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Abstract 

The computing communi9 has long faced the problem 
of scientifically comparing different computers and differ- 
ent algorithms. When architectures, methods, precision, o r  
storage capacity are very different, it is difficult o r  mis- 
leading to compare speeds using the ratio of execution 
times. We present a practical and fair  approach that pro- 
vides mathematically sound comparison of computational 
pelformance even when the algorithm, computer, and pre- 
cision are changed. HINT removes the need for  pseudo- 
work measures such as “Mflop/s” or  “MIPS.” It reveals 
memory bandwidth and memory regimes, and runs on any 
memory size. The scalability of HINT allows it to compare 
computing as  slow as  hand calculation to computing as 
fast  a s  the largest supercomputers. It ports to every se- 
quential and parallel programming environment with very 
little effort, permitting fair but low-cost comparison of any 
architecture capable of digital arithmetic. 

1. Introduction 

From the days of the first digital computers to about the 
mid-1 970s, comparing computer performance was not the 
headache it is now. Most computers presented the user 
with the appearance of the von Neumann model of a single 
instruction stream and a single memory, and took much 
longer for floating-point operations than for other opera- 
tions. Thus, an algorithm with fewer floating-point opera- 
tions (flop) than another in its sequential description could 
be safely assumed to run in less time on a given computer. 
It also meant that a computer with a higher rated capability 
of flop/s would almost certainly run a given (same size) al- 
gorithm in less time. The model wasn’t linear (halving the 
operations or doubling the nominal computer flop/s didn’t 
exactly halve the execution time), but at least it made pre- 
dictions that were usually in the right direction. 

*This work is supported by the Applied Mathematical Sciences Program 
of the Ames Laboratory-U.S. Department of Energy under contract num- 
ber W-7405-ENG-82. 

It doesn’t work anymore. Most algorithms do more 
data motion than arithmetic, and most current computers 
are limited by their ability to move data, not to do arith- 
metic. While there has been much hand-wringing over 
misreportingof performance results [3] ,  there has not been 
a constructive proposal of what should be done instead. 
Scientists and engineers express surprise and frustration at 
the increasing rift between nominal speed (as determined 
by nominal MIPS or Mflop/s) and actual speed for their 
applications. Use of memory bandwidth figures in 
Mbytes/s is too simplistic because each memory regimc 
(registers, primary cache, secondary cache, main memory, 
disk, etc.) has its own size and speed; parallel memories 
compound the problem. 

1.1 The failure of other “speed” measures 

The SPEC benchmark [3, 111 is popular among work- 
station vendors. It is not an independent measure; a con- 
sortium of vendors determine what is in SPEC and how to 
report it. SPEC does not scale, and runs on a narrow range 
of computers at any given time. It has had to be revised 
once, as the first version proved too small for workstations 
after a few years of technological progress. SPEC claims 
to be the geometric ratio of the time reduction of various 
kernels and applications to the time required by a 
VAX-l1/780. Unfortunately, the VAX-I 1/780 currently 
gets a SPECmark of about 3, indicating it is three times as 
fast as itself! SPEC survives largely because of the lack of 
credible alternatives. 

The PERFECT Benchmark suite [ 3 ] ,  introduced in the 
1980s, has over 100,000 lines of semi-standard Fortran 77 
intended to predict application performance by timing 
sample scientific applications. It has faded almost com- 
pletely out of sight because it makes benchmarking more 
difficult than converting the target application and running 
it. PERFECT benchmark figures are only available for a 
handful of computer systems. 

Snelling [3] has explained how traditional measures of 
scientific computer performance has little resemblance to 
measures we use in every other field of human endeavor. 
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Scientists used to the hard currency of “meters per sec- 
ond” or “reaction rate” are at a loss when they attempt a 
scientific paper on the performance of their computing 
method. The only well-defined thing they can measure is 
time, so they fix the problem being run and measure the 
run time for various numbers of processors or different 
types of computers. We agree that speed is work divided 
by time, but without a rigorous definition of “work,” the 
approach has been to try to keep the work “constant” by 
fixing the program and using relative speeds. Dividing one 
speed by another cancels the numerator and leaves a ratio 
of times, avoiding the need to define “work.” 

Fixing the program is fallacious, however, since in- 
creased performance is used to attack larger problems or 
reach better quality answers. Whatever the time users are 
willing to wait, they will scale the job asked of the com- 
puter to fit that time. Contrary to the “speedup” studies 
done in  many papers on parallel processing, one does not 
purchase a thousand-processor system to do the same job 
as a one-processor system but in one thousandth the time. 

