracts
6 shifts 10 multiplies
3 conditional branches 2 conditional branches
2 multiplies 2 divides

With a memory cost of about 20 to 90 bytes per itera-
tion and an operation cost of about 40 operations per itera-
tion, the ratio of operations to storage is roughly I-to-1.
For this reason, HINT reveals memory regimes and taxes
bandwidth, a critical issue to accurate performance predic-
tion. LINPACK [2], matrix multiply, and the Solver sec-
tion of theoriginal SLALOM benchmark have overly high
ratios of operations to memory references. We maintain
that mainstream computing is memory bandwidth limited
and that most benchmarks disguise, rather than reveal, the
limits of that bandwidth. We plan to correlate application
performance with HINT measurements to verify that
HINT accurately predicts application performance.

Many RISC workstations depend heavily on data resid-
ing in primary or secondary cache, and performance can
drop drastically on large applications that do not cache
well. The largest vector computers are fast within the con-
fines of undersized static-RAM memories, but must use

396

Proceedings of the 28th Annual Hawaii International Conference on System Sciences - 1995

disk YO or SSD-type storage to scale execution times up
to what people are willing to wait. Paging to disk, for com-
puters that support it, is clearly visible in HINT speed
graphs as a steep drop in performance between two re-
gions of relatively constant QUIPS (see Section 4).

2.3 Parallel versions

Parallel computing is now pedestrian enough that a
number of hardback books on it are available at an intro-
ductory level. Some of these (see [7, 93) use as a simple
example the task of integrating I+xz from 0 to 1 by sim-
ply partitioning the [0,1] interval among the processors.
Since the analytical answer is q one gets the tutorial satis-
faction of comparing the program output to 3.14159.. . We
believe credit is due Cleve Moler for introducing this ex-
ample as a tutorial while he was on the staff of Intel
Corporation. While a HINT benchmark could use for

its function, we arrived at Tx instead because it favors
neither x nor y decompositions, can be computed using
fixed point (integer) arithmetic without overflow using the
maximum representable whole numbers, and yields a theo-
retical quality Q = N after N hierarchical subdivisions.

To make HINT run in parallel, one need only make a
few alterations to the approach describedfor the n calcula-
tion. In the textbook examples, each processor is responsi-
ble for a single subinterval of [0,1]. For instance, proces-
sor j of p processors might integrate the interval
[kp,(j + I k p] . The processors then consolidate their partial
sums. We modify this in that we integrate a different func-
tion, use precise whole-number upper-lower bounds, and
use a moderate amount of scattered decomposition i n the
interval. We let each processor take a sampling of scat-
tered starting intervals, not a single interval. Too many
starting intervals increases time to reach the first answer.
Too few decreases the ability of each processor to pick the
best interval to split, and a characteristic “scallop” forma-
tion occurs in the graph of QUIPS versus time as proces-
sors make slightly less effective choices about where to
concentrate their splitting efforts. We use the compromise
of four scattered intervals, but this is user-adjustable.

Measuring the performance of parallel computing has
been especially difficult because the source programs must
be altered, and because most benchmarks do not scale.
HINT solves the first problem by making the kernel as
small and as easy to parallelize as possible without sacri-
ficing realism. The scalability and tolerance for varying
memory sizes have already been explained. Thus, HINT
can provide performance data for even the most exotic ar-
chitectures in roughly the same amount of time and effort
as a conventional benchmark on a conventional serial
computer used to take.

4

1 - - x

2.4 Anticipated objections to HINT

No benchmark can predict the performance of every ap-
plication.

Absolutely true. It is easy to find two applications and
two computers such that their rankings are opposite de-
pending on the application; therefore, any benchmark that
produces a performance ranking must be wrong on at least
one of the applications. We maintain, however, that mem-
ory references dominate most applications and that HINT
is unique in its ability to measure the memory-referencing
capacity of a computer. Our early tests indicate it has high
predictive powers, much better than extant benchmarks;
see Section 4.3.

