
Maintaining Useful Server Throughput under Load
Attacks Using Active NIC Portals*

Onur Demir and Kanad Ghose
Department of Computer Science

State University of New York at Binghamton
Binghamton, NY 13902-6000

{onur, ghose}@cs.binghamton.edu

Abstract— This paper presents a solution to denial-of-service
(DoS) attacks on servers where the server resources are saturated
by the repeated request for execution of scripts or the download
requests for large files. The existing solutions for coping with DoS
attacks, which are primarily based on limiting the traffic rates,
are incapable of providing any protection against load attacks, as
these attacks do not manifest themselves as heavy bursts of
traffic. We present an intelligent gateway based solution for
maintaining the useful throughput of the servers under load
attacks that uses specific information from the servers to perform
dynamic load balancing and dynamic packet filtering. The
intelligent gateway is implemented using a dual-ported active
network card (NIC). Clients are classified according to their
request history, and rate limits are imposed at the gateway for
each class according to the level and duration of the attack.
Results for a prototype implementation indicate our solution to
be an effective deterrent against load attacks.

Keywords: network security; denial-of- service attacks; web
servers; load attacks

I. INTRODUCTION
Web servers are often targets of attacks that saturate server

resources and consequently deny the use of these resources to
legitimate requests. A particular form of denial-of-service
(DoS) attack is to tie up one or more types of resources on the
server by repeatedly requesting downloads of large files
execution of scripts (such as .cgi files) on the server. We will
generically refer to these as “load attacks”. One generic
solution to load attacks is to apply rate limiting on the requests
from identified attackers and suspected clients to keep the
server load at an acceptable level. The defending mechanism
for protecting the servers against such attacks cannot use any of
the existing solutions for defending against DoS attacks that
perform naive rate limiting at the routers based on the traffic
rate directed towards the server. This is simply because load
attacks do not necessarily need to create a large traffic flow
towards the servers. For example, a few download requests for
large files or for the execution of a complex script file can
easily inundate the servers. The mechanism for defending
against load attacks must therefore be able to limit requests
directed towards the server based on the type of request

submitted and based on specific information from the server
side. [3][5][7][8][9]

The type of information provided by the server to the rate
limiting mechanism for coping with load attacks can be quite
varied. In the simplest form, it could be the current loading
level information. The server-provided information can also be
a function of the service provided by the server and reflect
service goals. For example, for a content-server site (like
CNN), the service goal may be to maximize the number of
clients served, with no preference to any specific client. In
contrast, for a web server designed for an on-line auction
service (such as eBay), the service goal will be to give
preferential service to the bidding clients, when an auction is
about to end.

In a general solution for coping with load attacks, the
servers should be given a role in the defending mechanism. The
mechanisms that defend the server against load attacks should
perform traffic request limiting based on information provided
from the server such as, but not limited to:

• Server load level for specific types of requests

• IP addresses of suspected attackers (for load attacks,
the client IP addresses cannot be spoofed, as a TCP
connection has to be set up)

• IP addresses of clients given a preference

Information such as these could be obtained directly or
indirectly from the log and session files kept at the server.

A intelligent gateway for a single server or a pool of servers
implemented using active network cards (NICs) can be used
effectively to regulate traffic directed towards the server(s) and
allow the servers to be defended against load DoS attacks in
real-time. An active NIC is essentially a network card, often
with multiple network interfaces, a programmable processor,
DMA controllers and a fair amount of on board memory (flash,
as well as RAM). The active NIC based gateway can
implement dynamic filtering rules based on information
provided by the servers that they defend. The data structures
and filtering rules used by the gateway can be held in the RAM
of the active NIC and the processing capabilities of general-

* Supported in part by the NSF through award No. EIA 9911099

Globecom 2004 2140
IEEE Communications Society

U.S. Government work not protected by U.S. copyright

purpose processor on the active NIC can be well exploited in
implementing fast, flexible dynamic filtering solutions. In
addition, load balancing functions can be integrated into such a
gateway. This paper describes exactly such a solution and
evaluates the potentials of the solution from a prototype
implementation based on active gateways implemented using
dual-ported active NICs.