We are therefore faced with having to define a numera- 
tor for “computational speed.” In the past, “Logical 
Inferences Per Second” has been proposed for artificial in- 
telligence, but there is no such thing as a unit standard log- 
ical inference. “VAX unit of performance” has been used 
by those who would make a popular minicomputer from 
1977 a baseline for comparison, but as the SPECmark 
shows, that standard can vary by at least a factor of three 
for a variety of reasons. What about Mflopls? There is no 
standard “floating-point operation,” since different com- 
puters expend different relative effort for square roots, a b  
solute values, exponentiation, etc. with varying mantissa 
lengths and varying amounts of error trapping.. . even 
within the IEEE Floating Point Standard. Mflopls numbers 
do not measure how much progress was made on a com- 
putation; they only measure what was done, useful or oth- 
erwise. It is analogous to measuring the speed of a human 
runner by counting footsteps per second, ignoring whether 
those footsteps covered any distance toward the goal. 

If one reads advertising for personal computers, one 
sees “MHz” as the universal indicator of speed. Buyers 
have been led to believe that a 66 MHz computer is always 
faster than a 40 MHz computer, even if the memory, and 
hard disk speed are such that the 66 MHz computer does 
far less in  every clock cycle than the 40 MHz machine. 
This is like a car advertisement noting only the largest 
number that appears on the speedometer, and asking the 
buyer to infer proportional net performance. 

Is there any hope, then, for a definition of computation- 
al “work”? We feel there is, if one defines the quality of an 
answer. In Section 2, we define Quality Improvement Per 
Second (QUIPS) as an example of a measure based rigor- 
ously on progress toward solving a problem. 

1.2. The precedent of SLALOM 

SLALOM [ 5 ]  was the first benchmark to attempt use of 
answer quality as the figure of merit. It fixed the time for a 
radiosity calculation at one minute, and asked how accu- 
rately the answer could be calculated in that time. Thus, 
any algorithm and any architecture could be used, and pre- 
cision was specified only for the answer file, not for the 
means of calculating. SLALOM was quickly embraced by 
the vendor community [6], because for the first time a 
comparison method scaled the problem to the power avail- 
able and permitted each computer to show its application- 
solving capability. However, SLALOM had some defects: 

1. The answerquality measure was simply “patches,” the 
number of areas into which the geometry is subdivid- 
ed; this measures discretization error only roughly, 
and ignores roundoff error and solution convergence. 

2. The complexity of SLALOM was initially order N3, 
where N is the number of patches. Published algorith- 
mic advances reduced this to order N2, but it is still 
not possible to say that a computer that does 2N patch- 
es in  one minute is “twice as powerful” as one that 
does N patches in  one minute. An order N log N 
method has been found that does much to alleviate the 
problem, but it leads to Defect 3: 

3. Benchmarks trade ease-of-use with fidelity to real- 
world problems. Ease-of-use for a benchmark, espe- 
cially one intended for parallel computers, tends to de- 
crease with lines of code in a serial version of the pro- 
gram. SLALOM started with 1000 lines of Fortran or 
C ,  but expanded with better algorithms to about 8000 
lines. Parallelizing the latest N log N algorithm has 
proved expensive; a graduate student took a year to 
convert it to a distributed memory system, and only 
got twice the performance of our best workstation. To 
be useful, a benchmark should be very easy to convert 
to any computer. Otherwise, one should simply con- 
vert the target application and ignore “benchmarks.” 

4. SLALOM was unrealistically forgiving of machines 
with inadequate memory bandwidth, especially in its 
original LINPACK-like form. While this made it pop- 
ular with computer companies that had optimized their 
architectures to matrix-matrix operations, i t  reduced 
its correlation with mainstream scientific computing, 
and hence its predictive value. 

5 .  While SLALOM had storage demands that scaled 
with the computer speed, it failed to run for the re- 
quired one minute on computers with insufficient 
memory relative to arithmetic speed. Conversely, 
computers with capacious memory could not exercise 
it  using SLALOM. Yet memory size is critical to ap- 
plication “performance” in  the sense of what one is 
able to compute, if not in the sense of speed. 
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2. The HINT benchmark 

2.1 Definition and example 

Except for SLALOM and the TPC/A and TPCB 
database benchmarks [3], extant benchmarks are based on 
the idea of measuring the time various computers take to 
complete a fixed-size task. The SLALOM benchmark 
fixes the time at one minute and uses the job size as the 
figure of merit. The TPC benchmarks scale similarly to the 
power available, measuring transactions per second for a 
database that grows depending on the speed of the system 
being measured. 

The HINT benchmark is based on a fundamentally dif- 
ferent concept. HINT stands for Hierarchical INTegration. 
It produces a work measure we call QUIPS, for Quality 
Improvement Per Second. HINT fixes neither time nor 
problem size. Here is an English description of the task 
measured by HINT: 

Use interval subdivision to find rational bounds 
on the area in the xy plane for which x ranges from 0 
to 1 and y ranges from 0 to e. Subdivide x and y 
ranges into an integer power of two equal subinter- 
vals and count the squares thus defined that are com- 
pletely inside the area (lower bound) or completely 
contain the area (upper bound). Use the knowledge 
that the function E is monotonedecreasing, so the 
upper bound comes from the left function value and 
the lower bound from the right function value on any 
subinterval. No other knowledge about the function 
may be used. The objective is to obtain the highest 
quality answer in the least time, for as large a range 
of times as possible. 