It’s only a kernel, not a complete application.
There is considerable difference between a kernel like

dot product or matrix multiply and the problem of rigor-
ously bounding an integral. Most “kernels” are code ex-
cerpts. The work measure is typically something like the
number of iterations in the loop structure, or an operation
count (ignoring precision or differing weights for differing
operations). HINT, in contrast, is a miniature standalone
scalable application. It accomplishes a petty but useful cal-
culation, and defines its work measure strictly in terms of
the quality of the answer instead of what was done to get
there. Although each iteration is simple, it still involves
over a hundred instructions on a typical serial computer,
and includes decisions and variety that make it unlikely a
hardware engineer could improve HINT performance
without also improving application performance. HINT re-
sembles a Monte Carlo calculation in that the calculation
can be stopped at any time; for both HINT and Monte
Carlo methods, the answer simply gets better with time.

QUIPS are just like MJlop/s; they are nothing new.
One can translate Whetstones to Mflop/s, SPECmarks

to Mflop/s, and LINPACK times to Mflop/s. QUIPS mea-
sures something more fundamental, and no such transla-
tion is meaningful. A vector computer or a parallel com-
puter will probably have to do more operations to equal
the answer quality of a scalar or serial computer.
Conventional benchmarking would credit the vector or
parallel computer with every operation performed, without
regard to the utility of the operation. We feel QUIPS is an
improvement over MIPS and Mflop/s in this respect. Also,
a computer can get a high QUIPS rating without perform-
ing a single floating-point operation, since one is free to
use whatever form of arithmetic (integer, floating point,
even character-based) suits the architecture. On a given
computer, the quality improvements are not proportional
to the number of operations once the limits of precision
begin to show. QUIPS resemble Mflop/s in the “per sec-
ond” suffix, but the resemblance ends there.

397

Proceedings of the 28th Annual Hawaii International Conference on System Sciences - I995

HP712/801

DEC 3000/300L

This will jus t measure who has the cleverest mathemati-
cians or the trickiest compilers.

Unlike SLALOM and other benchmarks with liberal
definitions, HINT is not amenable to algorithmic “clever-
ness.” It is already order N , and the rules clearly forbid
that any knowledge about the function being integrated is
used, other than the fact that it is monotone decreasing on
the unit interval. Similarly, common compiler optimiza-
tions are all that are useful. While there is a major im-
provement in using optimization over using no optimiza-
tion, we haven’t seen any way to improve the optimized
output very much.. . even with hand-coded assembler.

1

1

For parallel machines, the only communication is in the
sum collapse.

The “diameter” of a parallel computer is the maximum
time to send a communication from one processor to an-
other. This has much to do with the performance of algo-
rithms that are limited by synchronization costs, global de-
cisions (such as convergence criteria or energy balance),
and master-slave type work management. Testing a sum
collapse is an excellent way to get a quick reading of the
diameter of a parallel computer. We challenge anyone to
find a more predictive test of parallel communication that
is this simple to use.

3. Single-number ratings: Net QUIPS

There is always a tug-of-war between the distributors
of computer performance data and the casual interpreters
of it. The distributors tend to produce copious data show-
ing the different facets of the measurement, and the inter-
preters tend to want a single number that answers the
question, “How good is it?’ Anticipating that our graphs
of QUIPS versus time or QUIPS versus memory size for
various data types will be summarized, especially for mar-
keting and procurements, we have defined a method of
distilling a QUIPS graph down to a single number:

Net QUIPS is the integral of the quality Q divided by
the square of the time, from the first time of quality im-
provement 6 to the last time measured. This is the same
mathematically as the area under the QUIPS curve, plotted
on a log(time) scale.

Net QUIPS = Jlog(61QUIPS(t) d(log t)

Table 1 shows a SLALOM-style list of single-number
QUIPS ratings. “fp” indicates 64-bit IEEE floating point,
and “int” means the 32-bit integer QUIPS. All were run by
Q. Snell and J. Korver at Ames Lab in June to September
1994, except for the Paragon SUNMOS runs which were
done at Sandia by Q. Snell in September 1994.