Load attacks are carried out by sending numerous requests
from one or a large number of clients, possibly compromised,
in a continuous manner. The attackers have to use real IP
addresses to make a server request; spoofing is not possible.
Load attacks on servers are not generally a consequence of any
security problems or with the setup of the server. Such attacks
can be effective simply because server resources are finite in
nature. In theory, the servers can be configured to limit the
requests at the server and thus prevent resources from getting
saturated. Such a solution can itself end up taxing the
resources at the server. Using a separate gateway to limit the
requests is a better solution, as the server resources are not used
up in the rate limiting process or in the process of limiting
requests based on the client’s address. The bulk of the
processing resources needed for constructing the dynamic
packet filtering rules and to perform the filtering resources are
within the active NIC and its host machine.

A single active NIC-based intelligent gateway may provide
the necessary protection for a single server or a limited number
of servers. The processing capabilities of a single gateway may
not be adequate for protecting a large server pool. In such
cases, multiple intelligent gateways need to be used, with each
gateway controlling access to a limited number of servers.
This, in fact, is the manner in which the solution proposed in
this paper scales up to handle large sever pools. As in the case
of large server farms, a front-end load-balancing/directing
switch may be used to direct the incoming traffic to a specific
intelligent gateway and the servers that are accessible through
that gateway.

II. LOCALLY DISTRIBUTED WEB SERVER ARCHITECTURE
A locally distributed web server cluster refers to a web site

that uses a pool of servers within a local network. Figure 1
depicts our solution for such a server. The dual-ported active
NIC based gateway acts as an interface to the web server. The
web server cluster provides a single IP (virtual IP, VIP) address
to the Internet, which is assigned to the incoming port of active
NIC. All admitted client traffic goes through the active NIC
portal towards the server pool through the second interface on
the active NIC. Client responses from the server use a different
path as shown, bypassing the gateway.

The active NIC is responsible for distributing inbound
packets to the servers after subjecting them to a filtering rule.
The active NIC can use fixed or dynamic routing schemes
according to types and sources of the incoming packets. In this
paper, we have used a static, network layer routing to select the
destination of the packets. The incoming packet headers are
modified by the gateway, which changes the VIP with the IP
address of the selected server machine. When the server
machine replies the request it uses VIP as the source IP.

The host, where active NIC is mounted (called the active
NIC host), runs a daemon called the control agent. The control
agent periodically collects information from server agents that
run on the servers. The control agent uses this information to
determine the dynamic packet filtering rules that have to be
deployed on the gateway and updates the existing filtering rule
set on the active NIC. Keeping the control agent on the active
NICs host significantly eases the processing load on the active
NIC.

Figure 1. Active NIC Gateway

In our prototype implementation, we have used a Ramix
PMC 694 active NIC with dual 100 Mbits/sec Ethernet
interfaces, two autonomous DMA controllers, a 233 MHz.
Power PC CPU and 32 Mbytes of RAM and 8 Mbytes of Flash
memory [1]. The Ramix PMC 694 is a PCI card. The primary
packet filter used on the active NIC gateway is based on the
well-known BPF+ filter [23]. The filter uses an additional trie
data structure maintained within the on-board RAM to hold IP
addresses that have to be considered for filtering.

The Ramix card runs RTEMS, a real-time operating system
based on BSD UNIX and implements a TCP/IP stack to allow
for TCP offloading. A proprietary library is used for
communicating from the host PC to the PMC 694; this
interface is not critical to the performance of our scheme. The
experiments with the packet filter shows that the card can
handle up to 88, 495 packets per second.

III. CHOOSING THE CLASSES AND RATES
To defend against load attacks in real time, we classify

client IP addresses dynamically into four groups based on the
usage history of each client. The server agents gather the
information used for such classifications on a regular basis and
pass such information to the control agent on the active NIC’s
host on a regular basis. The final decision for deploying rate
limiting and the dynamic alteration of the packet-filtering rule
at the gateway is left to the control agent.

The data structure used to keep track of client IP addresses
is PATRICIA tries [25]. The control agent, the server agent
and the active NIC all use this data structure. The IP addresses
of the clients constitute the keys in this data structure. Each

Server Responses

Host Machine
for Active NIC

Active
NIC

Server

Server

Server

Client
Requests

Admitted
Requests

Switch

Globecom 2004 2141
IEEE Communications Society

U.S. Government work not protected by U.S. copyright

entry has a time stamp for last access time. Entries are aged
according to this time stamp, and eventually removed from the
data structure when the last access time becomes older than 1
hour.

The four categories of IP addresses used in our
implementation are as follows:

Green Addresses: These class of IP addresses are assumed
unknown to the servers. They have not submitted any requests
for the last 1-hour period.

