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Abstract. The R package “CodonInfo” contains a sample of raw codon frequencies in 35 species as well
as a set of functions to estimate in detail the properties of those data in the context of the genetic code.
Even when the (nuclear) genetic code is universal, each taxon at species or higher taxonomic level presents
particularities in the frequency of codon use (codon bias) or even in the use of different bases within
codons. Using Shannon’s entropy formula under different hypotheses it is possible to estimate and dissect
the information present in different strata within each species. This guide presents the basic concepts
needed to estimate and understand the different uses of the genetic code in each species, preparing the
reader to make relevant comparisons between species. Throughout this document we exemplify the use of
the functions with the data for our own specie.

Even when data for only 35 species are in the package, the reader can include further species of her/his
interest.

Here we will not discuss the biological implications of the use of the functions; that will be done in a
manuscript in preparation putatively entitled “Sampling informational properties of codon use through the
tree of life”; however, it appears that interesting and relevant biological knowledge could be obtained with
this package.
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1. Introduction

The aim of this document is to explain the data and functions available in the CodonInfo R package.
It is assumed that the reader is familiar with the R environment for statistical computing (R Core Team,
2013); if that is not your case it will be difficult to follow and understand the material.

Previously you must have installed the CodonInfo R package from the file “CodonInfo 1.0.tar.gz”.

It is also assumed that you have at hand the manual of the package (file “CodonInfo-manual.pdf”),
which complements the on-line help for the package.

It is recommended that the user will input into the R window the commands that will be presented in
text boxes. The first of those boxes is

---------------------------------------------------------------------------------------

# Box 1.

# Initiate a session with the CodonInfo package

# (you must have installed the package previously)

> library(CodonInfo) # Load the package

# In all boxes in is assumed that you have done this step

# Explore the main help page of the package

> ? CodonInfo

> ? gen.code # See the help for the gen.code data.frame

> head(gen.code) # See the first rows of that data.frame

codon aa fb sb tb

1 GCT Ala G C T

2 GCC Ala G C C

3 GCA Ala G C A

4 GCG Ala G C G

5 CGT Arg C G T

6 CGC Arg C G C

---------------------------------------------------------------------------------------

First, the comment sign, “#”, as well as text following that in the same row do not have effect in the
commands, and the rows beginning with comments are included only as a guide of what is going on.
Second, note that the R prompt, “>”, is included at the beginning of some of the rows where a command
is going to be given to the program. You could copy the text following that prompt and past it in the R
command window. In some cases, as when giving the command “head(gen.code)”, the answer given by
R is presented in the Box.

It is assumed that you are going to follow sequentially the calculations in this document. For example,
always that you initiate o continue a session where the package will be used you must input the following
lines:

---------------------------------------------------------------------------------------

# Compulsory command BEFORE beginning a section:

library(CodonInfo) # Load the package

---------------------------------------------------------------------------------------

If you have queries that could not be solved with the help included in the manual or in this document,
please send me an e-mail to “octavio.martinez@cinvestav.mx” with subject “CodonInfo query”. I will
also be grateful to receive criticisms or suggestions for further versions of the package. Some external
web links are also shown in blue in this document.

mailto:octavio.martinez@cinvestav.mx
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Unless you are familiar with the use of information theory (see for example the book “The Evolution of
Biological Information: How Evolution Creates Complexity, from Viruses to Brains” Adami (2024)), it
is highly recommended that you read carefully the next section of this guide.

2. Preliminary Concepts

2.1. Entropy (H). In 1948 Claude Shannon set the bases of communication theory (Shannon, 1948).
Central to his approach was the concept of entropy, defined for discrete channels as

(1) H = −
i=s∑
i=1

pi log2(pi)

where H is entropy, s is the number of symbols that exist in the alphabet of interest; s ∈ 2, 3, · · · , each pi
is the probability that the i-th symbol appears in a message (

∑
i pi = 1) and we use the function log2(),

to denote the logarithm with base 2, i.e., log2(1) = 0, log2(2) = 1, log2(4) = 2, · · · We also define

lim
p→0

(p log2(p)) = 0

What is H measuring? First, note that the formula in equation (1) includes a set of probabilities, pi,
thus we are implying the existence of a random variable, say X, which can take values x1, x2, · · · , xs with
probabilities P [X = xi] = pi, thus H is a statistical property of that variable, in the sense that it depends
on the set of probabilities.

To begin to understand the nature of H, let’s consider the simplest case, where we have only two symbols
in the alphabet, i.e., s = 2 in equation (1). In that case we can also simplify our notation setting p1 = p
and p2 = q = 1− p thus

H = −(p log2(p) + q log2(q))

This case illustrate the transmission in a digital channel, where the symbols are for example 1 and 0
(binary digits) as used in computers and other digital devices. Figure 1 presents the plot of H as function
of p in this particular case.
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Figure 1. Plot of H = −(p log2(p)+q log2(q)); q = 1−p. Presented as “Fig. 7 – Entropy
in the case of two possibilities with probabilities p and 1− p .” in Shannon (1948).
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In Figure 1 we can see that H varies between 0 and 1, and that the maximum value of H, say, Hm = 1,
is reached in the point p = 0.5, where the two brown dashed lines intercept.

From this example we can see that entropy, H, is a measure of disorder, randomness, or uncertainty in
the messages transmitted in a given channel. H gives values of 0 when the messages consist of a single
symbol, corresponding to the values of p = 0 and p = 1, because in those cases there is no uncertainty.
For example, assume that messages of ten symbols coded in the alphabet 0 and 1 are obtained, and
consider the following examples:

(1) : {0000000000} → p̂ = 0.0, Ĥ = 0

(2) : {1001100101} → p̂ = 0.5, Ĥ = 1

(3) : {1111111111} → p̂ = 1.0, Ĥ = 0

If the message (1) is the only one that we have, it is clear that the better estimate of the probability to

obtain 1 is p̂ = 0.0, and we can consider that there is no uncertainty, Ĥ = 0. Also if the only message
that we know is (3) we obtain p̂ = 1.0, and in that case there is again no uncertainty, thus Ĥ = 0. Finally,
if the message is as (2) we have maximum uncertainty, i.e., in that case p̂ = 0.5 and this is reflected in

the maximum value of H, say, Ĥ = 1

In the examples above we have put the “hat” above p and H to denote that those quantities are estimated
from some data (messages). In fact, we rarely –if ever, know the true values of the probabilities pi, and
thus the better that we could do is to estimate those values from a set of data and thus obtain also an
estimate of the entropy, Ĥ.

In summary, H measures the uncertainty or also —in some sense— the disorder that exist in a given
context.

Note that in Figure 1 we could plot the relation between the single parameter, p, and H, because in
that case the frequency of the two symbols (say “1” and “0”) could be collapsed in a single value, by
considering that the probability of 0 was just 1 − p. In general when the number of symbols in the
alphabet being considered is larger than 2, i.e., when s = 3, 4, · · · , it is imposible to plot the multivariate
parameter space in a simple way. Nonetheless, in the cases for s > 2 we can still use equation (1) to
estimate the entropy or uncertainty in a given situation.

In the case of an alphabet of two letters we have seen that the maximum uncertainty was of one bit, i.e.,
when s = 2, the maximum value of H, say Hm = 1 bit or log2(2) = 1. That fact can be generalized;
when we have an alphabet of s symbols the maximum uncertainty will happens when all the s symbols
have the same probability of occur, pi = 1/s. Thus, in general, the maximum value of Hm will be

(2) Hm = −
i=s∑
i=1

1

s
log2(

1

s
) = −s(1

s
) log2(

1

s
) = −(log2(1)− log2(s)) = log2(s)

Briefly, we have a measure, H, which is a function of the vector of probabilities p = (p1, p2, · · · , ps) and
which can take values in the interval [0, log2(s)], being an average in bits of the uncertainties that happens
in each one of the characters of a message.

It is also important to note that H is a measure per symbol read in a message, and its value is a weighted
average of what happens when messages with an infinite number of characters are known.

We have set the unit of measure of H in bits, by taking in equation (1) logarithms of base 2. However
this is arbitrary and, has mentioned in (Adami, 2004), if there are s symbols in the alphabet, we can
take logarithms of base s, instead of log2(), and in that way the values of H∗ = −

∑
i pi logs(pi) will

be always between 0 and 1. Adami (2004) use the term “mers” to denote the units of H∗ when using
logs() in Shannon’s formula. However here we will keep the measurement of H in bits, as presented in
equation (1). Bits (see Bit in the Wikipedia) are the basic unit of information in computing and digital
communication.

https://en.wikipedia.org/wiki/Bit
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2.2. Information (I). Information is a complex concept (see for example Information in the Wikipedia),
common definitions are, from the Oxford dictionary “facts or details about somebody/something” or,
from the Merriam-Webster dictionary, “knowledge obtained from investigation, study, or instruction”,
etc.