Table 1. Net QUIPS ratings

Vendor, No. 01
Hardware 1 ; Intel Paragon

64
32
16
8

Intel Paragon

4
2
1

32
-

nCUBE 2

64
32
16
8
4
2
1

128
64
32
16
8
4
2

-

IBM PC

DEC 5000/240

R3000/33

486/50
COMPAQ

Contura Aero
486SW25
Macintosh

Quadra MOAV
Macintosh

’owetbook 520c

-
1

-
1

1
-

-
Net

MQUIPS,
jata type

!49.
46.2
25.7
13.5

;33.fp

7.07
3.76
2.03
1.22

12.6 fp

35.8 fp
18.4
9.42
4.84
2.49
1.29
0.67
0.36
0.26

12.6 fp
7.81
4.00
2.06
1.07
0.57
0.33
0.20

17.5 fp
10.2
4.62

16.5 fp
15.7 fp

3.48 fp

3.39 fp
2.70 fp

2.34 fp

2.09 int

1.86 int

1.31 fp
0.97 fp

0.82 int

0.38 int

0.27 int

0.13 int

-
Operating

System

SUNMOS
-

OSF/l 1.0.4

IRlX 4.0.5 t
Vertex 3.2

IRlX 4.0.5 t
Vertex 3.2

IRlX 5.2

ULTRIX 4.3
ULTRIX 4.3
HP-UX 9.05

OSFll 1.3
IRlX 5.2

SunOS 5.3

MS DOS 5.0

lRlX 5.2

ULTRIX 4.3
IRlX 5.2

MS DOS 5.0

MS DOS 5.0

MacOS 7.1

MacOS 7.1

Compiler and
Command Options

icc
-04 -knoieee

-Mvect

cc
-03 -knoieee

ncc
-02 -ncube2s

ncc -0

cc v3.18
-03 -sopt

mp 1
mp 1

gcc v2.5.8
-03

CC -03
cc v3.18
-03 - S O D t

gcc v2.5.8
-03

gcc 2.5.1

cc v3.18
-03

-03
CC -03
cc v3.18

- 0 3
gcc 2.5.1

-03
gcc 2.5.1

-03

MPW C
full o p t .
MPW C

full O D t .

If more (user-available) memory or cache are added to
a system, then the QUIPS will be high for a larger range of
time and thus improve Net QUIPS. Improved precision
will lift the Q overall, and thus increase Net QUIPS. Lack
of interruptions from daemons or other users will be re-
flected with higher Net QUIPS. Lower latency will allow

398

Proceedings of the 28th Annual Hawaii International Conference on System Sciences - 1995

the integration to start with a smaller r value and can dra-
matically improve Net QUIPS. Burst speed and sustained
speed are both reflected in Net QUIPS. Philosophically,
Net QUIPS totals the QUIPS weighted inversely with the
time it takes to get to that speed. The unit of Net QUIPS is
quality improvement per second, the same as QUIPS.

We are hoping people will learn to interpret HINT
graphs like those shown in Section 4, and not have to rely
on single-number distillations. We have not included the
peak Mfloph ratings of the computers in Table 1, feeling
that they fail to convey any useful information in most lps lOps100pslms 10mslOOms 1 s 10s 100s
cases and often mislead. Time

Net QUIPS can be used to compare two operating sys-
tems, as shown by the 32-processor Paragon entries for
SUNMOS and OSF shown in Table I . It also can be used

Fig. 5. Comparison of Different Precisions

to make speedup plots, although we feel "speedup" is an-
other misleading metric as typically measured and report-
ed. A cursory examination of the table shows that Net
QUIPS does not quite double when the number of proces-
sors doubles, yet the performance scales over a wide
range. This corresponds well to studies of practical appli-
cations measured using scaled speedup.

It is possible to measure the speed of humans using
paper and pencil with HINT. Our initial experiments with
college-educated adults indicate that a person is about 0.1
QUIPS. People, unlike computers, tend to increase preci-
sion dynamically. HINT can allow one to make reasonable
comparisons of the numerical computing power of humans
compared to machines.