Red Addresses: The number of requests for a specific server
resource from clients with a red IP addresses have crossed a
pre-specified limit. Generally, two types of limits are used. The
first one is the total number of bytes requested in file
downloads. The clients that continuously request large files can
be easily isolated using this limit. The second type of limit is
the number of requests for a specific service. The services that
do not consume huge amounts of network bandwidths but
instead expend a considerable amount of CPU time and
memory (e.g. CGI scripts) can be easily controlled by this
limit. There are also additional ways to identify red addresses,
such as the number of access errors, the source domain, and
severe access violations. Clients IP addresses are reclassified
as red when the client’s requests exceed the specified limits.

Amber Addresses: This class of IP corresponds to clients that
have used the web server within their individual limits.

Preferred Addresses: This optional class of IP addresses is
specific to the web server application. The server can choose
the set of preferred addresses based on login information,
region, domain, or any other criteria. Another way of choosing
preferred addresses can be a static list of trusted hosts or
domains.

After classifying the addresses into groups, the control
agent transfers the corresponding filter rule updates to the
active NIC gateway.

IV. THE LOAD ATTACK DEFENSE POLICY
There can be different choices in deciding what client IP

address class, as defined earlier, has to be given admission
preference to the servers. In this paper we show the effects of
the two different types of preferences. According to the
preference, during the load attack, rate limits are applied to the
classes. The rate limits start with higher vales and decreases
progressively if the attack continues to be sustained or when
the attack volume increases.

The onset of a load attack can be detected by any server
agent from the local loading information. Any server agent can
generate an attack alert when CPU load value goes beyond a
threshold value. We have used /proc/loadavg file to obtain the
CPU load level. These variables are specific to the servers and
the proper values of these thresholds are determined
experimentally. There are other ways of raising alerts and their
discussion is beyond the scope of this paper.

The two specific preferences that we have studied in this
paper are shown in the Table 1. The table shows how the
defending mechanism limits the rates during a load attack for

each of the two preferences. The various specific values shown
in this table (percentages and durations) are what we have used
in the experimental evaluations reported here. They can, of
course, be tuned to optimize the overall performance of the
protection scheme.

As seen in the table rate limiting only applied to excess
traffic for each given class of requests. Each class has a limit
on the number of requests per second and a rate limit is applied
when this rate is beyond thresholds.

V. EXPERIMENTAL SETUP
The servers participating to the evaluation system are

Pentium IV PCs running a modified version of Linux kernel
2.4.18. We have used two switches and constructed two
subnets in 100 Mbits/sec Ethernet. The server pool constitutes
one subnet and the attacker and client machines form another
subnet (representing the outside world). The active-NIC is
positioned as a gateway with its two ports connected to the two
subnets. Multiple addresses are assigned to network interfaces
of client and attacker machines to extend the IP range. A
simple command line http loader utility is used to generate get
the pages. For each request, clients are able to select an IP
assigned to the interface. The incoming pages are not displayed
on a browser at the client; they are only inspected for the
checksum and disposed of whenever they are completely
downloaded.

TABLE I. DEFENSE POLICY

Sequence Preference for
Green Address

Preference for
Preferred/Trusted

Address
No attack
detected

No rate limiting No Rate limiting

First 30 seconds
into attack

Limit all the traffic
from the red address
class; Allow 90% of
excess amber class
traffic

Limit all traffic from red
address class, Allow
90% of Amber Traffic

Next 60 seconds
into the attack (if
attack continues)

Limit all the traffic
from red address class:
Allow 70% of excess
amber class traffic

Limit all the traffic from
red address class; Allow
70% of amber class
traffic, limit 90% of
green class traffic

Another 60
seconds into the
attack (if attack
continues)

Limit all the traffic
from red address class:
Allow 50% of excess
amber class traffic

Limit all the traffic from
red address class: Allow
50% of amber class
traffic, limit 10% of
green traffic

A further 60
seconds into the
attack (if attack
continues)

Allow only
preferred/trusted
addresses green
address traffic and
block any excess
traffic

Allow only
preferred/trusted
addresses and block any
excess traffic

VI. EXPERIMENTAL RESULTS
In the experiments reported in this paper, we used different

server update frequencies (abbreviated as UF) - the frequency
of data update from servers to control agent - to see the effect
of the frequency of updating information about clients, rules
and limits. The effect of allowed rate limits (abbreviated as

Globecom 2004 2142
IEEE Communications Society

U.S. Government work not protected by U.S. copyright

RL) is also studied in the experiments. Rate limits indicate
permissible resource usage by the clients. The clients whose
resource usage exceeds their specified RL value are considered
as attackers.