In general we can think that we are informed about something when we pass from an state of absolute
uncertainty to other one when we have less uncertainty, or, in more general terms, when the degree of
uncertainty about a phenomenon changes.

Given that we have a way to measure uncertainties via entropy, H, it appears reasonable to measure
information as differences of H under different circumstances or hypotheses. In general we will measure
information as a change of entropies, say as

Ia→b = Ha −Hb

where the term “Ia→b” could be read as “information from a to b”, and Ha and Hb are the entropies
(uncertainties) calculated under those conditions, respectively.

In particular, if we are in the framework of an alphabet with s symbols (letters or characters), we have
seen that the maximum value of H, Hm, is Hm = log2(s) and it occurs when each one of the probabilities,
pi, is equal to pi = 1/s, that is, it is assumed that all the s symbols will occur at the same frequency. The
next stage of knowledge occurs if we know —or at least have very good estimates— of the values of the
pi’s. In that case we have that the information gained by the knowledge of the value of the probabilities
is given by

(3) Î = Hm − Ĥ = log2(s)− Ĥ

where the estimated entropy, Ĥ, is calculated from the estimated probabilities,

(4) Ĥ = −
i=s∑
i=1

p̂i log2(p̂i)

Note that Î in equation (3) will be always positive.

For discussion and better understanding let’s put a numerical example in the framework of genes for 4
species. Figure 2 and Table 1 present such example.
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Figure 2. Relative frequencies for the four DNA bases, p̂i, in four species (see also Table 1).

https://en.wikipedia.org/wiki/Information
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Table 1. Relative frequencies for the four DNA bases, p̂i, and estimates of H and I for
four species.

Species
Estimated frequencies (p̂i)

Ĥ Î
A T G C

Entamoeba histolytica (Amoeba) 0.3969 0.3226 0.1568 0.1237 1.8478 0.1522
Pan troglodytes (Chimpanzee) 0.2564 0.2176 0.2640 0.2620 1.9957 0.0043
Homo sapiens (Human) 0.2581 0.2181 0.2634 0.2604 1.9959 0.0041
E. coli (bacteria) 0.2419 0.2396 0.2738 0.2447 1.9978 0.0022

Figure 2 presents the stacked relative frequencies of the four DNA bases in genes of four species, while
Table 1 presents the relative frequencies of those bases, p̂i, and estimates of H and I in the same four
species. The criteria to include the species in the figure and table were first, that the species presented an
extreme value of Ĥ, thus the first row in the table present the case with the minimum and the fourth row
the case with the maximum value of that parameter among the 35 species studied. Second, the cases of
the chimpanzee and human (rows 2 and 3 in the table) are presented for their particular interest.

In Table 1 we can notice first that the value of Ĥ efficiently summarizes the average differences between
the estimated frequencies of the four bases, p̂i, and the expected value under the assumption of identical
frequency of the four bases, pi = 0.25; in fact, there is an inverse linear relation between Ĥ and

∑
i(p̂i −

pi)
2. For the cases shown in Table 1 Pearson’s correlation coefficient between those quantities is estimated

as r̂ ≈ −1, i.e., large differences between p̂i and pi = 0.25 imply a smaller value of Ĥ and vice versa.

This in turn implies that the estimated information for each specie, Î = log2(4) − Ĥ = 2 − Ĥ, is larger
when the estimated frequencies are far away from the value pi = 0.25 –which implies the maximum
entropy, Hm = 2 bits.

In the first row of Table 1 we see that Î = 0.1522 bits for the amoeba, which present a very high frequency
of A and T, compared with G and C. This means that the knowledge of the relative frequencies of the bases
in the amoeba genes substantially alters the probabilities of finding specific sequences of bases within the
genes of this species. For example, assume that we are interested in estimating the probability of finding
the sequence “ATGC” within the genes of that species. Without the knowledge of the relative frequencies
the estimate of that probability will be P [ATGC] = 0.25 × 0.25 × 0.25 × 0.25 = 0.00390625, which is
the same estimated probability for any sequence of 4 bases in the genes of amoeba. In contrast, by the
knowledge of the relative frequencies of the bases in that specie, the probability of finding the sequence
“ATGC” can be calculated with much higher precision as P [ATGC] = 0.3969×0.3226×0.1568×0.1237 =
0.002483421 Note that the ratio of those quantities, 0.00390625/0.002483421 ≈ 1.57 is large, meaning
that our estimates substantially differ by the knowledge of the true frequencies of the bases1.

To complete this example, let’s consider the differences in expected frequencies in sequences of four bases
that have the same base in the amoeba’s genes. Without the knowledge of the true bases’s frequencies,
the probabilities of any sequence having the same base is the same, in particular

P [AAAA] = P [CCCC] = 0.00390625 and thus the ratio P [AAAA]/P [CCCC] = 1. However, by calculat-
ing those probabilities with the true frequencies we find

P [AAAA] ≈ (0.3969)4 = 0.0248 while P [CCCC] ≈ (0.1237)4 = 0.0002 and thus the ratio

P [AAAA]/P [CCCC] ≈ 106, i.e., knowledge of the true frequencies of the bases allow us to determine that
finding a sequence of four consecutive A’s is more than 100 times more likely than finding a sequence of
four consecutive C’s in that species.

1These calculations assume fully independence between frequencies of subsequent bases, which is a good first
approximation.
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In other words, without the knowledge of the true frequencies of the bases any sequence of a given size,
say of k bases, will have the same probability of being found, (0.25)k, giving a fully flat probability
distribution for the probabilities of sequences of any given size k. In contrast, the knowledge of the true
frequencies of the bases in a specie, which is measured by the estimated information, Î, tell us how much
the heterogeneity in the frequencies of the bases gives differences in the probabilities of finding specific
sequences; larger values of Î in one species compared with another means that we have larger differences
in those probabilities.

Now, let’s compare the values of Î for the four species presented in Table 1; those values are 0.1522,
0.0043, 0.0041and 0.0022 for the amoeba, chimpanzee, human and bacteria, respectively, and the ratios
of Î comparing the largest value (Î = 0.1522 for the amoeba) with the ones for the other three species
are approximately 36, 37 and 70 times larger in the amoeba, compared with the chimpanzee, human and
bacteria, respectively.

3. Data and Functions

Table 2 presents the 9 objects that comprises the CodonInfo package with the class at which each one
of the objects belongs and a brief description.

In Table 2 we can see that there are 4 objects that contain data and 5 functions to obtain estimates from
the original data (codon.freq) which consist of the raw numbers of codons for 35 species.

Each one of the 35 columns of codon.freq was obtained by a single query to the web site

“http://codonstatsdb.unr.edu/”, which is documented in (Subramanian et al., 2022).

The selection of the 35 species was somehow arbitrary; I tried to obtain a broad sample from the immense
tree of life, but sampling only a small number of different species from diverse kingdoms and including a
minimum of two species per kingdom. The aim of this sampling scheme was to demonstrate the usefulness
of studying the informational properties of codon data.

Nevertheless, the number of species sampled can be increased in an unlimited way by downloading more
files with raw data of codon frequencies from the web site above or other convenient source. To include
more data into the package, please see the document “IncludeFurtherDataInCodonInfo.pdf” –which
at this point is in preparation; please visit the same web address (URL) from which you downloaded the
package CodonInfo for updates.

Table 3 contains a summary of the content of the object “desc.codon.freq”; that object is a data.frame

which briefly describes the species for which the package has codon data. I acknowledge Guillermo
Martnez de la Vega for help in the selection of species presented in Table 3 and corrections of some
initial classification mistakes. However, any remaining errors or inaccuracies are of my exclusive respon-
sability.

Table 3 includes 8 columns: “nc” –the number of column in the “codon.freq” object (that number serves
as input parameter in various functions, allowing the selection of the data to be analyzed); “Kingdom”
–the kingdom to which the species belongs; “Species” –the scientific name of the species; “common.name”
–the common name of the organism; “tax.id” –the numeric identifier of the species, which can be used
for example in the NCBI taxonomy web site; “key” –the key formed by the first two letters of the scientific
name (Species) separated by a full stop; “Genes” –the total number of genes from which the data were
obtained and, finally “Codons (K)” –the number codons in thousands (K) from which the data were
obtained.

Rows in Table 3 are ordered by Kingdom, going from the more to the less numerous cases, thus we have
18 rows with “Animal”, 6 rows with “Plant”, 3 rows with “Protoctista” and two rows for the remaining
4 kingdoms, “Fungi”, “Monera”, “Archaea” and “Virus”.

http://codonstatsdb.unr.edu/
https://www.ncbi.nlm.nih.gov/guide/taxonomy/
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Table 2. Objects that exist in the CodonInfo R package.