4. Examples

For the following HINT plots, we use a logarithmic
scale for time, with approximately decibel resolution (10
divisions per decade) samples of the time axis. This usual-
ly has the effect of removing performance drops caused by
occasional interrupts, but some performance discontinu-
ities are repeatable functions of the architecture.

4.1 SGI Indy SC-various data types

To demonstrate the precision-independence of HINT,
we ran it on a Silicon GraphicsIndy SC for C types dou-
ble, float, int, and short. These represent 53, 24,
32, and 15 bits of useful precision. See Fig. 5 . For regions
where all four graphs are defined, the QUIPS are in a
range k15% of their mean value. The short run ran out
of precision in a millisecond, but otherwise resembled per-
formance for the other data types. The f loat and int
runs were also precision-limited, not memory-limited.
There is a characteristic decrease in quality improvement
by about half near the end of a precision-limited run. The

Fig. 5 indicates the presence of a primary cache and a
secondary cache. Although the graph uses time as the hor-
izontal axis, a graph using memory as the independent
variable shows the dropoffs to occur at 8K bytes and 1M
bytes. These are the data cache sizes on the SGI Indy SC.

4.2 Current workstations

The second example, shown in Fig. 6 , plots QUIPS for
a variety of current workstations. Among these is a Silicon
Graphics Indy, with (SC) and without (PC) the optional 1
megabyte secondary cache. For the secondary cache ex-
ample, two performance drops are visible because of the
memory regimes. Note that the Indy SC is always faster
than the Indy PC, but that the speed ratio is greatest in the
0.001 to 0.01 second range. Since the SPECmark for the
SC is about twice that of the PC [101, one might conclude
that SPEC operations spend most of their time in this
regime. Being a fixed-size benchmark, SPEC is doomed to
periodic resizing and revision as advances in computer
power make the old benchmark a mismatch to the comput-
er capabilities. Since the current SPEC is already dated, it
is not surprising that it now fits comfortably into the sec-
ondary cache of some workstations.

* f

1ps lops lOOpa lms 10mslWms 1s 10s 100s
Time

double run could have been extended to the end of virtu-
a1 memory. Fig. 6. Comparison of Various Workstations

399

Proceedings of the 28th Annual Hawaii International Conference on System Sciences - 1995

4.3 Message-passing computers

At Ames Laboratory’s Scalable Computing Laboratory,
we have an Intel Paragon and an nCUBE 2s. Fig. 7 shows
MQUIPS versus time for both systems, for various num-
bers of processors.

The 32-processor Intel Paragon QUIPS are slightly
higher than those of 64 processors of the nCUBE 2s. This
corresponds closely to the 2-3x performance p e r proces-
sor we have observed on applications. For example, the
NAS Parallel Benchmarks [1, 31 show an overall perfor-
mance (Cray Y-MP = 1.0) of 0.94 for 128 nCUBE 2s
nodes, 1.61 for 256 nCUBE 2 s nodes, and 2.19 for 128
Paragon nodes. The ratio per processor is consistent across
all components of the NAS benchmark. [Note: Paragon
nodes are about 8x the cost and form factor of nCUBE
nodes.] The NAS benchmarks require man-months to port
and tune to a particular architecture, and then run fairly on
only a limited range of a parallel product line because of
their fixed size. Since HINT provides similar information
in less than two hours of conversion effort and runs on any
size computer, we feel it is a more cost-effective and flexi-
ble way of obtaining predictive data for new architectures.

7 1 nCUBE, 256 nodes

5
v)

0
s3

2

1

0

9 4

l 00p l m s 10ms 100ms 1 s 10s 100s l k s
Time

Fig. 7. Comparison of Several MlMD Systems

Note that the “peak Mflopls” rating of the Intel i860XP
node is over 25 times that of the nCUBE 2 s processor (75
Mflop/s versus 2.9 Mflop/s). This is an utterly misleading
specification. Unless quad load instructions are used, the
memory bandwidth is 200 MB/s for the Intel; this com-
pares with 100 MB/s for the nCUBE. Hence, bandwidth
seems to be the better raw specification to use, if one can-
not perform a benchmark or application test.