Figure 2. Response times for trusted and unknown addresses during page
load attack with different server update frequencies (UF) and rate limits

In the first set of experiments, we evaluated the connection
times of the trusted and unknown address classes under
different types of attacks. We used three attack types in the
experiments. The first type of the attack is a page load attack.
In this attack, the attackers request the download of large files
to degrade the performance in a high frequency. A coordinator
starts the attackers at the same time. The second type of the
attack is a CGI load attack. In this type of the attack, the
attackers request the execution of a CGI script, which uses a
fair amount of CPU time. A moderately high script execution
time was used for the experiments. The third type of the attack
is a mix of both attack types, combining download attacks with
CGI attacks.

For all of our experiments, we have used three host
machines to exclusively run the attacking clients. Each such
host uses 80 IP addresses as aliases, mimicking 80 different
attacking hosts. A request targeting a server is formed by

choosing a randomly-generated client address. We have used
20 different IP addresses for the clients with unknown IPs. For
the experiments, the unknown IP addresses are never marked
as amber or red. There are also 20 different trusted IP
addresses, which have priorities over the other classes as
described earlier. Three identical web servers, defended by a
single active NIC gateway, are used as targets of the load
attacks.

Figure 3. Response times for trusted and unknown addresses during CGI
load attack with different server update frequencies (UF) and rate limits

We measured the response times for clients with trusted and

unknown IP addresses. The normal response time and the
response time under attack without any defending mechanism
is shown in all of the graphs for reference. In the experiments,
the attack traffic is started ten seconds after starting the
measurements. The experiments show different cases of update
frequencies (UF) and, rate limits (RL). We have used UF
values of one update in every 5, 10 and 30-second periods.
Rate limits (RL) are the limits for one IP to be identified as red.
For page load attacks, the rate limit is the total number of bytes
downloaded per server in one hour. For the CGI load attacks,

Page Load Attack: Server Response Times
for Clients with Trusted Addresses

1

10

100

1000

10 20 30 40 50 60 70 80 90 100 110 120 130

Time (secs)

Page Load Attack: Server Response Times
for Clients w ith Unknown Hosts

1

10

100

1000

10 20 30 40 50 60 70 80 90 100 110 120 130
Time (secs)

5M B RL 5sec UF 10M B RL 5sec UF
10M B RL 10sec UF 5M B RL 10sec UF
5M B RL 30sec UF 10M B RL 30sec UF
No Defending M echanism Normal Conditions

CGI Load Attack: Server Response Times
for Clients with Trusted Addresses

1

10

100

1000

10000

10 20 30 40 50 60 70 80 90 100 110 120 130

Time (secs)
CGI Load Attack: Server Response Time for

Servers with Unknown Hosts

1

10

100

1000

10000

10 20 30 40 50 60 70 80 90 10
Time (secs)

50 RL 5sec UF 25 RL 5sec UF
25 RL 10sec UF 50 RL 10sec UF
5M B RL 30sec UF 25 RL 30sec UF
No Defending M echanism Normal Conditions

Globecom 2004 2143
IEEE Communications Society

U.S. Government work not protected by U.S. copyright

the rate limit is the number of execution requests of CGI script
files in one hour. For the mixed attack, both limits are used.
We have used 5 MB and 10 MB per server per hour as rate
limit for page attacks, and 25- 50 requests per hour for CGI
script execution as rate limit for CGI attacks.

Figure 4. Response times of trusted and unknown addresses during mixed
load attack with different server update frequencies (UF) and rate limits

Figures 2 to 4 show the response times of the trusted and
unknown client hosts, when the defending mechanism gives
preference to trusted addresses. Notice that the defending
mechanism severely reduces the adverse effect of the attacks in
at most 30-40 seconds, depending on the values used for UF
and RL. By at most 120 seconds, the effects of the attacks are
virtually eliminated. Furthermore, the server response time for
the trusted hosts is impaired by a noticeably lower degree,
compared to hosts with unknown IPs, during the attacks. All of
the goals of the defending mechanism are thus successfully
met. Also notice that, the red class addresses are blocked
whenever they are identified. The identification can take 20-30
seconds depending on the frequency of the attacker's requests.
In general smaller update frequencies give better results, but

especially for CGI attacks where the server load is an important
factor, there is no noticeable difference. This result suggests
that server loading is a factor in the choice of the UF.