Object class Description
codon.freq matrix A matrix of 64 rows × 35 columns which rows are codons and columns

are libraries. This is the core source of data for the package. Many func-
tions use the number of column (nc) as input. Library names (columns)
are formed by the first letters of the species followed by the taxa.id. For
example nc=16 has name H.s.9606, etc.

desc.codon.freq data.frame A data.frame with 35 rows and 12 columns that describe the data
in codon.freq Variables Kingdom, Species and common.name are self
explanatory. key is formed by the first two letter of the species and
other variables give general information.

gen.code data.frame A data.frame with description of the genetic code for the 64 codons.
Variables codon, aa (amino acid), and the first, second and third base
of the codon in variables fb, sb and tb, respectively.

gen.code.n.cod data.frame A data.frame with 21 rows, one for each amino acid (aa), and info
about the number of codons and codons for each aa. aa - Three letters
code names for each aa; n.cod - Number of codons coding for the aa;
codons - The codons that result in each aa.

est.H function Estimates information properties from a vector of relative frequencies,
x. Output: n - length of the vector x; Hest - Estimated value of the
entropy, Ĥ; EN - Effective Number of units, 2 to the Ĥ power; Info

= log2(n)− Ĥ = Hm − Ĥ.
prop.bases function Parameters: nc - Number of Column; print.data (logic); by.row (logic)

Output: If by.row=F, a data.frame with relative frequencies of each
base in the first (F), second (S) and third (T) codon positions as well as
in the Total of all three codon positions, also columns with information
properties derived from that matrix. If by.row=T same information in
a single row.

codons2bases function Parameters: nc - Number of Column; print.data (logic);
only.summary (logic) Output: If only.summary=T, a matrix with a
summary of frequencies; otherwise also a data.frame named f.c.b with
details per codon.

prop.codons function Input: nc (Number of Column of codon.freq) Output: a list with two
components, the first H.est, a 3 rows by 4 columns matrix with infor-
mational properties for three frequencies and the second, frequencies,
a data.frame with 64 rows (one for each codon) with information for
three frequencies.

codon.bias function Input: nc (Number of Column of codon.freq) Output: a data.frame

with 19 rows (one for each amino acid coded by at least two codons)
and 11 columns with information properties, including CodBias.aa

The other two objects that contain data in the package are “gen.code” and “gen.code.n.cod”. Both
objects give representations of the nuclear genetic code, the difference being that gen.code has 64 rows
–one for each codon, with columns “codon” –the three bases that constitute the codon; “aa” –the three
letter representation of each one of the 20 amino acids, plus the key word “Stop” for the codons that
terminate the protein synthesis. The last three columns in “gen.code” are “fb” “sb” and “tb” and
contain the first, second and third base of the codon, respectively.

On the other hand, object “gen.code.n.cod” gives the inverse nuclear genetic code. That object is
presented in Table 4, and has columns: “aa” –the amino acid, “n.cod” –the number of codons coding
for the corresponding aa and “codons” a character string giving the codons.
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Table 3. Summary of the content of object “desc.codon.freq”.

nc Kingdom Species common.name tax.id key Genes Codons (K)
1 Animal Acropora digitifera coral 70779 A.d 26,060 11,650
4 Animal Canis lupus familiaris dog; carnivores 9615 C.l 21,148 11,784
5 Animal Capra hircus goat; ungulates 9925 C.h 20,659 11,568
7 Animal Ciona intestinalis tunicates 7719 C.i 13,633 7,571
8 Animal Danio rerio zebrafish; bony fishes 7955 D.r 26,239 15,023
9 Animal Drosophila

melanogaster
fruit fly; insecta 7227 D.m 13,930 7,472

13 Animal Felis catus domestic cat; carni-
vores

9685 F.c 19,802 11,463

15 Animal Gallus gallus chicken; birds 9031 G.g 17,833 10,412
16 Animal Homo sapiens human; primates 9606 H.s 19,850 11,577
17 Animal Monodelphis domes-

tica
opossum; marsupials 13616 M.d 21,045 11,846

18 Animal Mus musculus mouse; rodents 10090 M.m 22,515 12,248
19 Animal Octopus sinensis octopus; cephalopods 2607531 O.s 18,873 9,880
20 Animal Penaeus vannamei shrimp; crustaceans 6689 P.v 24,818 10,791
22 Animal Pomacea canaliculata gastropods 400727 P.c 21,126 11,578
25 Animal Stegodyphus dumicola spiders 202533 S.d 20,837 9,157
26 Animal Strongylocentrotus

purpuratus
sea urchin 7668 S.p 27,430 15,852

29 Animal Xenopus laevis toad 8355 X.l 34,660 19,703
34 Animal Pan troglodytes Chimpanzee; Homini-

nae
9598 P.t 21,638 12,062

3 Plant Arabidopsis thaliana eudicots 3702 A.t 27,245 11,095
6 Plant Chlamydomonas rein-

hardtii
green algae 3055 C.r 17,742 13,031

21 Plant Physcomitrium
patens

mosses 3218 P.p 20,325 10,309

23 Plant Quercus suber oak; eudicots 58331 Q.s 49,316 22,318
30 Plant Zea mays maize; monocots 4577 Z.m 34,063 14,093
35 Plant Triticum dicoccoides Wheat; Poaceae 85692 T.d 66,780 28,419

10 Protoctista Entamoeba histolytica Entamoeba 294381 E.h 8,163 3,427
14 Protoctista Galdieria sulphuraria red algae 130081 G.s 6,622 2,794
24 Protoctista Salpingoeca rosetta choanoflagellates 946362 S.r 11,618 7,737

2 Fungi Alternaria alternata ascomycete 5599 A.a 13,466 6,162
28 Fungi Ustilago maydis smut fungi; Basid-

iomycete
237631 U.m 6,764 3,998

12 Monera Escherichia coli enterobacteria 562 E.c 5,219 1,515
33 Monera Endomicrobium

proavitum
as-yet uncultured or-
ganism

1408281 E.p 1,333 483

27 Archaea Thermococcus
barophilus

euryarchaeotes 391623 T.b 2,208 630

32 Archaea Haladaptatus cibarius Methanobacteriota
salt resistent

1455608 H.c 4,004 1,098

11 Virus Enterovirus C virus 138950 E.C 1 2
31 Virus SARS coronavirus COVID virus 227984 S.c 13 10
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Table 4. Inverse nuclear DNA codon table (object “gen.code.n.cod”).

aa (amino acid) n.cod codons

Arg 6 AGA, AGG, CGA, CGC, CGG, CGT
Leu 6 CTA, CTC, CTG, CTT, TTA, TTG
Ser 6 AGC, AGT, TCA, TCC, TCG, TCT
Ala 4 GCA, GCC, GCG, GCT
Gly 4 GGA, GGC, GGG, GGT
Pro 4 CCA, CCC, CCG, CCT
Thr 4 ACA, ACC, ACG, ACT
Val 4 GTA, GTC, GTG, GTT
Ile 3 ATA, ATC, ATT
Stop 3 TAA, TAG, TGA
Asn 2 AAC, AAT
Asp 2 GAC, GAT
Cys 2 TGC, TGT
Gln 2 CAA, CAG
Glu 2 GAA, GAG
His 2 CAC, CAT
Lys 2 AAA, AAG
Phe 2 TTC, TTT
Tyr 2 TAC, TAT
Met 1 ATG
Trp 1 TGG
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4. Running each one of the functions

Here we will analyze in detail the output given by each one of the functions of the package. The idea is to
gain a good understanding of the meaning of each one of the components of the output, to be able to use
those functions to obtain knowledge about the informational properties derived from the raw frequencies
of codons in a determined specie.

For all functions, except “est.H” which is general, the functions need as input parameter the number
of column, say, “nc”, of the matrix “codon.freq” where the data for the 64 codons of a particular
species are located. Table 3 can be consulted to select a specific species to be analyzed, however here
we will exemplify the functions with our own specie, humans, which data are in column nc = 16 of
“codon.freq”.

For each function there is a Box presenting the R calculations to be performed. In those boxes we will
use a temporary object, named “temp” to allocate output. The first command within each box will be
to consult the in line help for that function; please, briefly review such help to be introduced to the
corresponding function.

4.1. est.H(): Estimates informational properties from a vector of relative frequencies. est.H()

is a generic function to give informational properties from a vector of relative frequencies. It implements
equations (4), “Ĥ”. Let’s do calculations and discuss the output.