Quality is the reciprocal of the difference between 
the upper and lower bounds. Timing begins on entry 
to the program that performs the task; quality iw 
creases as a step function of time whenever an im- 
provement to answer quality is computed. Maintain a 
queue of intervals in memory to split, and split the 
interval with the largest removable error. The amount 
of error removable by further interval subdivision 
must be calculated exactly whenever an interval is 
subdivided. Sort the resulting smaller errors into the 
last two entries in  the queue. The subdivisions may 
be batched or selected less carefully, for example, if 
doing so assists vectorization or parallelism.. . but 
doing so will trade against added latency and de- 
creased quality for the same number of operations. 

It can be shown that the function e makes a hierar- 
chical integration method linear in  its quality improve- 
ment, because the function on 0 I x I 1 is self-similar to 
that on 1 I x I 3 after scaling. The proof is omitted here to 

save space. Most functions only approximate linear quali- 
ty improvement. The area to bound is shown in Fig. 1. 

Y 
4 

0 1 x  

Fig. 1. Area to be bounded by HINT 

At this point the reader may wonder at the fuss made 
over an integration. Why use hierarchical refinement with 
rigorous rational bounds instead of Gaussian quadrature, 
or at least Simpson’s rule, with ordinary floating-point 
variables? First, we are trying to capture characteristics of 
many applications that use adaptive methods, including 
Barnes-Hut or Greengard algorithms for n-body dynamics, 
Quasi-Monte Carlo, and integral equations like those used 
for radiosity. Those methods find the largest contributor to 
the error and refine the model locally to improve answer 
quality. Second, benchmarks (and well-written applica- 
tions) must have mathematically sound results. HINT, as 
defined above, has both characteristics in a concise form. 

This task adjusts to the precision available, and has un- 
limited scalability: By this we mean that there is no mathe- 
matical upper limit to the quality that can be calculated, 
only a limit imposed by the particular computer hardware 
used (precision, memory, and speed). The lower limit is 
extremely low; about 40 operations yield a quality of 
about 2.0. A human can get that far in a few seconds. The 
quality attained is order N for order N storage and order N 
operations, so the scaling is linear. 

Maintenance of a queue of errors needs little pointer 
management. A simple one-dimensional data structure 
holds a pointer to the beginning (which should be the 
largest error) and the end (where new error information is 
placed). The program for HINT is available by Internet 
(see last section) for readers interested in specific details. 

We illustrate by showing an ultra-low-precision HINT 
computation with eight-bit data. For a given word size of 
bd bits, the x and y axis will be represented by Lbd /21 and 
bd - Lbd 121 size quantities. For example, an eight-bit byte 
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conveniently represents values from 0 to 255, so it could 
represent a grid 16 by 16 on which the graph of the func- 
tion is superimposed. The program avoids the need to rep- 
resent the overflow value of 256. Two precisions are need- 
ed: the precision of the data used to count units of area 
above and below the function, and the precision of the in- 
dexing of the intervals. The index must have at least 
enough bits b, to specify any position in the x or y direc- 
tions, which means b, 2 6, - Lb, I 2 bits. For eight-bit 
data, we need only four-bit indexes since there will be at 
most 16 subintervals. 

If n, and n, are the numbers of area units in the x and y 

directions, and i is the number of the column, then 

can be computed as the fraction (n,+r) divided by ny 
without overflow for all whole numbers i in  the open inter- 

val (0, n,). Rounding the division in e up or down 
gives upper and lower bounds, respectively. For example, 

x = V2 is represented by i =  8. Then 

4 h r - l )  

q b  - 1 )  

\(n - 1 )  . 
is 

16'  (16 - 8) l (16 + 8) = lZ8/24. 

This last division makes the maximum use of the eight- 
bit precision, because the numerator takes all eight bits to 
express. This is the reason the numerator is scaled by ny. 
The quotient is 5 with remainder 8,  so the function is 
bounded by 

5/16 < f('/2) < 6/16 

1 

0 
0 I 

Known to contnbute ' to lower bound 

Limited by ' anthmetic precision 

Available for 
further refinement 

bute to upper bound 
Known no! to contn- 

Y + 

Fig. 2. Integration with byte-precision numbers, 
two subintervals 

Fig. 2 shows the state of the bounds after subdivision 
into two intervals. The areas in the upper left and lower 
right contain 87 and 47 squares, respectively. One square 
in  each region is due to imprecision and cannot be elimi- 
nated by subdivision. To reduce the error, the 87-square 
region should be subdivided. The 47-square error will then 
move to the front of the queue of subintervals to be split. 

