Published July 6, 2024 | Version v1
Journal article Open

Tendencias en el uso de nanopartículas en la agricultura

  • 1. Centro de Investigación en Química Aplicada
  • 2. ROR icon Universidad Autónoma de Nuevo León
  • 3. ROR icon Centro de Investigación Biomédica en Red
  • 4. ROR icon Universidad Autónoma Agraria Antonio Narro

Description

El objetivo de esta revisión es visualizar las tendencias en el uso de nanopartículas en la agricultura, siguiendo la metodología de revisión de la literatura disponible en bases de datos, como revistas, libros, patentes y otros documentos. Resultados: la integración de nanopartículas dentro de la agro tecnología ha provocado una profunda revolución en múltiples ámbitos de la agricultura. Estas entidades minúsculas han surgido como grandes aliados en el control biológico, gestión eficaz de plagas y enfermedades en los cultivos. Los nano-pesticidas, producto de la innovación nanotecnológica, muestran una entrega mejorada de pesticidas, mecanismos de liberación controlada y una mayor adherencia a las superficies de las plantas, reduciendo así las cantidades de pesticidas y limitando la dispersión ambiental, mitigando así el daño potencial. El despliegue de nano sensores y nano biosensores asume un papel crucial en la gestión pos-cosecha, detectando el deterioro, presencia de patógenos y parámetros de calidad en productos agrícolas. Además, las nanopartículas muestran un prometedor potencial en la degradación de pesticidas presentes en el suelo y agua, empleando técnicas de nano-remediación para descomponer residuos de pesticidas y mitigar su impacto adverso en los ecosistemas y la salud humana.

Files

3. Nanoparticulas Compl.pdf

Files (650.7 kB)

Name Size Download all
md5:8aa142678f30b52246c558228db4b521
650.7 kB Preview Download