---------------------------------------------------------------------------------------

# Box 2.

# Running est.H(). First try.

> ? est.H # See the help for the function.

# Try the function with the data for relative frequencies for the bases in the specie

# Entamoeba histolytica (Amoeba), given in the first row of Table 1:

> est.H(c(0.3969, 0.3226, 0.1568, 0.1237))

n Hest EN Info V.est

4.00000000 1.84776256 3.59941527 0.15223744 0.01716277

# Round the output to 4 decimal places:

> round(est.H(c(0.3969, 0.3226, 0.1568, 0.1237)), 4)

n Hest EN Info V.est

4.0000 1.8478 3.5994 0.1522 0.0172

# Now, let’s see the result of running the function in the case where all 4 bases are

# exactly at the same frequency: 1/4

> est.H(c(1/4, 1/4, 1/4, 1/4))

n Hest EN Info V.est

4 2 4 0 0

---------------------------------------------------------------------------------------

In Box 2 we see that the output of est.H when using the relative frequencies of the four bases of the
species Entamoeba histolytica (Amoeba), which were presented in the first row in Table 1 are: n = 4 which
is just the number of elements in the input, i.e., the number of relative frequencies; Hest = 1.8478 that
gives the estimated value of the entropy, Ĥ as in Table 1. The next element in the vector of results is
EN = 3.5994. The name “EN” is the acronym for Effective Number, and denotes the effective number
of units that are transmitted in a message when the relative frequencies are the ones in the input. EN =

3.5994 results from 21.8478 ≈ 3.5994, or in general 2Ĥ .

The concept of effective number of units is employed in various contexts, for example, in ecology it is
used as the effective number of species or in population genetics as the effective number of alleles, etc. In
fact EN is just another way to examine the entropy of a system; note that if Ĥ = 0 (one of the symbols
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is in frequency 1 and the remaining in frequency 0) we have EN = 1, telling us that in fact the system is
transmitting a single symbol. On the other extreme, when we have the maximum entropy, in this case
Hm = 2 bits, then EN = 4 (that is 22 = 4), indicating that the effective number of units is equal to
the length of the vector of relative frequencies, i.e., that the channel is transmitting at their maximum
capacity or, that the coding is optimal.

The result Info = 0.1522 gives the information (in bits) that is present in the relative frequencies with

reference to the maximum entropy, i.e., as presented in equation (3), Info = Î = Hm−Ĥ = 2−1.8478 =
0.1522 As we have previously seen, this term is relevant to evaluate in a quantitative way how the expected
frequencies of sequences will vary depending on its base composition.

The last term in the result, V.est = 0.0172, is just the estimated variance of the relative frequencies in
the input. This quantity is inversely related to Ĥ.

It is important to remember that when using est.H() the number of elements of the input vector that
are different from zero (n in the output) is considered to be the number of symbols that the alphabet
has, and that number is used to calculate the maximum entropy in bits, log2(n), which in turn is used
to calculate the information in the output (Info) as a difference between the maximum and estimated
entropies.

4.2. codons2bases(): Frequencies of bases in a species. The codons2bases() function is not usu-
ally run directly by the user, but is used by other functions to obtain intermediate results. Thus, we only
briefly present a pair of examples of its use in Box 3.

---------------------------------------------------------------------------------------

# Box 3.

# Running function codons2bases

> ? codons2bases # Seek help about the function.

# Run the function with the defaults

> codons2bases(nc = 16, print.data = TRUE, only.summary = TRUE)

Data for column: 16

Basic information:

Kingdom Species common.name tax.id key

16 Animal Homo sapiens human; primates 9606 H.s

Total of codons: 11,577,026; Total of bases: 34,731,078

Stop codons are present in the data.

A T G C

F 3086621 1985713 3627359 2877333

S 3597976 2994666 2222416 2761968

T 2280958 2594764 3296783 3404521

Total 8965555 7575143 9146558 9043822

# This matrix presents the number of cases for

# F = First base in the codon, S = Second base in the codon, T = Third base in the codon.

# And the last row is the total of the first three rows.

# Obtain full results for humans (do not print the basic info)

> temp <- codons2bases(nc=16, print.data=F, only.summary=F)

> class(temp)

[1] "list"

> length(temp)

[1] 2
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> names(temp)

[1] "summ.tab" "f.c.b"

> temp$summ.tab # The first element (as above)

A T G C

F 3086621 1985713 3627359 2877333

S 3597976 2994666 2222416 2761968

T 2280958 2594764 3296783 3404521

Total 8965555 7575143 9146558 9043822

# Check that the fourth row is the sum of the first three:

> apply(temp$summ.tab[1:3,], 2, sum)

A T G C

8965555 7575143 9146558 9043822

> sum(apply(temp$summ.tab[1:3,], 2, sum)) # Total of bases in the data

[1] 34731078

> sum(temp$summ.tab[4,]) # Total of bases in the data (in another way)

[1] 34731078

# Checking equality using the prod (product) funcion:

> prod(apply(temp$summ.tab[1:3,], 2, sum)==temp$summ.tab[4,])

[1] 1

> temp2 <- temp$f.c.b # Isolate the second component

> class(temp2)

[1] "data.frame"

> dim(temp2)

[1] 64 18

> names(temp2)

[1] "codon" "aa" "fb" "sb" "tb" "freq.cod"

[7] "fb.A" "fb.T" "fb.G" "fb.C" "sb.A" "sb.T"

[13] "sb.G" "sb.C" "tb.A" "tb.T" "tb.G" "tb.C"

> temp2[1, ] # See the first row

codon aa fb sb tb freq.cod fb.A fb.T fb.G fb.C sb.A sb.T sb.G sb.C

1 GCT Ala G C T 213559 0 0 213559 0 0 0 0 213559

tb.A tb.T tb.G tb.C

1 0 213559 0 0

> head(temp2[,1:5]) # The first 5 columns

codon aa fb sb tb

1 GCT Ala G C T

2 GCC Ala G C C

3 GCA Ala G C A

4 GCG Ala G C G

5 CGT Arg C G T

6 CGC Arg C G C

> temp3 <- apply(temp2[,6:18], 2, sum) # Sum of numeric columns

> temp3

freq.cod fb.A fb.T fb.G fb.C sb.A sb.T sb.G

11577026 3086621 1985713 3627359 2877333 3597976 2994666 2222416

sb.C tb.A tb.T tb.G tb.C

2761968 2280958 2594764 3296783 3404521

> temp$summ.tab # Compare with the first element...

A T G C
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F 3086621 1985713 3627359 2877333

S 3597976 2994666 2222416 2761968

T 2280958 2594764 3296783 3404521

Total 8965555 7575143 9146558 9043822

> names(temp3)

[1] "freq.cod" "fb.A" "fb.T" "fb.G" "fb.C" "sb.A"

[7] "sb.T" "sb.G" "sb.C" "tb.A" "tb.T" "tb.G"

[13] "tb.C"

> sum(temp3[c(2, 6, 10)]) # The sum of all the A’s; must be 8965555

[1] 8965555

> rm(temp, temp2, temp3) # Removes temporal objects

---------------------------------------------------------------------------------------

From the content in Box 3 we see that the function codons2bases() gives an output that extract the
number of bases that exist using the raw frequencies of the 64 codons in an orderly manner. Given
that the output are just ordered frequencies of bases within codons, there is not a direct use of those
components. Nevertheless, the output of the function is employed as an intermediate step to calculate
informational properties at base or codon levels.

4.3. prop.bases(): Relative frequencies and informational properties per bases. The function
prop.bases() gives a data.frame with the estimates of the relative frequencies as well as the informa-
tional properties but segregating the results by the base within the codon. Let’s see an example

---------------------------------------------------------------------------------------

# Box 4.

# Running function prop.bases()

> ? prop.bases # Ask for help for that function

> temp <- prop.bases(nc=16, print.data=T) # Run for humans

Data for column: 16

Basic information:

Kingdom Species common.name tax.id key

16 Animal Homo sapiens human; primates 9606 H.s

Total of codons: 11,577,026; Total of bases: 34,731,078

Stop codons are present in the data.

> class(temp)

[1] "data.frame"

> dim(temp)

[1] 4 8

# See the results (rounded to 5 decimal places)

> round(temp, 5)

A T G C Hest ENB Info V.est

F 0.26662 0.17152 0.31332 0.24854 1.96852 3.91367 0.03148 0.00348

S 0.31079 0.25867 0.19197 0.23857 1.97894 3.94204 0.02106 0.00242

T 0.19702 0.22413 0.28477 0.29408 1.98062 3.94663 0.01938 0.00221

Total 0.25814 0.21811 0.26335 0.26040 1.99593 3.98873 0.00407 0.00046

# Note: This data frame show the relative frequencies and informational properties

# segregating in rows that contain, respectively:

# F = First base in the codon, S = Second base in the codon, T = Third base in the codon.
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# And the last row is the total of the first three rows.