A key idea of HINT is the use of whole number arith- 
metic to preserve the associative property. The need for 
associative arithmetic stems from the way the total error is 
updated. Whenever a subinterval is split, the error contri- 
bution of the parent subinterval is subtracted and the two 
smaller child errors added to the total error. This must be 
done without rounding, or else roundoff would accumulate 
as HINT runs. 

For floating-point arithmetic, it is not generally true 
that (a + b)  + c = a + (b + c). However, most machines can 
guarantee that this equality is true if the sum and interme- 
diate sums are all whole numbers within the mantissa 
range. For example, 32-bit IEEE floating-point arithmetic 
effectively has 24 bits of mantissa. It can express the 
whole numbers 

0, 1, 2, ..., 16777214, 16777215 

exactly, much as 2's complement arithmetic can for an un- 
signed 24-bit integer. By restricting the computations in 
HINT to whole numbers, we can make use of any hard- 
ware for fast floating-point arithmetic. It is quite possible 
for the floatingpoint hardware to be faster than the integer 
hardware, especially for multiplication. Yet, the same 
problem can be run with either type. By writing the kernel 
of HINT in ANSI C with extensive type declaration in the 
source text (including type casting every integer that a p  
pears explicitly), we need only change the preprocessor 
variable DSIZE from f l o a t  to long to run HINT for 
the two data types! We are not aware of this degree of 
portability having been achieved in other programs. 

Fig. 3 shows four splittings, with steady improvement 
in the quality of the integral. 

1/2 1 
Partition 2 Partition 3 Partition 4 Partition 5 

Split error 256/256 Split error 87/256 Split error 47/256 Split error 27/256 
Quality = 2561136 Quality = 256/96 Quality = 256/76 Quality = 256/64 

= 1.88 ... = 2.66 ... = 3.36 ... = 4.00 

Fig. 3. Sequence of hierarchical refinement 
of integral bounds 

By tracking the total error in this manner, a scalar can 
record the total error at any time without requiring an 
order N traversal of the tree. The control structure of HINT 
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is explicitly order N for N iterations, and HINT makes 
steady progress to quality that is order N .  Thus, a comput- 
er with twice the QUIPS rating can be thought of as “twice 
as powerful”; it must have more arithmetic speed, preci- 
sion, storage, and bandwidth to reach that rating. 

If there were no loss of precision, with each function 
value exactly representable on the computer, the Quality 
would always equal the number of the partition. The deci- 
sion about which subinterval to split next takes into ac- 
count the squares lost through insufficient precision. 
Finding the error that can be removed is not just a matter 
of multiplying the width by the difference between upper 
and lower bounds and then subtracting the two comers. 
When the width becomes one square or the upper and 
lower bounds differ by less than two squares, nothing is 
gained by refinement. This exception is easily handled by 
computing with boolean variables and need not involve 
explicit conditional branches that often degrade perfor- 
mance. Ultimately, there is no error left that can be elimi- 
nated by subdividing intervals. The HINT run then termi- 
nates with an “insufficient precision” condition. Fig. 4 
shows the limit of an 8-bit precision computation. 

1 

0 

0 1 

Known to contribute 
to lower bound 

Limited by arithmetic 
precision 

Known not to contri- 
bute to upper bound 

Fig. 4. Precision-limited last iteration,&bit data 

2.2 Memory and operation requirements 

While it is possible to do integration with little more 
memory than an accumulator and a few working registers, 
the goal of steady progress toward improved quality 
means we must compute and store a record of each upper- 
lower bounding rectangle. The main data structure of 
HINT is the record describing a subinterval. It contains the 
left and right x values x1 and x,, the upper and lower 
bounds on the function of those values, the number of 
units in the upper and lower bounds, and the width of the 
interval (to avoid recomputation). 

If b, is the number of bits required for a data quantity 
and b, is the number of bits required for an index, then the 
storage required for n iterations is (9b,  + 4bJn bits. 
Similar measures apply for non-binary computers; simply 

replace “bits” with digits in whatever number base is used. 
For example, a vintage 1978 minicomputer with 4-byte 
floating-point data and 2-byte indexing would take 
(9 x 4  + 4 x 2)n = 44n bytes for the data. [Program storage 
varies widely, but HINT is not designed to exercise the 
handling of large program executables. Users of programs 
believed to stress instruction caching should not use HINT 
as a performance predictor.] 

By traditional “flop” counts using methods like those 
suggested by McMahon [8] (a divide counting as four 
floating-point operations, for example), each HINT itera- 
tion takes about 40 operations. This may seem high, but 
considerable work is expended rigorously computing the 
potentially removable error remaining in  a subinterval. 
One is free to elect any data type, so a HINT iteration with 
64-bit integers will measure no floating-point operations. 
Our initial experiments show that performance in QUIPS 
is remarkably similar for different data types on a comput- 
er, for comparable execution times; see Section 4.1. The 
“personality” of a computer is partially revealed by its 
higher performance using integer or floating-point data. A 
much higher performance for integer operations might re- 
flect less hardware emphasis on scientific simulation and 
more on functions such as editing and database manipula- 
tion (i.e., business versus scientific computing). 