For all of these parallel computers, there is an “acceler-
ation” up to the peak speed caused by the diameter of the
ensemble, the amount of time to do global communication.
We look forward to measuring a CRAY T3D with HINT,
since it promises a much smaller communication latency
than our current ensemble computers.

5. Conclusions

The HINT benchmark is designed to last. It allows fair
comparisons over extreme variations in computer architec-
ture, absolute performance, storage capacity, and preci-
sion. It improves on SLALOM in being linear (answer
quality, memory usage, and operations all are proportion-
al), being very low cost to convert to different architec-
tures, and unifying the precision and memory size into the
performance. We have attempted to create a speed mea-
sure that is as pure and absolute as an information-
theoretic measure can be, yet is practical and useful as a
predictor of application performance. Time will tell
whether HINT measures correlate well with the a wide va-
riety of scientific applications; of course there will be ap-
plications for which HINT does not rank the computer-
application combination correctly. However, we suspect it
will predict application performance very accurately com-
pared to other benchmarks now in use. Because HINT is
simple and very easy to apply even on hard-to-use com-
puter systems, we hope it will provide insight not other-
wise available.

References

[l] D. Bailey, J. Barton, T. Lasinski, and H. Simon, “The NAS
Parallel Benchmarks,” Report RNR-91-002, NASNAmes
Research Center, January 1991. nCUBE 2s and Paragon
data supplied by E. Schulman, CUBE analyst, Feb. 1994.

[2] J. Dongarra, “Performance of Various Computers Using
Standard Linear Equations Software in a Fortran
Environment,” ORNL, updated periodically.

[3] J . Dongarra and W . Gentzsch, Editors, Computer
Benchmarks, North-Holland, 1993.

[4] J. Gustafson, “The Consequences of Fixed-Time
Performance Measurement,” Proceedings of the 25th
Hawaii International Conference on System Sciences, 1990.

[5] J. Gustafson et al., “The Design of a Scalable, Fixed-Time
Computer Benchmark,” Journal of Parallel and Distributed
Computing, 12, pp. 388-401, 1991.

[6] J. Gustafson et al., “SLALOM: Is Your Computer On Our
List?’ Supercomputing Review, July 1991.

[7] T. Lewis and H. El-Rewini, Introduction to Parallel
Computing, Prentice-Hall, 1992

[8] F. McMahon, “The Livermore Fortran Kernels: A Computer
Test of Numerical Performance Range,” Technical Report
UCRL-55745, Lawrence Livermore National Laboratory,
University of California, October 1986.

[9] M. Quinn, Parallel Computing: Theory and Practice, sec-
ond edition, McGraw-Hill, 1994.

400

Proceedings of the 28th Annual Hawaii International Conference on System Sciences - 1995

[101 Silicon Graphics, Periodic Table of the Irises, updated peri-
odically, SGI., February 1994.

[1 11 SPEC, “SPEC Benchmark Suite Release 1 .O,” October
1989.

How to Obtain HINT via Internet

HINT is freely accessible to download via anonymous
f tp , maintained by the Scalable Computing Laboratory at
Ames. We look forward to publishing a HINT home page
via NCSA Mosaic which will explain HINT, have a small
animated example, and link to our f t p server:

ftp. scl. ameslab.gov

The HINT directory is located within /pub. It is orga-
nized into subdirectories containing the current version of
HINT for a variety of architectures. This paper will be in
the doc subdirectory. Also posted will be a table of ma-
chines and their respective Net QUIPS rating, and the
HINT data file for that rating.

The f t p site does not allow uploading. Therefore, any
data files that you wish to post and any questions should
be mailed to hint@scl.ameslab.gov.

40 1

http://ameslab.gov
mailto:hint@scl.ameslab.gov