# Frequencies of the four bases in the first position of the codon:

> temp[1,1:4]

A T G C

F 0.2666161 0.1715219 0.3133239 0.2485382

# Calculate informational properties from those frequencies

# i.e., using only bases in the first position of the codon:

> round(est.H(temp[1,1:4]),5)

n Hest EN Info V.est

4.00000 1.96852 3.91367 0.03148 0.00348

# Note that those values are also present in

> round(temp[1, 5:8], 5)

Hest ENB Info V.est

F 1.96852 3.91367 0.03148 0.00348

> cor(temp$Info, temp$V.est) # Note the correlation

[1] 0.9993458

> round(temp[, 5:8], 5) # Data to be interpreted

Hest ENB Info V.est

F 1.96852 3.91367 0.03148 0.00348

S 1.97894 3.94204 0.02106 0.00242

T 1.98062 3.94663 0.01938 0.00221

Total 1.99593 3.98873 0.00407 0.00046

---------------------------------------------------------------------------------------

The table above gives us results of informational properties for humans. The rows are labeled as F, S,

T and Total. The first three rows, F, S, T, refer to the position of the base within the codon, First,
Second and Third, respectively while the last row, Total, refer of the total of the bases, without taking
into account its codon position.

On the other hand, columns Hest, ENB, Info and V.est are informational properties. First we have
estimated entropy, Hest (disorder or uncertainty) and in this case we see that the values increment by
row, from 1.96852 bits for F up to almost 2, 1.99593 bits for the Total row. Hest tell us that there are
less uncertainty in the first two positions of the codons (F and S) than in the third position (T) or in the
total (Total).

Related with Hest we have the column of Effective Number of Bases, ENB, which is just another way to
see the estimated entropy, given that ENB is equal to 2 to the Hest power; for example, for the first row
(F), 21.96852 ≈ 3.91366, etc. The value of ENB tell us how many bases are effectively been transmitted by
the messages (genes); taking into account the fact that there are 4 bases in the DNA, we see that for the
row Total we have almost the maximum possible of 4, say the value 3.98873, while for the other rows
the numbers are smaller.

The most important and “interpretable” result is given by the column Info = 2 - Hest, i.e., the informa-
tion that is given by the first, second and third codon bases (rows F, S, T) as well as for the total (row
Total). The values of Info are 0.03148, 0.02106 and 0.01938 for rows F, S, T, respectively. And note
that 0.03148 > 0.02106 > 0.01938; the information decreases from the first to the third codon base. In fact
comparing the information of the first position with the second one we have that 0.03148/0.02106 ≈ 1.49
meaning that, for the case of humans, the first base is almost 1.5 more important (informative) than the
second one, but comparing the second with the third codon position we have that the second base is only
0.02106/0.01938 ≈ 1.09 times more informative than the third one.
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Finally by comparing the information given per codon position (F, S, T) with the Total information,
which does not take into account codon position we have the quotients (0.03148, 0.02106, 0.01938)/0.00407 ≈
7.73, 5.17, 4.76 indicating the relative importance of the information given when each codon position is
taken into account with reference of not taking into account that information. The average of those
quantities, 7.73, 5.17, 4.76, is 5.89 indicating that in humans when codon position is taken into account
there is almost 6 times more information than when codon positions are ignored.

The last column, V.est gives the estimated values of the variances of the frequencies, and, in general a
smaller variance implies larger information values, but that relation is not lineal, thus it is always better
to interpret the values of Info as done above.

4.4. prop.codons(): Estimates informational properties at codon level. If we take genes, or
more exactly, mRNA’s that code for a protein, we have an alphabet that consist of 64 different “codons”
—non-overlapping sequences of three consecutive bases— which constitute the genetic code to translate
the original message in the DNA to a sequence of amino acids in a protein. Thus, instead of considering
the 4 bases in the DNA, we must consider at informational level the message given in a different alphabet
that now consist of 64 different “symbols”, the codons. A simile will be illustrative here; in English we
have 27 symbols which can form many words (of different length); thus we could consider informatics
properties at symbol (letter) level or, much more complex, consider each word as an individual symbol
and so considering an “alphabet” with around 170,000 “symbols”, i.e., the words currently in use.

By considering each one of the 64 codons as a symbol, the maximum entropy, Hm in equation (2) is

Hm = log2(64) = 6 and information, Î (3), can be measured as the difference Î = 6 − Ĥ. However, the

value of Ĥ in the previous equation could be obtained under different hypotheses or scenarios, say

Ĥr : Use the relative frequencies of codons in the data; results in Îr = 6− Ĥr (denoted as ObsFreq
in the function output).

Ĥb : Use the expected frequencies of codons using the frequencies of bases in the data; results in
Îb = 6− Ĥb (denoted as ExpBase in the function output).

Ĥc : Use the expected frequencies of codons but considering the positions of bases within codons
and using the frequencies of bases in the data; results in Îc = 6− Ĥc (denoted as ExpBinC in the
function output).

The values of the three different estimates of information in the codon case, Îr, Îb and Îc consider different
informational properties and thus need to be interpreted differently.

Îr (ObsFreq) is calculated from the relative frequencies of the 64 codons in the original data, and thus
tell us how much information (in bits) is given in average by the genes of the species of interest with

regard to the maximum possible entropy. In other words, Îr tell us how much the distribution of the
codons deviate from the hypothetical case where each one of the codons is present at the same relative
frequency, 1/64 = 0.015625

Îb (ExpBase) is calculated by taking into account the frequencies of the 4 DNA bases in the species, and
using those frequencies the expected relative frequencies of each one of the 64 codons are calculated.
This calculations imply a step ahead of the ones done for Îr —which assumed the same frequency of
codons and also of bases in the gene of the species. Îb tell us how much information is due to the codon
distribution, having adjusted by the true frequencies of the bases in the species.

Finally, Îc (ExpBinC) takes the calculations one step further than the ones used for Îb; to estimate Îc
we do not only take into account the base’s frequencies, but also the positions of those bases within the
codons.

Box 5 exemplifies the use and interpretation of the function prop.codons() using human data first and,
for contrast data of amoeba.
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---------------------------------------------------------------------------------------

# Box 5.

# Using function prop.codons()

> ? prop.codons # Ask help about that function.

# Obtain results for humans (nc=16) in a temporal object.

> temp <- prop.codons(nc=16)

> class(temp)

[1] "list"

> length(temp)

[1] 2

> names(temp)

[1] "H.est" "frequencies"

> temp$H.est # Or, equivalently, temp[[1]]

Hest ENC Info V.est

ObsFreq 5.787137 55.22068 0.21286313 7.027120e-05

ExpBase 5.987789 63.46057 0.01221146 4.099026e-06

ExpBinC 5.928085 60.88796 0.07191494 2.492463e-05

> head(temp$frequencies) # Or head(temp[[2]])

codon aa ObsFreq ExpBase ExpBinC

GCT GCT Ala 213559 173158.1 193960.4

GCC GCC Ala 323249 206730.2 254490.3

GCA GCA Ala 187108 204941.1 170503.2

GCG GCG Ala 89097 209078.6 246436.8

CGT CGT Arg 52129 173158.1 123799.6

CGC CGC Arg 119972 206730.2 162434.2

# Obtain relative frequencies under different hypotheses:

> temp.fr <- temp$frequencies[,3:5]/apply(temp$frequencies[,3:5], 2, sum)

> head(temp.fr, 2)

ObsFreq ExpBase ExpBinC

GCT 0.01844679 0.01495704 0.01675390

GCC 0.02792159 0.01785693 0.02198235

> apply(temp.fr, 2, sum) # Check that are relative frequencies

ObsFreq ExpBase ExpBinC

1 1 1

# And see the results of est.H for each case:

> est.H(temp.fr$ObsFreq)

n Hest EN Info V.est

6.400000e+01 5.787137e+00 5.522068e+01 2.128631e-01 7.027120e-05

> est.H(temp.fr$ExpBase)

n Hest EN Info V.est

6.400000e+01 5.987789e+00 6.346057e+01 1.221146e-02 4.099026e-06

> est.H(temp.fr$ExpBinC)

n Hest EN Info V.est

6.400000e+01 5.928085e+00 6.088796e+01 7.191494e-02 2.492463e-05

> temp[[1]] # Compare with results of function est.H:

Hest ENC Info V.est

ObsFreq 5.787137 55.22068 0.21286313 7.027120e-05

ExpBase 5.987789 63.46057 0.01221146 4.099026e-06

ExpBinC 5.928085 60.88796 0.07191494 2.492463e-05
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> temp.fr <- temp$frequencies[,3:5]/apply(temp$frequencies[,3:5], 2, sum)