A compilation of the HINT kernel for a conventional 
processor revealed the following operation distribution for 
indices and data: 

Index operations: Data operations: 
39 adds or subtracts 69 fetches or stores 
16 fetches or stores 24 adds or subtracts 
6 shifts 10 multiplies 
3 conditional branches 2 conditional branches 
2 multiplies 2 divides 

With a memory cost of about 20 to 90 bytes per itera- 
tion and an operation cost of about 40 operations per itera- 
tion, the ratio of operations to storage is roughly I-to-1. 
For this reason, HINT reveals memory regimes and taxes 
bandwidth, a critical issue to accurate performance predic- 
tion. LINPACK [2], matrix multiply, and the Solver sec- 
tion of theoriginal SLALOM benchmark have overly high 
ratios of operations to memory references. We maintain 
that mainstream computing is memory bandwidth limited 
and that most benchmarks disguise, rather than reveal, the 
limits of that bandwidth. We plan to correlate application 
performance with HINT measurements to verify that 
HINT accurately predicts application performance. 

Many RISC workstations depend heavily on data resid- 
ing in primary or secondary cache, and performance can 
drop drastically on large applications that do not cache 
well. The largest vector computers are fast within the con- 
fines of undersized static-RAM memories, but must use 
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disk YO or SSD-type storage to scale execution times up 
to what people are willing to wait. Paging to disk, for com- 
puters that support it, is clearly visible in  HINT speed 
graphs as a steep drop in performance between two re- 
gions of relatively constant QUIPS (see Section 4). 

2.3 Parallel versions 

Parallel computing is now pedestrian enough that a 
number of hardback books on it are available at an intro- 
ductory level. Some of these (see [7, 93) use as a simple 
example the task of integrating I+xz from 0 to 1 by sim- 
ply partitioning the [0,1] interval among the processors. 
Since the analytical answer is q one gets the tutorial satis- 
faction of comparing the program output to 3.14159.. . We 
believe credit is due Cleve Moler for introducing this ex- 
ample as a tutorial while he was on the staff of Intel 
Corporation. While a HINT benchmark could use for 

its function, we arrived at Tx instead because it favors 
neither x nor y decompositions, can be computed using 
fixed point (integer) arithmetic without overflow using the 
maximum representable whole numbers, and yields a theo- 
retical quality Q = N after N hierarchical subdivisions. 

To make HINT run in parallel, one need only make a 
few alterations to the approach describedfor the n calcula- 
tion. In the textbook examples, each processor is responsi- 
ble for a single subinterval of [0,1]. For instance, proces- 
sor j of p processors might integrate the interval 
[ kp,(j + I k p ] .  The processors then consolidate their partial 
sums. We modify this in that we integrate a different func- 
tion, use precise whole-number upper-lower bounds, and 
use a moderate amount of scattered decomposition i n  the 
interval. We let each processor take a sampling of scat- 
tered starting intervals, not a single interval. Too many 
starting intervals increases time to reach the first answer. 
Too few decreases the ability of each processor to pick the 
best interval to split, and a characteristic “scallop” forma- 
tion occurs in the graph of QUIPS versus time as proces- 
sors make slightly less effective choices about where to 
concentrate their splitting efforts. We use the compromise 
of four scattered intervals, but this is user-adjustable. 

Measuring the performance of parallel computing has 
been especially difficult because the source programs must 
be altered, and because most benchmarks do not scale. 
HINT solves the first problem by making the kernel as 
small and as easy to parallelize as possible without sacri- 
ficing realism. The scalability and tolerance for varying 
memory sizes have already been explained. Thus, HINT 
can provide performance data for even the most exotic ar- 
chitectures in roughly the same amount of time and effort 
as a conventional benchmark on a conventional serial 
computer used to take. 

4 

1 - - x  

2.4 Anticipated objections to HINT 

No benchmark can predict the performance of every ap- 
plication. 

Absolutely true. It is easy to find two applications and 
two computers such that their rankings are opposite de- 
pending on the application; therefore, any benchmark that 
produces a performance ranking must be wrong on at least 
one of the applications. We maintain, however, that mem- 
ory references dominate most applications and that HINT 
is unique in its ability to measure the memory-referencing 
capacity of a computer. Our early tests indicate it has high 
predictive powers, much better than extant benchmarks; 
see Section 4.3. 