Additional details

Dates

Accepted
2024-07-06
Acepted

References

  • Adam, T., & Gopinath, S. C. (2022). Nanosensors: Recent perspectives on attainments and future promise of downstream applications. Process Biochemistry, 117, 153-173. https://doi.org/10.1016/j.procbio.2022.03.024.
  • Adisa, I. O., Reddy Pullagurala, V. L., Rawat, S., Hernandez-Viezcas, J. A., Dimkpa, C. O., Elmer, W. H., ... & Gardea-Torresdey, J. L. (2018). Role of cerium compounds in Fusarium wilt suppression and growth enhancement in tomato (Solanum lycopersicum). Journal of agricultural and food chemistry, 66(24), 5959-5970. https://doi.org/10.1021/ACS.JAFC.8B01345.
  • AlSaeedi, A. H. (2022). Enhancement of soil water characteristics curve (SWCC) and water use efficiency of cucumber (Cucumis sativus L.) in sandy soils by using silica nanoparticles. Journal of King Saud University-Science, 34(4), 101926. https://doi.org/10.1016/j.jksus.2022.101926.
  • Aydin, S. (2016). Removal of organophosphorus pesticides from aqueous solution by magnetic Fe3O4/red mud‐nanoparticles. Water Environment Research, 88(12), 2275-2284. https://doi.org/10.2175/106143016X14733681696004.
  • Badawy, M. E., Marei, A. E. S. M., & El‐Nouby, M. A. (2018). Preparation and characterization of chitosan‐siloxane magnetic nanoparticles for the extraction of pesticides from water and determination by HPLC. Separation Science Plus, 1(7), 506-519. https://doi.org/10.1002/SSCP.201800084.
  • Banotra, M., Kumar, A., Sharma, B.C., Nandan, B., Verma, A., Kumar, R., Gupta, V., Bhagat, S., Prospectus of use of Nanotechnology in Agriculture–A Review, Int J Curr Microbiol Appl Sci 6 (2017) 1541–1551. https://doi.org/10.20546/ijcmas.2017.612.172.
  • Borgatta, J., Ma, C., Hudson-Smith, N., Elmer, W., Plaza Perez, C. D., De La Torre-Roche, R., ... & Hamers, R. J. (2018). Copper based nanomaterials suppress root fungal disease in watermelon (Citrullus lanatus): role of particle morphology, composition and dissolution behavior. ACS Sustainable Chemistry & Engineering, 6(11), 14847-14856. https://doi.org/10.1021/acssuschemeng.8b03379.
  • Chatterjee, K., Alka, Kumar, S., Sharma, R. K., & Kumari, P. (2023). Effective Removal of Nitrogenous Pesticides from Water Using Functionalized Calix [4] arene‐Decorated Magnetite Nanoparticles. ChemistrySelect, 8(3), e202203426. https://doi.org/10.1002/slct.202203426.
  • Cumplido-Nájera, C. F., González-Morales, S., Ortega-Ortíz, H., Cadenas-Pliego, G., Benavides-Mendoza, A., & Juárez-Maldonado, A. (2019). The application of copper nanoparticles and potassium silicate stimulate the tolerance to Clavibacter michiganensis in tomato plants. Scientia horticulturae, 245, 82-89. https://doi.org/10.1016/j.scienta.2018.10.007.
  • Duan, Y., Xu, M., Gao, S., Liu, H., Huang, S., & Wang, B. (2016). Long-term incorporation of manurwith chemical fertilizers reduced total nitrogen loss in rain-fed cropping systems. Scientific Reports, 6(1), 33611. https://doi.org/10.1038/srep33611.
  • Duan, Y., Xu, M., Gao, S., Yang, X., Huang, S., Liu, H., & Wang, B. (2014). Nitrogen use efficiency in a wheat–corn cropping system from 15 years of manure and fertilizer applications. Field Crops Research, 157, 47-56. https://doi.org/10.1016/j.fcr.2013.12.012.
  • El Beyrouthya, M., & El Azzi, D. (2014). Nanotechnologies: novel solutions for sustainable agriculture. Adv Crop Sci Technol, 2(03), 8863. https://doi.org/10.4172/2329-8863.1000e118.
  • El-Saadony, M. T., ALmoshadak, A. S., Shafi, M. E., Albaqami, N. M., Saad, A. M., El-Tahan, A. M., & Helmy, A. M. (2021). Vital roles of sustainable nano-fertilizers in improving plant quality and quantity-an updated review. Saudi journal of biological sciences, 28(12), 7349-7359. https://doi.org/10.1016/j.sjbs.2021.08.032.
  • Giannousi, K., Avramidis, I., & Dendrinou-Samara, C. (2013). Synthesis, characterization and evaluation of copper based nanoparticles as agrochemicals against Phytophthora infestans. RSC advances, 3(44), 21743-21752. https://doi.org/10.1039/c3ra42118j.
  • Guleria, G., Thakur, S., Shandilya, M., Sharma, S., Thakur, S., & Kalia, S. (2023). Nanotechnology for sustainable agro-food systems: The need and role of nanoparticles in protecting plants and improving crop productivity. Plant Physiology and Biochemistry, 194, 533-549. https://doi.org/10.1016/j.plaphy.2022.12.004.
  • Imada, K., Sakai, S., Kajihara, H., Tanaka, S., & Ito, S. (2016). Magnesium oxide nanoparticles induce systemic resistance in tomato against bacterial wilt disease. Plant Pathology, 65(4), 551-560. https://doi.org/10.1111/PPA.12443.
  • Iqbal, N., Sehar, Z., Fatma, M., Umar, S., Sofo, A., & Khan, N. A. (2022). Nitric oxide and abscisic acimediate heat stress tolerance through regulation of osmolytes and antioxidants to protect photosynthesis and growth in wheat plants. Antioxidants, 11(2), 372. https://doi.org/10.3390/ANTIOX11020372/S1.
  • Kanwal, A., Sharma, I., Bala, A., Upadhyay, S.K., & Singh, R. (2023). Agricultural Application of Synthesized ZnS Nanoparticles for the Development of Tomato Crop, Letters in Applied NanoBioScience. https://doi.org/10.33263/LIANBS122.058.