> cor(temp.fr)

ObsFreq ExpBase ExpBinC

ObsFreq 1.0000000 0.2515532 0.6084043

ExpBase 0.2515532 1.0000000 0.4038376

ExpBinC 0.6084043 0.4038376 1.0000000

> summary(temp.fr)

ObsFreq ExpBase ExpBinC

Min. :0.0003832 Min. :0.01038 Min. :0.006487

1st Qu.:0.0109385 1st Qu.:0.01466 1st Qu.:0.011923

Median :0.0147224 Median :0.01496 Median :0.015116

Mean :0.0156250 Mean :0.01562 Mean :0.015625

3rd Qu.:0.0190933 3rd Qu.:0.01767 3rd Qu.:0.018605

Max. :0.0401455 Max. :0.01826 Max. :0.028636

# Next figure in text (for humans)

plot(temp.fr$ObsFreq, temp.fr$ExpBase, ylim=c(0.005, 0.03), xlab="Observed codon frequency",

ylab="Expected codon frequency", pch=15, col="black")

points(temp.fr$ObsFreq, temp.fr$ExpBinC, pch=19, col="red")

legend("topleft", bg="white", legend=c("Bases", "Position"),

pch=c(15, 19), col=c("black", "red"))

grid()

abline(h=c(0.0175, 0.015, 0.0125, 0.01), lty=2,

col=c("darkblue", "darkgreen", "darkorange", "grey"))

legend("bottomright", bg="white",

legend=c("0.0175", "0.0150", "0.0125", "0.0100"), lty=2,

col=c("darkblue", "darkgreen", "darkorange", "grey"))

# Note the intriguing band pattern, marked with horizontal lines.

# A second example with the amoeba (Entamoeba histolytica) nc=10

> temp <- prop.codons(nc=10)

> temp[[1]]

Hest ENC Info V.est

ObsFreq 5.157767 35.69790 0.8422327 0.0003242247

ExpBase 5.543250 46.63206 0.4567499 0.0001869895

ExpBinC 5.359205 41.04702 0.6407946 0.0002459722

> temp.fr <- temp$frequencies[,3:5]/apply(temp$frequencies[,3:5], 2, sum)

> summary(temp.fr)

ObsFreq ExpBase ExpBinC

Min. :0.0001363 Min. :0.001893 Min. :0.0009764

1st Qu.:0.0020251 1st Qu.:0.006257 1st Qu.:0.0036976

Median :0.0085977 Median :0.011315 Median :0.0083194

Mean :0.0156250 Mean :0.015625 Mean :0.0156250

3rd Qu.:0.0230924 3rd Qu.:0.020074 3rd Qu.:0.0214081

Max. :0.0732798 Max. :0.062532 Max. :0.0620673

> cor(temp.fr)

ObsFreq ExpBase ExpBinC

ObsFreq 1.0000000 0.7096372 0.8535145

ExpBase 0.7096372 1.0000000 0.8563833

ExpBinC 0.8535145 0.8563833 1.0000000



19 CodonInfo Guide

# Plot in text for amoeba.

plot(temp.fr$ObsFreq, temp.fr$ExpBase, ylim=c(0.0009, 0.065),

xlab="Observed codon frequency", ylab="Expected codon frequency",

pch=15, col="black")

points(temp.fr$ObsFreq, temp.fr$ExpBinC, pch=19, col="red")

legend("topleft", bg="white", legend=c("Bases", "Position"),

pch=c(15, 19), col=c("black", "red"))

grid()

---------------------------------------------------------------------------------------

For the example with data from humans we see that Îr ≈ 0.2129 (Info in row ObsFreq), Îb ≈ 0.0122

(Info in row ExpBase) and Îc ≈ 0.0719 (Info in row ExpBinC) and ordering those values from smaller

up to larger we have that Îb < Îc < Îr; (0.0122 < 0.0719 < 0.2129). This implies that by taking for

calculations the true frequencies of the bases in humans we only gain an information of Îb ≈ 0.0122 bits
in average, while when taking also codons position into account the gain is of Îc ≈ 0.0719 in average. The
ratio of those two quantities, 0.0719/0.0122 ≈ 6, means that taking codons positions improves in around
6 times our prediction ability with reference of taking only bases frequencies into account. On the other
hand, the information gained by knowing the true frequencies of the bases is Îr ≈ 0.2129, implying that
there is a large gain of information by considering the true relative frequencies of the codons, instead of
the homogeneous relative frequencies of 1/64 we gain in more than 0.2 bits (in average per codon). The

quantity Îr ≈ 0.2129 is also a measure of how far is the true distribution of the codons in contrast with
the homogeneous distribution.

For the example with data from the amoeba we see that Îr ≈ 0.8422 (Info in row ObsFreq), Îb ≈
0.4568 (Info in row ExpBase) and Îc ≈ 0.6407 (Info in row ExpBinC). First note that the values of

information for amoeba are much larger than for humans, in fact we have for Îr, Îb and Îc such ratios
are (0.8422, 0.4568, 0.6407)/(0.2129, 0.0122, 0.0719) ≈ (4, 37, 9) or taking the average of those values we
get an average ratio of 17; i.e., in average we have more information in the case of the amoeba, and
that is a result of the fact that the amoeba has a frequency of DNA bases (and codons) that is far
away from homogeneity, i.e., from the case which each DNA base as well as each codon have the same
frequency.

Now we can analyze Figure 3 which present the plot of the relative and relative expected values for each
one of the 64 codons in the case of humans.

In Figure 3 we can see a dot plot of the observed relative frequencies of codons (relative ObsFreq) in
the X-axis by the expected relative codon frequencies when taking the true frequencies of bases (relative
ExpBase, black squares), and the expected relative frequencies (relative ExpBinC, red circles) in the Y -
axis for our own species, Homo sapiens. In Figure 3 the codon with a smaller relative frequency, relative
ObsFreq ≈ 0.0004, corresponds to “TAG” that codes for Stop, while the largest relative ObsFreq ≈ 0.04,
corresponds to “GAG” that codes for the amino acid Glu. The median of relative ObsFreq is ≈ 0.015
and the mean is approximately at the same value.

In Figure 3 we observe the relations that exist between the observed relative frequency of the codons
(X-axis) and the relative frequencies expected by taking into account only the base frequencies (black
squares) and taking into account also the codon position of the bases (red circles). In neither case
there is a strong linear relation between the relative ObsFreq with the frequencies expected taking into
account bases (relative ExpBase, black squares) or also codon position of those bases (relative ExpBinC,
red circles); in the first case Pearson’s correlation coefficient is r̂ ≈ 0.25 (r̂2 ≈ 0.06), and in the second
r̂ ≈ 0.61 (r̂2 ≈ 0.37); this means that the observed frequency of codons cannot be fully explained just by
the frequencies of bases or bases within codons. An interesting horizontal banding pattern is observed in
the squares in Figure 3 (such pattern is remarked by the dashed horizontal lines) and that pattern was
due to the relative abundances of the four DNA bases.
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Figure 3. Plot of relative frequency of codons (relative ObsFreq) in the X-axis, by the
expected relative codon frequencies when taking the true frequencies of bases (relative
ExpBase, black squares), and the expected relative frequencies (relative ExpBinC, red
circles) in the Y -axis for humans, Homo sapiens.

Figure 4 presents a figure homologous to Figure 3, but instead of data for humans we used the data of
the amoeba, which are the ones that present a larger difference with the homogeneous frequency of the
four DNA bases (1/4). In this case the correlations between observed and expected frequencies are larger
than in humans, r̂ ≈ 0.71 (r̂2 ≈ 0.50) for the values of observed and expected by bases (black squares)
and r̂ ≈ 0.85 (r̂2 ≈ 0.73) for observed and expected by bases and codons (red circles). However, those
large correlation values are strongly affected by some large values in both observed and expected values,
for example the almost overlapped black square and red circle in the upper right hand side corner of the
plot. That point corresponds to the codon “AAA” which is one of the two codons (“AAA” and “AAG”)
that code for the amino acid Lys. In turn, this high frequencies are explained in part by the fact that
the largest base frequency in the genes of the amoeba is for “A”, with relative frequency ≈ 0.3969, highly
larger than the expected neutral frequency 1/4 = 0.25

In summary, the results of the function “prop.codons()” allows detailed analyses of the informational
properties of codon frequencies and their expected frequencies under different hypotheses.
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Figure 4. Plot of relative frequency of codons (relative ObsFreq) in the X-axis, by the
expected relative codon frequencies when taking the true frequencies of bases (relative
ExpBase, black squares), and the expected relative frequencies (relative ExpBinC, red
circles) in the Y -axis for amoeba, Entamoeba histolytica.
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4.5. codon.bias(): Informational properties for amino acids coded by more than one codon.
The genetic code consists in the encoding of 21 different “signals” —corresponding to the 20 amino acids
plus the “Stop” —by an alphabet consisting of 64 codons. That is why it is said that the genetic code is
“degenerated”, meaning basically that various codons can result in the same amino acid, or, in another
words that for some cases are synonymous codons for the same amino acid or for the Stop signal.

