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Abstract 

This paper summarizes the definitions and 
properties of frequency and time variance estimators 
based on the “total” approach. These definitions and 
properties are not available in one document, yet 
this statistical approach produces variance estimates 
with the best confidence, as indicated by equivalent 
degrees of freedom (edf), for the time-domain 
sample variances most frequently used to analyze 
the stability of oscillators. There are differences in 
the total approach as applied to each variance 
because each variance reports noise levels for a 
specific range of power-law noise processes. 
Development of these total definitions has been 
motivated by the goal of realizing the highest edf 
and the lowest bias across this range while keeping 
the algorithms relatively simple. The relevant 
variances are [ 1-41: 

Allan variance, oZy(r) 
0 Modified Allan variance, Mod-a’,(T) 
0 Time variance, oZX(~)  

Hadamard variance, Ho2y(r) 
The Hadamard variance is used in managing clocks 
of the Global Positioning System (GPS). 

Specifically we will give precise definitions for 
sample variances that use the “total” approach and 
whose corresponding names are: 

Total variance 
0 Modified Total variance 

Time Total variance 
0 Hadamard Total variance 

The square root of a sample variance is usually 
reported; hence its designation is “deviation” rather 
than “variance.” In addition to total definitions, we 
will give corresponding bias and edf formulae. 

Introduction 

Random fluctuations in frequency in precision 
oscillators are reasonably modeled by a spectral 
density function S,@ that follows broadband power- 
law hz behavior. These random fluctuations can 
be represented as the sum of seven independent 
noise processes, thus: 

where each h, is a constanf and a takes integer 
values 2,  1, 0, -1 ,  -2, -3, -4 (corresponding 
respectively to white phase modulation or WHPM, 
flicker PM or FLPM, white frequency modulation or 
WHFM, flicker FM or FLFM, random-walk FM or 
RWFM, flicker-walk FM or FWFM, and random- 
run FM or RRFM). ,Note that this power-law range 
has been extended to a = -4 because oscillators with 
high levels of drift need to have “noise on drift” 
characterized. fh is the high-frequency equivalent 
cut-off of a low-pass filter. 

Time statistics that are frequency variances in 
the tau domain, where T = averaging time, have a T 
dependence given by T~ for power-law processes. 
Two variances efficiently distinguish noises in the 
range -4 I a I +2 as follows: 

Mod-02,(r) -2 5 a I +2, 
Iio2,(r> -4 I a IO, 

and a simple straight-line (log-log scale) mapping 
between r domain and f domain is p = -a-1. The 
Allan variance (d,(~)) covers -2 I a I +2 but does 
not distinguish a = + I  from a = +2, so its effective 
range, -2 I a I 0, is primarily for distinguishing 
FM noises. Finally, Time variance is defined as 
a2x(r) = ( ~ ~ / 3 ) .  Mod-o’,(r). 

The “Total” Approach 

“Total” statistics improve the confidence of the 
analysis and characterization of instabilities in 
oscillators and synchronization systems [5-113. The 
total variance approach periodically extends a data 
sequence beyond its normal measurement duration 
in such a way that a particular time statistic is 
expected to have the same value with extended data 
as without. For those statistics that estimate 
components of broadband noise processes, the 
approach can significantly reduce the spread or 
uncertainty in the result as represented by an 
increase in equivalent degrees of freedom. The edf 
formulae are a convenient, empirical or “fitted” 
approximation with an observed error below 10% of 
numerically computed exact values derived from a 
Monte-Carlo simulation method using the 
coeficients of Tables 1, 2 ,  and 3 to follow. For 
computing biases, a proven power-law detection 
scheme is given in ref. [4]. 
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Total Variance 

Noise 
White FM 

Flicker 

Total variance is a descriptive statistic that 
serves as an excellent estimator of the Allan 
variance [SI. We are given sequential time-error At 
values denoted as a data set {x,}, n = 1 to N,, where 
N, represents the total number of points in the data 
set (Figure 1). We first create an extended, virtual 
data sequence, {x'}. This is accomplished by 
performing an inverted, even reflection (Figure 2). 
Using a utility indexj, for i  = 1 to N, let 

a a b C 

0 0 1 so0 0 
-1 0.481 1.168 0.222 

We compute the total variance using the 
extended virtual data sequence. 