It’s only a kernel, not a complete application. 
There is considerable difference between a kernel like 

dot product or matrix multiply and the problem of rigor- 
ously bounding an integral. Most “kernels” are code ex- 
cerpts. The work measure is typically something like the 
number of iterations in the loop structure, or an operation 
count (ignoring precision or differing weights for differing 
operations). HINT, in  contrast, is a miniature standalone 
scalable application. It accomplishes a petty but useful cal- 
culation, and defines its work measure strictly in  terms of 
the quality of the answer instead of what was done to get 
there. Although each iteration is simple, it still involves 
over a hundred instructions on a typical serial computer, 
and includes decisions and variety that make it unlikely a 
hardware engineer could improve HINT performance 
without also improving application performance. HINT re- 
sembles a Monte Carlo calculation in  that the calculation 
can be stopped at any time; for both HINT and Monte 
Carlo methods, the answer simply gets better with time. 

QUIPS are just  like MJlop/s; they are nothing new. 
One can translate Whetstones to Mflop/s, SPECmarks 

to Mflop/s, and LINPACK times to Mflop/s. QUIPS mea- 
sures something more fundamental, and no such transla- 
tion is meaningful. A vector computer or a parallel com- 
puter will probably have to do more operations to equal 
the answer quality of a scalar or serial computer. 
Conventional benchmarking would credit the vector or 
parallel computer with every operation performed, without 
regard to the utility of the operation. We feel QUIPS is an 
improvement over MIPS and Mflop/s in this respect. Also, 
a computer can get a high QUIPS rating without perform- 
ing a single floating-point operation, since one is free to 
use whatever form of arithmetic (integer, floating point, 
even character-based) suits the architecture. On a given 
computer, the quality improvements are not proportional 
to the number of operations once the limits of precision 
begin to show. QUIPS resemble Mflop/s in the “per sec- 
ond” suffix, but the resemblance ends there. 
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HP712/801 

DEC 3000/300L 

This will jus t  measure who has the cleverest mathemati- 
cians or the trickiest compilers. 

Unlike SLALOM and other benchmarks with liberal 
definitions, HINT is not amenable to algorithmic “clever- 
ness.” It is already order N ,  and the rules clearly forbid 
that any knowledge about the function being integrated is 
used, other than the fact that it is monotone decreasing on 
the unit interval. Similarly, common compiler optimiza- 
tions are all that are useful. While there is a major im- 
provement in using optimization over using no optimiza- 
tion, we haven’t seen any way to improve the optimized 
output very much.. . even with hand-coded assembler. 

1 

1 

For parallel machines, the only communication is in the 
sum collapse. 

The “diameter” of a parallel computer is the maximum 
time to send a communication from one processor to an- 
other. This has much to do with the performance of algo- 
rithms that are limited by synchronization costs, global de- 
cisions (such as convergence criteria or energy balance), 
and master-slave type work management. Testing a sum 
collapse is an excellent way to get a quick reading of the 
diameter of a parallel computer. We challenge anyone to 
find a more predictive test of parallel communication that 
is this simple to use. 

3. Single-number ratings: Net QUIPS 

There is always a tug-of-war between the distributors 
of computer performance data and the casual interpreters 
of it. The distributors tend to produce copious data show- 
ing the different facets of the measurement, and the inter- 
preters tend to want a single number that answers the 
question, “How good is it?’ Anticipating that our graphs 
of QUIPS versus time or QUIPS versus memory size for 
various data types will be summarized, especially for mar- 
keting and procurements, we have defined a method of 
distilling a QUIPS graph down to a single number: 

Net QUIPS is the integral of the quality Q divided by 
the square of the time, from the first time of quality im- 
provement 6 to the last time measured. This is the same 
mathematically as the area under the QUIPS curve, plotted 
on a log(time) scale. 

Net QUIPS = Jlog(61QUIPS(t) d(log t )  

Table 1 shows a SLALOM-style list of single-number 
QUIPS ratings. “fp” indicates 64-bit IEEE floating point, 
and “int” means the 32-bit integer QUIPS. All were run by 
Q. Snell and J. Korver at Ames Lab in June to September 
1994, except for the Paragon SUNMOS runs which were 
done at Sandia by Q. Snell in September 1994. 