Figure 5. Response times of unknown addresses during page load, CGI, and
mixed attack with different update frequencies (UF) and rate limits when the

defending mechanism prefers unknown client host addresses

Mixed Load Attack: Server Response
Times for Clients w ith Trusted Addresses

1

10

100

1000

10000

10 20 30 40 50 60 70 80 90 10 11
Time (secs)

Mixed Load Attack: Server Response Times
for Clients with Unknown Addresses

1

10

100

1000

10000

10 20 30 40 50 60 70 80 90 10 11
Time (secs)

25 Request - 5 M B RL 30sec UF
50 Request - 10 M B RL 30 sec UF
50 Request - 10 M B RL 10sec UF
25 Request - 5 M B RL 10sec UF
25 Request - 5 M B RL 5sec UF
50 Request - 10 M B RL 5sec UF
No Defending M echanism
Normal Condit ions

Page Load Attack: Server Response
Times for Clients with Unknown Hosts (II)

1

10

100

1000

10000

10 20 30 40 50 60 70
Time (secs)

10M B RL 5sec UF 5M B RL 10sec UF
5M B RL 30sec UF 10M B RL 30sec UF
No Defending M echanism Normal Condit ions

CGI Load Attack: Server Response Times for
Clients w ith Unknown Hosts (II)

1

10

100

1000

10000

10 20 30 40 50 60 70 80 90 100 110
Time (secs)

25 RL 10sec UF 50 RL 10sec UF
25 RL 30sec UF 50 RL 30sec UF
No Defending M echanism Normal Condit ions

Mixed Load Attack: Server Response Times
for Clients w ith Unknown Hosts (II)

1

10

100

1000

10000

10 20 30 40 50 60 70 80 90 100 110 120
Time (secs)

25 Request - 5 M B RL 30sec UF
50 Request - 10 M B RL 30 sec UF
50 Request - 10 M B RL 10sec UF
25 Request - 5 M B RL 10sec UF
No Defending M echanism
Normal Conditions

Globecom 2004 2144
IEEE Communications Society

U.S. Government work not protected by U.S. copyright

The second set of experiments demonstrates the
performance of the clients when the defending system prefers
unknown addresses. The results are shown in the Figures 5
through 10. In these experiments, the system identifies all the
attackers within 60 seconds at most. All adverse effects of
attacks are eliminated after the first minute of the attack.

Note that the identification of individual attackers depends
on the frequency and the extent of their requests. The attack
can be effective if the number of simultaneous requests is more
than what the servers can handle. If the number of attackers is
small, they have to make recurrent requests to load the server.
This will lead to their early identification. If the number of
attackers is large, then the identification takes longer.

VII. CONCLUSIONS
We presented a mechanism for maintaining useful server
throughput under load attacks. Such load attacks are difficult
to detect using existing mechanisms that only sense and detect
a high traffic rate directed towards a server. Load attacks can
be caused by only a few requests that can inundate the server
resources. Our solution is in the form of an intelligent gateway
that performs dynamic packet filtering to determine requests
that can be admitted. The packet filtering rules are constructed
dynamically to cope with the evolving service goals and traffic
dynamics during the attack, making use of specific information
from the servers. The intelligent gateway is effectively a smart
firewall whose computational and storage resources are well-
beyond that of traditional firewalls. The combined resources of
the active NIC and the host machine that accommodates this
NIC are deployed to implement fast packet filtering for coping
with load attacks. We show two specific filtering strategies –
one that favors specific trusted clients during an attack and
another that prefers clients that have not generated an excessive
rate of requests. Our experimental results show that our
solution can cope with load attacks and is capable of isolating
the traffic from offending clients quickly. At the same time our
solution permits the servers to provide a reasonable level of
service to preferred clients during a load attack. We also
briefly discuss how our solution can be scaled up to handle
larger server pools.

REFERENCES

[1] Ramix Inc., Intelligent Ethernet Adapter Product Guide, available at:

http://www.ramix.com
[2] Oliver, R., “Countering syn Flood Denial-of-service Attacks”, invited

presentation at the Usenix Security Conference, 2001. Presentation
slides at: http://www.usenix.org/events/sec01/invited talks/oliver.pdf,
August 29 2001.

[3] Bellovin, S.M., ”ICMP Traceback Messages”, Internet Draft:
draftbellovin- itrace-00.txt, 2000.