In here we are going to speak about the 19 cases where there are more than one possibility of coding and,
to simplify notation we will be considering the “Stop” signal as one “amino acid” more.

In that context emerges the concept of “Codon Bias” as a measure of the heterogeneity of codon use, or
more exactly, as a measure of the preference of an specie to use a given codon in favor of other. It is
desirable to have a codon bias measure that will vary between 0 and 1, being equal to 0 only when all the
posible codons are used in exactly in same frequency and reaching the maximum value of 1 when only
one of the possible codons is used.

Codon Bias is relevant only for the cases where more than one codon could be used to code for the amino
acid, thus the cases of “Met” and “Trp” (coded by a single codon) are not relevant, and we need to
consider only the set of the 19 signals (18 amino acids plus “Stop”):

S = {“Ala”, “Arg”, “Asn”, “Asp”, “Cys”, “Gln”, “Glu”, “Gly”, “His”, “Ile”, “Leu”, “Lys”, “Phe”,
“Pro”, “Ser”, “Stop”, “Thr”, “Tyr”, “Val”}.

The set S can be partitioned into sub-sets taking into account the number of codons, say k, which code
for the amino acid, thus we obtain Table 5

Table 5. Segregation of S by number of codons, k.

k nk Sk: Set of amino acids coded by k codons:
2 9 S2 = {“Asn”, “Asp”, “Cys”, “Gln”, “Glu”, “His”, “Lys”, “Phe”, “Tyr”}
3 2 S3 = {“Ile”, “Stop”}
4 5 S4 = {“Ala”, “Gly”, “Pro”, “Thr”, “Val”}
6 3 S6 = {“Arg”, “Leu”, “Ser”}

Table 5 shows how the set S is partitioned into 4 disjoint subsets, S2, S3, S4 and S6 (S = S2∪S3∪S4∪S6),
which contain nk = 9, 2, 5 and 3 amino acids, respectively. Note that∑

k

k × nk = (2× 9) + (3× 2) + (4× 5) + (6× 3) = 62

which is the number of codons coding for more than one amino acid, because we are excluding codons
“AGT” and “TGG” which code for amino acids “Met” and “Trp”, respectively.

It is convenient to have a measure of codon bias that will give us values in the interval [0, 1], in such a
way that the value of 0 (minimum codon bias) will indicate a full equilibrium of the relative frequencies
of the k codons that code for a given amino acid, and that happens only when all k codons are used in
the same frequency, 1/k, in the amino acid studied (in a specific species), while it will take the value of 1
(maximum codon bias) only when a single codon –of the k available, is employed by the organism.

A coefficient that fulfill such requirements is given by

(5) Bik =
k − Eik

k − 1

where Bik is the codon bias for the ith amino acid coded by exactly k possible codons and Eik is the
“Effective Number of Codons” inferred from the data (see below for a definition).

The subindexes i, k in equation (5) can take a total of 19 different values. First, in Table 5 we see that
k could be 2, 3, 4 or 6, while i (given k) can take values 1, 2, · · ·nk. For example, for k = 3 we see in
Table 5 that the amino acids coded by exactly 3 codons are in the set S3 = {“Ile”, “Stop”}, thus we will
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have coefficients Bik that could be denoted by BIle 3 and BStop 3 respectively (even when this notation
is somehow redundant). Other way to denote that is to agree in that i = 1, k = 3 will denote the first
amino acid in the set S3 (“Ile”), while i = 2, k = 3 will denote the second one, i.e., “Stop”, etc. Even
when this notation could be considered too convoluted at first, in computational practice we can always
use only the abbreviation of the amino acid name, which immediately determine the value of k, given by
the genetic code, i.e., when we locate an amino acid in one of the rows of Table 5 we immediately know
how many codons (k) code for that amino acid.

Now we will see that all values of Bik ∈ [0, 1], that is that all values of the coefficient will be between
zero and one. To see that consider that Eik denotes the “Effective Number of Codons”, defined as

Eik = 2Hik

where Hik is the entropy for amino acid i which is coded by k codons and depends only on the vector of
relative frequencies for the nk codons for amino acid i, say on the vector pik = (p1k, p2k · · · pnk

). To clarify
let’s see an example. The amino acid “Gln” is coded by two codons, “CAA” or “CAG”. In humans the
relative frequencies of those two codons are

pGln ≈ (0.2702, 0.7298)

for “CAA” and “CAG”, respectively. Thus we have that the entropy associated with those relative
frequencies, say HGln is

HGln ≈ −(0.2702× log2(0.2702) + 0.7298× log2(0.7298)) ≈ 0.8418

(keeping all decimal places we obtain a more more precise result HGln = 0.8417565). Now we can calculate
the Effective Number of Codons used in our species to code for “Gln”, say EGln as

EGln ≈ 20.8417565 = 1.792231

This figure means that, even when two codons can code for “Gln” our species is using only approximately
1.79 effective codons when coding that amino acid. Finally we obtain the bias for the case of “Gln”
substituting in equation (5) the values k = 2 and EGln = 1.792231, say

BGln =
2− 1.792231

2− 1
= 0.207769

and that value is the largest bias for the 19 possible amino acids in humans (see Box 6).

To see in which cases we will have Bik = 0, note that Hik will take its maximum value, Hik = log2(k),
only when each one of the k relative frequencies used to obtain Hik is identical to 1/k and in that case
we will have Hik = log2(k) –se equation (2). Now, if Hik = log2(k) we will have that

Eik = 2Hik = 2log2(k) = k

Substituting Eik = k in equation (5) we obtain

Bik =
k − Eik

k − 1
=

k − k

k − 1
= 0

or in words, we will obtain a codon bias equal to 0 only when the relative frequencies of each one of the
k codons are identical to 1/k, i.e., only when we have a perfectly balanced use of the k codons.

Now we need to consider which will be the maximum value of Bik. Conceptually, the bias, Bik, must
be maximum when one of the relative frequencies for the k codons is equal to 1 and all the other k − 1
relative frequencies are equal to 0, because in that case we have the most unbalanced use of codons. If
that is the case we will have that Hik = 0 and in consequence Eik = 20 = 1 and in that case

Bik =
k − Eik

k − 1
=

k − 1

k − 1
= 1

or in words, when only one codon of the k ones which code for an amino acid is used, the codon bias
coefficient takes its maximum value of 1.
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Figure 5 shows the plot of Hi 2 and Bi 2 as function of the relative frequency of the first codon in the
cases where two codons code for an amino acid (second sub-index k = 2 in the functions).
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Figure 5. Entropy (Hi 2(p), dotted green line) and Codon Bias (Bi 2(p), continuous red
line) in the Y -axis, as function of the relative frequency of the first codon (p in the X-
axis), for the cases of amino acids coded by two codons (second sub-index k = 2 in both
functions). The red inverted triangle points to the minimum value of Bi 2 = 0, which is
reached at X = 1/2. Blue dashed lines and circle give the coordinates for the example with
the amino acid “Gln” in humans where relative frequency of the first codon is X = 0.2702
which gives codon bias Y = BGln ≈ 0.2078

In the case k = 2 both, codon bias (Bi 2) and entropy for codon use (Hi 2) for a given amino acid i can be
considered as function of a single parameter, say the relative frequency of the first codon, p ∈ [0, 1], given
that the relative frequency of the other codon is fixed as 1− p. Then it is justified (in this case only) to
write Bi 2(p) and Hi 2(p). For k > 2; k = 3, 4, 6 both, Bik and entropy for codon use, Hik are functions
of k − 1 parameters, given than one of the relative frequencies is fixed by the equality

∑
i pi = 1.

Figure 5 shows that for k = 2 codon bias, Bi 2(p) (red continuous line), and entropy for codon use,
Hi 2(p) (green dotted line), have an inverse behavior in the sense that the minima and maxima occur
at the same values of the frequency of the first codon, say p = 0, 0.5 and 1, i.e., minp(Hi 2(p)) = 0
occurs at two points, p = 0 and p = 1, while at p = 0.5 we have minp(Bi 2(p)) = Bi 2(0.5) = 0 and
maxp(Hi 2(p)) = Hi 2(0.5) = 1. In fact, there is an almost inverse lineal relation between Bi 2(p) and
Hi 2(p) with a Pearson’s correlation coefficient r ≈ −1 (not shown).