  • Kiani, M. T., Ramazani, A., & Taghavi Fardood, S. (2023). Green synthesis and characterization of Ni0. 25Zn0. 75Fe2O4 magnetic nanoparticles and study of their photocatalytic activity in the degradation of aniline. Applied Organometallic Chemistry, 37(4), e7053. https://doi.org/10.1002/AOC.7053.
  • Mohan, N., Ahlawat, J., Sharma, L., Pal, A., Rao, P., Redhu, M., & Yadav, S. (2023). Engineered nanoparticles a novel approach in alleviating abiotic and biotic stress in millets: A complete study. Plant Stress, 100223. https://doi.org/10.1016/j.stress.2023.100223.
  • Mukherjee, A., Hawthorne, J., White, J. C., & Kelsey, J. W. (2017). Nanoparticle silver coexposure reduces the accumulation of weathered persistent pesticides by earthworms. Environmental toxicology and chemistry, 36(7), 1864-1871. https://doi.org/10.1002/ETC.3698.
  • Nassaj-Bokharaei, S., Motesharezedeh, B., Etesami, H., & Motamedi, E. (2021). Effect of hydrogel composite reinforced with natural char nanoparticles on improvement of soil biological properties and the growth of water deficit-stressed tomato plant. Ecotoxicology and Environmental Safety, 223, 112576. https://doi.org/10.1016/j.ecoenv.2021.112576.
  • Olad, A., Zebhi, H., Salari, D., Mirmohseni, A., & Tabar, A. R. (2018). Slow-release NPK fertilizer encapsulated by carboxymethyl cellulose-based nanocomposite with the function of water retention in soil. Materials Science and Engineering: C, 90, 333-340. https://doi.org/10.1016/j.msec.2018.04.083.
  • Pandey, G. (2018). Challenges and future prospects of agri-nanotechnology for sustainable agriculture in India. Environmental Technology & Innovation, 11, 299-307. https://doi.org/10.1016/j.eti.2018.06.012.
  • Pasquoto-Stigliani, T., Guilger-Casagrande, M., Campos, E. V., Germano-Costa, T., Bilesky-José, N., Migliorini, B. B., ... & Lima, R. (2023). Titanium biogenic nanoparticles to help the growth of Trichoderma harzianum to be used in biological control. Journal of Nanobiotechnology, 21(1), 166. https://doi.org/10.1186/s12951-023-01918-y
  • Samal, S., Mohanty, R. P., Mohanty, P. S., Giri, M. K., Pati, S., & Das, B. (2023). Implications of biosensors and nanobiosensors for the eco-friendly detection of public health and agro-based insecticides: A comprehensive review. Heliyon. https://doi.org/10.1016/j.heliyon.2023.e15848
  • Satti, S. H., Raja, N. I., Javed, B., Akram, A., Mashwani, Z. U. R., Ahmad, M. S., & Ikram, M. (2021). Titanium dioxide nanoparticles elicited agro-morphological and physicochemical modifications in wheat plants to control Bipolaris sorokiniana. Plos one, 16(2), e0246880. https://doi.org/10.1371/journal.pone.0246880
  • Schaller, J., Cramer, A., Carminati, A., & Zarebanadkouki, M. (2020). Biogenic amorphous silica as maidriver for plant available water in soils. Scientific Reports, 10(1), 2424. https://doi.org/10.1038/s41598-020-59437-x
  • Seleiman, M. F., Al-Selwey, W. A., Ibrahim, A. A., Shady, M., & Alsadon, A. A. (2023). Foliar applications of ZnO and SiO2 nanoparticles mitigate water deficit and enhance potato yield and quality traits. Agronomy, 13(2), 466. https://doi.org/10.3390/AGRONOMY13020466
  • Shakoor, N., Adeel, M., Zain, M., Zhang, P., Ahmad, M. A., Farooq, T., & Rui, Y. (2022). Exposure of cherry radish (Raphanus sativus L. var. Radculus Pers) to iron-based nanoparticles enhances its nutritional quality by trigging the essential elements. NanoImpact, 25, 100388. https://doi.org/10.1016/j.impact.2022.100388
  • Shebl, A., Hassan, A. A., Salama, D. M., Abd El-Aziz, M. E., & Abd Elwahed, M. S. (2019). Green synthesis of nanofertilizers and their application as a foliar for Cucurbita pepo L. Journal of Nanomaterials, 2019, 1-11. https://doi.org/10.1155/2019/3476347
  • Usman, M., Farooq, M., Wakeel, A., Nawaz, A., Cheema, S. A., ur Rehman, H., ... & Sanaullah, M. (2020). Nanotechnology in agriculture: Current status, challenges and future opportunities. Science of the total environment, 721, 137778. https://doi.org/10.1016/j.scitotenv.2020.137778
  • Verma, K. K., Song, X. P., Degu, H. D., Guo, D. J., Joshi, A., Huang, H. R., ... & Li, Y. R. (2023). Recent advances in nitrogen and nano-nitrogen fertilizers for sustainable crop production: a mini-review. Chemical and Biological Technologies in Agriculture, 10(1), 111. https://doi.org/10.1186/s40538-023-00488-3
  • Xiong, H., Peng, H., Kong, Y., Wang, N., Yang, F., Meni, B. H., & Lei, Z. (2022). High salt toleranchydrogel prepared of hydroxyethyl starch and its ability to increase soil water holding capacity and decrease water evaporation. Soil and Tillage Research, 222, 105427. https://doi.org/10.1016/J.STILL.2022.105427
  • Yang, F. F., & McPherson, B. (2007). Assessment and management of hearing loss in children with cleft lip and/or palate: a review. Asian Journal of Oral and Maxillofacial Surgery, 19(2), 77-88. https://doi.org/10.1016/S0915-6992(07)80021-5
  • Zain, M., Ma, H., Nuruzzaman, M., Chaudhary, S., Nadeem, M., Shakoor, N., ... & Ahamad, T. (2023). Nanotechnology based precision agriculture for alleviating biotic and abiotic stress in plants. Plant Stress, 100239. https://doi.org/10.1016/j.stress.2023.100239