[4] Check Point Software Technologies, http://www.checkpoint.com/
[5] Mirkovic, J., Martin, J. and Reiher, P. , ”A Taxonomy of DDoS Attacks

and DDoS Defense Mechanisms”, UCLA Computer Science
Department, Technical report #020018, 2001.

[6] Ricciuli, L., Lincoln, P., and Kakkar, P.. ”TCP SYN Flooding Defense”,
in Proc. of the Simulation Multiconference, 1999

[7] Dittrich, D., ”The DoS Project’s ”trinoo” distributed denial of service
attack tool”. October 21, 1999,
http://staff.washington.edu/dittrich/misc/trinoo.analysis.txt - visited
4.16.2003.

[8] Dittrich, D., ”The ’Tribe Flood Network’ distributed denial of service
attack tool”. October 21, 1999,
http://staff.washington.edu/dittrich/misc/tfn.analysis.txt - visited
4.16.2003.

[9] Dittrich, D., ”The ’stacheldraht’ distributed denial of service attack
tool”. December 31, 1999,
http://staff.washington.edu/dittrich/misc/stacheldraht.analysis.txt visited
4.16.2003.

[10] Myrinet Product information at: http://www.myri.com
[11] Trebia Networks, SNP-1000i Dual Port TCP Offload Engine Product

Literature, 2003.
[12] Adaptec Corpn., ANA.7711 TCP/IP Offload Adaptor Product Info,

2003.
[13] Ghose, K., Melnick, S., Gaska T., et al. The Implementation of Low

Latency Communication Primitivesin the SNOW Prototype, In Proc. of
the 26.th. Int.l. Conference on Parallel Processing (ICPP), 1997,
pp.462.469

[14] Bunitinas, D., Panda, D.K., and Sadayappan, P., Fast NIC Based Barrier
Over Myrinet/GM., in Proc. Int.l Parallel and Distributed processing
Symposium, 2001

[15] Krishnamurthy, R, Schwan, K. et al, A Network Co-processor Based
Approach to Scalable Media Streaming in Servers., in Proc. Int.l. Conf.
on Parallel processing (ICPP), 2000

[16] Noronha, R. and Abu Ghazaleh, N., .Early Cancellation: An Active NIC
Optimization for Time Warp., in Proc. PADS 2002.

[17] J. Jung, B. Krishnamurthy, and M. Rabinovich. Flash crowds and denial
of service attacks: Characterization and implications for CDNs and web
sites. In Proceedings of the International World Wide Web Conference,
pages 252--262. IEEE, May 2002

[18] Kargl, F., Maier, J., Weber, M. and Schlott, S., ”Protecting web servers
from distributed denial of service attacks,” In Proceedings of 10th
International World Wide Web Conference, May 2001

[19] Lemon, J. ”Resisting SYN Flooding DoS Attacks with a SYN Cache”,
Proceedings of USENIX BSDCon’2002, February 2002.

[20] Ferguson, P. and Senie, D., ”Network Ingress Filtering: Defeating
Denial of Service Attacks Which Employ IP Source Address Spoofing”,
RFC 2267, January 1998.

[21] Garg, A. and Narasimha Reddy, A.L., ”Mitigating denial of service
attacks using QoS regulation,” Texas A & M University Tech report,
TAMU-ECE-2001-06

[22] Martyn Williams, IDG News Service, 02/09/00 , EBay, Amazon,
Buy.com hit by attacks,

[23] http://www.nwfusion.com/news/2000/0209attack.html
[24] Begel, A., McCanne, S., and Graham, S.L., ”BPF+: Exploiting Global

Dat flow Optimization in a generalized Packet Filter Architecture”, in
Proc. of SIGCOMM 99, 1999.

[25] Gil, T.M. and Poletteo, M., ”MULTOPS: a data-structure for bandwidth
attack detection”, Proceedings of USENIX Security Symposium’2001,
August 2001.

[26] D.R. Morrison. Patricia--practical algorithm to retrieve information
coded in alphanumeric. Journal of ACM, 15(4):514--534, Jan 1968.

[27] Jozsef Kadlecsik, Harald Welte, James Morris, Marc Boucher, and
Rusty Russell. Iptables, http://www.iptables.org

Globecom 2004 2145
IEEE Communications Society

U.S. Government work not protected by U.S. copyright

	footer1:
	01: v
	02: vi
	03: vii
	04: viii
	05: ix
	06: x
	footerL1: 0-7803-8408-3/04/$20.00 © 2004 IEEE
	headLEa1: ISSSTA2004, Sydney, Australia, 30 Aug. - 2 Sep. 2004