Note that for the cases where the number of codons that code the amino acid, k, are larger than k = 2,
i.e., for the cases k = 3, 4, 6 it is not possible to make a bi-dimensional plot as the one presented in Figure
5. That is so because for k = 3, 4, 6 the bias, Bi, depends on 3, 4 or 6 relative frequencies, respectively,
and thus the change in Bi cannot be represented in a bi-dimensional space.
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Box 6 presents an example of the use of the function codon.bias().

---------------------------------------------------------------------------------------

# Box 6.

# Examples of function codon.bias()

> ? codon.bias # Help for the function

# lets calculate main results for our specie (Homo sapiens)

# cb.Hs short for "Codon Bias Homo sapiens", we will use

# only the main parameters:

> cb.Hs <- codon.bias(nc=16, only.main=TRUE)

# See generalities of the results

> class(cb.Hs)

[1] "data.frame"

> dim(cb.Hs)

[1] 19 5

> names(cb.Hs)

[1] "aa" "n.cod" "H.per.aa" "ENC" "CodBias.aa"

> head(cb.Hs, 2) # See the first 2 rows.

aa n.cod H.per.aa ENC CodBias.aa

1 Ala 4 1.872992 3.662915 0.11236154

2 Arg 6 2.501453 5.662555 0.06748894

> summary(cb.Hs[,2:5])

n.cod H.per.aa ENC CodBias.aa

Min. :2.000 Min. :0.8418 Min. :1.792 Min. :0.001361

1st Qu.:2.000 1st Qu.:0.9951 1st Qu.:1.993 1st Qu.:0.010492

Median :3.000 Median :1.4903 Median :2.810 Median :0.067489

Mean :3.263 Mean :1.5031 Mean :3.064 Mean :0.067256

3rd Qu.:4.000 3rd Qu.:1.9096 3rd Qu.:3.757 3rd Qu.:0.091400

Max. :6.000 Max. :2.5015 Max. :5.663 Max. :0.207769

> table(cb.Hs$n.cod) # How many rows per number of codons

2 3 4 6

9 2 5 3

# And we are reminded that, of the 19 amino acids coded by more than

# one codon we have 9 that are coded by 2 codons, etc.

> apply(cb.Hs[,2:5], 2, sd) # S per variable

n.cod H.per.aa ENC CodBias.aa

1.48481594 0.57346512 1.29157156 0.06478971

# And now let’s calculate the Coefficient of variation (CV)

# for each one of the variables:

> apply(cb.Hs[,2:5], 2, sd)/apply(cb.Hs[,2:5], 2, mean) # Coefficient of Variance

n.cod H.per.aa ENC CodBias.aa

0.4550242 0.3815111 0.4215673 0.9633366

# See which aa give the minimum and maximum of CodBias.aa

# With the minimum CodBias.aa we have

> cb.Hs[cb.Hs$CodBias.aa==min(cb.Hs$CodBias.aa),]

aa n.cod H.per.aa ENC CodBias.aa
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3 Asn 2 0.999018 1.998639 0.001360884

# and with the maximum

> cb.Hs[cb.Hs$CodBias.aa==max(cb.Hs$CodBias.aa),]

aa n.cod H.per.aa ENC CodBias.aa

6 Gln 2 0.8417565 1.792231 0.2077692

# Let’s see how the number of codons affects the

# mean of the Effective Number of Codons (ENC)

> tapply(cb.Hs$ENC, cb.Hs$n.cod, mean)

2 3 4 6

1.968585 2.821110 3.720192 5.416857

# Note that mean of ENC is close to n.cod, you could also try

> hist(cb.Hs$ENC) # Not shown in main text

# And thus the strong linear relation between those two variables

> cor.test(cb.Hs$ENC, cb.Hs$n.cod)

Pearson’s product-moment correlation

data: cb.Hs$ENC and cb.Hs$n.cod

t = 37.878, df = 17, p-value < 2.2e-16

alternative hypothesis: true correlation is not equal to 0

95 percent confidence interval:

0.9844297 0.9977920

sample estimates:

cor

0.9941276

# And see the dot plot of those two variables:

> plot(cb.Hs$n.cod, cb.Hs$ENC) # Not shown in main text

# Now, let’s calculate the lineal correlation coefficient

# (Pearson’s product-moment correlation) for all

# pairs of numerical variables,

> round(cor(cb.Hs[,2:5]), 4)

n.cod H.per.aa ENC CodBias.aa

n.cod 1.0000 0.9845 0.9941 0.5180

H.per.aa 0.9845 1.0000 0.9886 0.4635

ENC 0.9941 0.9886 1.0000 0.4449

CodBias.aa 0.5180 0.4635 0.4449 1.0000

# Let’s make a dot plot of all numeric variables

# (Figure 6 in main text)

> plot(cb.Hs[,2:5])

---------------------------------------------------------------------------------------

In Box 6 we see the main results of the function codon.bias() when run with the data for our own species.
Command “summary(cb.Hs[,2:5])” gives us the summary of all the numeric variables, “n.cod” –the
number of codons that above we called k and which has values 2, 3, 4 or 5 (see result of “table(cb.Hs$n.cod)”),
“H.per.aa” –The entropy per amino acid that we have denoted by Hi k, the Effective Number of Codons,
“ENC” –denoted above by Eik, and finally the main result, “CodBias.aa” which in our notation is
Bik.

As stressed in the abstract, here we will not discuss the biological implications of the values of the
variables; that will be done in a manuscript in preparation putatively entitled “Sampling informational
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properties of codon use through the tree of life”; however, it appears that interesting and relevant biological
knowledge could be obtained from the use of the “codon.bias()” function..

In Box 6 we see that the variable with a higher value of the Coefficient of Variation or “CV” is the
codon bias coefficient (“CodBias.aa”) with a value near to one, CV(CodBias.aa) = 0.9633366, that is
more than two times larger than the CV’s of the other 3 variables (“n.cod, “H.per.aa and “ENC”). This
fact can be interpreted in the sense that the codon bias coefficient set apart (discriminates) each one
of the 19 amino acids better than any other of the three variables. That is corroborated by estimating
all pairs of Pearson’s product-moment correlations, r̂, resulting from command “cor(cb.Hs[,2:5])”.
By examining that matrix we see that the lower correlations, 0.5180, 0.4635 and 0.4449 result from the
pairs containing the variable CodBias.aa, while the pairs that do not contain that variable are highly
correlated between them, with a minimum value > 0.98 This means that the codon bias coefficient is
summarizing in a non-lineal way the values of the other three variables, to which it is functionally related
(see equation (5)). Figure 6 present a dot plot of all pairs of variables, resulting from the command
“plot(cb.Hs[,2:5])”.

In Figure 6 we can corroborate the very strong lineal relations that exist between the pairs of variables
that do not include CodBias.aa. In contrast, the dot-plots including CodBias.aa (last column or last
row of boxes in Figure 6) present a more disperse and less lineal relation. The set of almost overlapped
points in the down left hand side corner of those three boxes correspond to the 9 amino acids coded by
two codons (k = 2), which obviously have the lowest values of “n.cod”, “H.per.aa” and “ENC” in the
data set.

5. Further data and analyses

Functions in the R package CodonInfo allow a direct analysis of intra-species informational properties
of codon use. Specialists in a given species can surly extract interesting biological conclusions from the
results of those functions. However, inter-species analyses appear more appealing to the non-specialist,
given that sets of 2 or more species could be compared about the informational properties of codon
use. That will be boarded in the manuscript in preparation with working title “Sampling informational
properties of codon use through the tree of life”.

As previously mentioned, a limitation of the package is the inclusion of only 35 species arbitrarily selected
from the immense number of possibilities. The number of species sampled can be increased by download-
ing more files with raw data of codon frequencies from the web site mentioned in (Subramanian et al.,
2022), or possibly from another sources. I am grateful to the research team that published Subramanian
et al. (2022) by making publicly available the Codon Statistics Database, from which the data in this
R package were obtained. I am preparing a guide to include more data in the package, the document
“IncludeFurtherDataInCodonInfo.pdf” which you will find in the same web address (URL) from which
you downloaded the package CodonInfo.

Finally, I will very much welcome the possibility to collaborate with researchers interested in this
topic; if that is your case, please send me an e-mail to “octavio.martinez@cinvestav.mx” with subject
“Collaboration in codon use”.

https://en.wikipedia.org/wiki/Coefficient_of_variation
http://codonstatsdb.unr.edu/
mailto:octavio.martinez@cinvestav.mx
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