Table 1. Net QUIPS ratings 

Vendor, No. 01 
Hardware 1 ; Intel Paragon 

64 
32 
16 
8 

Intel Paragon 

4 
2 
1 

32 
- 

nCUBE 2 

64 
32 
16 
8 
4 
2 
1 

128 
64 
32 
16 
8 
4 
2 

- 

IBM PC 

DEC 5000/240 

R3000/33 

486/50 
COMPAQ 

Contura Aero 
486SW25 
Macintosh 

Quadra MOAV 
Macintosh 

’owetbook 520c 

- 
1 

- 
1 

1 
- 

- 
Net 

MQUIPS, 
jata type 

!49. 
46.2 
25.7 
13.5 

;33.fp 

7.07 
3.76 
2.03 
1.22 

12.6 fp 

35.8 fp 
18.4 
9.42 
4.84 
2.49 
1.29 
0.67 
0.36 
0.26 

12.6 fp 
7.81 
4.00 
2.06 
1.07 
0.57 
0.33 
0.20 

17.5 fp 
10.2 
4.62 

16.5 fp 
15.7 fp 

3.48 fp 

3.39 fp 
2.70 fp 

2.34 fp 

2.09 int 

1.86 int 

1.31 fp 
0.97 fp 

0.82 int 

0.38 int 

0.27 int 

0.13 int 

- 
Operating 

System 

SUNMOS 
- 

OSF/l 1.0.4 

IRlX 4.0.5 t 
Vertex 3.2 

IRlX 4.0.5 t 
Vertex 3.2 

IRlX 5.2 

ULTRIX 4.3 
ULTRIX 4.3 
HP-UX 9.05 

OSFll 1.3 
IRlX 5.2 

SunOS 5.3 

MS DOS 5.0 

lRlX 5.2 

ULTRIX 4.3 
IRlX 5.2 

MS DOS 5.0 

MS DOS 5.0 

MacOS 7.1 

MacOS 7.1 

Compiler and 
Command Options 

icc 
-04  -knoieee 

-Mvect 

cc 
-03 -knoieee 

ncc 
-02 -ncube2s 

ncc -0 

cc v3.18 
-03 -sopt 

mp 1 
mp 1 

gcc v2.5.8 
-03 

CC -03 
cc v3.18 
-03 - S O D t  

gcc v2.5.8 
-03 

gcc 2.5.1 

cc v3.18 
-03 

-03 
CC -03 
cc v3.18 

- 0 3  
gcc 2.5.1 

-03 
gcc 2.5.1 

-03  

MPW C 
full o p t .  
MPW C 

full O D t .  

If more (user-available) memory or cache are added to 
a system, then the QUIPS will be high for a larger range of 
time and thus improve Net QUIPS. Improved precision 
will lift the Q overall, and thus increase Net QUIPS. Lack 
of interruptions from daemons or other users will be re- 
flected with higher Net QUIPS. Lower latency will allow 

398 



Proceedings of the 28th Annual Hawaii International Conference on System Sciences - 1995 

the integration to start with a smaller r value and can dra- 
matically improve Net QUIPS. Burst speed and sustained 
speed are both reflected in Net QUIPS. Philosophically, 
Net QUIPS totals the QUIPS weighted inversely with the 
time it takes to get to that speed. The unit of Net QUIPS is 
quality improvement per second, the same as QUIPS. 

We are hoping people will learn to interpret HINT 
graphs like those shown in Section 4, and not have to rely 
on single-number distillations. We have not included the 
peak Mfloph ratings of the computers in Table 1, feeling 
that they fail to convey any useful information in most lps lOps100pslms 10mslOOms 1 s  10s 100s 
cases and often mislead. Time 

Net QUIPS can be used to compare two operating sys- 
tems, as shown by the 32-processor Paragon entries for 
SUNMOS and OSF shown in Table I .  It also can be used 

Fig. 5. Comparison of Different Precisions 

to make speedup plots, although we feel "speedup" is an- 
other misleading metric as typically measured and report- 
ed. A cursory examination of the table shows that Net 
QUIPS does not quite double when the number of proces- 
sors doubles, yet the performance scales over a wide 
range. This corresponds well to studies of practical appli- 
cations measured using scaled speedup. 

It is possible to measure the speed of humans using 
paper and pencil with HINT. Our initial experiments with 
college-educated adults indicate that a person is about 0.1 
QUIPS. People, unlike computers, tend to increase preci- 
sion dynamically. HINT can allow one to make reasonable 
comparisons of the numerical computing power of humans 
compared to machines. 

4. Examples 

For the following HINT plots, we use a logarithmic 
scale for time, with approximately decibel resolution (10 
divisions per decade) samples of the time axis. This usual- 
ly has the effect of removing performance drops caused by 
occasional interrupts, but some performance discontinu- 
ities are repeatable functions of the architecture. 

4.1 SGI Indy SC-various data types 

To demonstrate the precision-independence of HINT, 
we ran it on a Silicon GraphicsIndy SC for C types dou- 
ble, float, int, and short. These represent 53, 24, 
32, and 15 bits of useful precision. See Fig. 5 .  For regions 
where all four graphs are defined, the QUIPS are in a 
range k15% of their mean value. The short run ran out 
of precision in a millisecond, but otherwise resembled per- 
formance for the other data types. The f loat and int 
runs were also precision-limited, not memory-limited. 
There is a characteristic decrease in quality improvement 
by about half near the end of a precision-limited run. The 

Fig. 5 indicates the presence of a primary cache and a 
secondary cache. Although the graph uses time as the hor- 
izontal axis, a graph using memory as the independent 
variable shows the dropoffs to occur at 8K bytes and 1M 
bytes. These are the data cache sizes on the SGI Indy SC. 

4.2 Current workstations 

The second example, shown in Fig. 6 ,  plots QUIPS for 
a variety of current workstations. Among these is a Silicon 
Graphics Indy, with (SC) and without (PC) the optional 1 
megabyte secondary cache. For the secondary cache ex- 
ample, two performance drops are visible because of the 
memory regimes. Note that the Indy SC is always faster 
than the Indy PC, but that the speed ratio is greatest in the 
0.001 to 0.01 second range. Since the SPECmark for the 
SC is about twice that of the PC [ 101, one might conclude 
that SPEC operations spend most of their time in this 
regime. Being a fixed-size benchmark, SPEC is doomed to 
periodic resizing and revision as advances in computer 
power make the old benchmark a mismatch to the comput- 
er capabilities. Since the current SPEC is already dated, it 
is not surprising that it now fits comfortably into the sec- 
ondary cache of some workstations. 

* f  

1ps lops lOOpa lms 10mslWms 1s 10s 100s 
Time 

double run could have been extended to the end of virtu- 
a1 memory. Fig. 6. Comparison of Various Workstations 
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4.3 Message-passing computers 

At Ames Laboratory’s Scalable Computing Laboratory, 
we have an Intel Paragon and an nCUBE 2s.  Fig. 7 shows 
MQUIPS versus time for both systems, for various num- 
bers of processors. 

The 32-processor Intel Paragon QUIPS are slightly 
higher than those of 64 processors of the nCUBE 2s.  This 
corresponds closely to the 2-3x performance p e r  proces- 
sor we have observed on applications. For example, the 
NAS Parallel Benchmarks [ 1, 31 show an overall perfor- 
mance (Cray Y-MP = 1.0) of 0.94 for 128 nCUBE 2s  
nodes, 1.61 for 256 nCUBE 2 s  nodes, and 2.19 for 128 
Paragon nodes. The ratio per processor is consistent across 
all components of the NAS benchmark. [Note: Paragon 
nodes are about 8x the cost and form factor of nCUBE 
nodes.] The NAS benchmarks require man-months to port 
and tune to a particular architecture, and then run fairly on 
only a limited range of a parallel product line because of 
their fixed size. Since HINT provides similar information 
in less than two hours of conversion effort and runs on any 
size computer, we feel it is a more cost-effective and flexi- 
ble way of obtaining predictive data for new architectures. 

7 1  nCUBE, 256 nodes 

5 
v) 

0 
s3 

2 

1 

0 

9 4  

l 00p  l m s  10ms 100ms 1 s  10s 100s l k s  
Time 

Fig. 7. Comparison of Several MlMD Systems 

Note that the “peak Mflopls” rating of the Intel i860XP 
node is over 25 times that of the nCUBE 2 s  processor (75 
Mflop/s versus 2.9 Mflop/s). This is an utterly misleading 
specification. Unless quad load instructions are used, the 
memory bandwidth is 200 MB/s for the Intel; this com- 
pares with 100 MB/s for the nCUBE. Hence, bandwidth 
seems to be the better raw specification to use, if one can- 
not perform a benchmark or application test. 

For all of these parallel computers, there is an “acceler- 
ation” up to the peak speed caused by the diameter of the 
ensemble, the amount of time to do global communication. 
We look forward to measuring a CRAY T3D with HINT, 
since it promises a much smaller communication latency 
than our current ensemble computers. 

5. Conclusions 

The HINT benchmark is designed to last. It allows fair 
comparisons over extreme variations in computer architec- 
ture, absolute performance, storage capacity, and preci- 
sion. It improves on SLALOM in being linear (answer 
quality, memory usage, and operations all are proportion- 
al), being very low cost to convert to different architec- 
tures, and unifying the precision and memory size into the 
performance. We have attempted to create a speed mea- 
sure that is as pure and absolute as an information- 
theoretic measure can be, yet is practical and useful as a 
predictor of application performance. Time will tell 
whether HINT measures correlate well with the a wide va- 
riety of scientific applications; of course there will be ap- 
plications for which HINT does not rank the computer- 
application combination correctly. However, we suspect it 
will predict application performance very accurately com- 
pared to other benchmarks now in use. Because HINT is 
simple and very easy to apply even on hard-to-use com- 
puter systems, we hope it will provide insight not other- 
wise available. 
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How to Obtain HINT via Internet 

HINT is freely accessible to download via anonymous 
f tp ,  maintained by the Scalable Computing Laboratory at 
Ames. We look forward to publishing a HINT home page 
via NCSA Mosaic which will explain HINT, have a small 
animated example, and link to our f t p  server: 

ftp. scl. ameslab.gov 

The HINT directory is located within /pub. It is orga- 
nized into subdirectories containing the current version of 
HINT for a variety of architectures. This paper will be in 
the doc subdirectory. Also posted will be a table of ma- 
chines and their respective Net QUIPS rating, and the 
HINT data file for that rating. 

The f t p  site does not allow uploading. Therefore, any 
data files that you wish to post and any questions should 
be mailed to hint@scl.ameslab.gov. 
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