Total-dy(r) = 

where m =  TIT^. 
There are two important differences in the 

computation of the Total variance when compared 
to the following other types of total variances. First, 
since we have not removed a slope from the data, 
the reflection must be inverted to avoid a 
discontinuity at the extensions. Second, we have 
used the entire data set for one extension and 
subsequent computation of the Total variance. One 
overall extension is sufficient for the relatively short 
range of power laws (WHFM, FLFM, and RWFM). 

Bias and Equivalent Degrees of Freedom 

For a data run of duration T = &Nx-l), where 
ro = sampling interval, the normalized bias and edf 
for Total variance are given by 

E (Total - 0: (z, T ) }  r nbias(r) = - 1  = -a-, 
0: (I) T 

T 
edf(r> = edf[Toral- 0: (r, T ) ]  x b - - c, 

where E{=) is expectation of {.), 0 < r <  TI2 and a, b, 
c are given in Table 1. 

z 

Table 1. Coefficients for computing normalized 
bias and edf for Total variance. 

FM 
Random I -2 I 0.750 1 0.927 I 0.358 

1 Walk FM I 

Modified Total Variance 

The Modified Total variance is used to 
distinguish white phase modulation (WHPM) and 
flicker phase modulation (FLPM). We are given a 
data set {x,), n = 1 to N,, where N, represents the 
total number of points in the data set. We choose a 
subsequence {x,}, of {x,,}, n Si S n+3m, consisting 
of 3m data points, where m = d.ro (Figure 3). 
Working only on this subsequence, we remove a 
linear trend (or slope) fkom the data (Figure 4): 

Ox, = x, - c,i , (1) 

where c1 is a frequency offset removed to minimize 

I =, 

to satisfy a least-squared-error criterion for the 
subsequence. In practice, it is sufficient to remove a 
background slope computed by averaging the first 
and last halves of the subsequence divided by half 
the interval. 

Now extend the subsequence {Ox,},, at both ends 
by an uninverted, even reflection (Figure 5) .  For i = 

n+l to &3m, let 

a # a  

3m+l-i xi = x 
O #  a 

X 3 m + r =  Xi 

X6m+i = X3m+l-r 
" #  O 

(3) 

to create 

b,# 1. 
In the above equations, we are creating and re- 

We now compute the Modified Total variance 
numbering the extended subsequence in one step. 

on the extended subsequence. Define Oz,# as 
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where the overbar means an average over m points 
starting at the indexes i, i+m, and i+2m. 

Maximum-overlap estimator of TotalMod- 
o,'(T) is a simple average of its subestimates given 
by: 

TotalMod - oJ' ( r )  = 

( 5 )  

Noise 
White 
PM 

PM 

Walk 
PM 

Walk 

Flicker 

Random 

Flicker 

for 1 I m I LNX/3J, where Lcl means the integer part 
of c. 

a a bo bl 
+2 -0.005 0.559 1.004 

+ I  -0.149 0.868 1.140 

0 -0.229 0.938 1.696 

-1 -0.283 0.974 2.554 

Bias and Equivalent Degrees of Freedom 

PM 
Random 

The normalized bias and edf for Modified Total 
variance are given by 

-2 -0.321 1.276 3.149 

-1 = a ,  1 E {TotaIMod - o: (z, T ) }  
E { M o d - o l ( r , T ) )  

nbias( z) = 

edf(z) = edTora1Mod- ol (r, T ) ]  = x 
bo + b, ./; ' 

/T  
where E{.) is expectation of {.), 0 < r l  Tl3, r L  
16ro, and a, bo, and b, are given in Table 2. 

Table 2. Coefficients for computing normalized 
bias and edf for Modified Total variance. 

RunPM I I I I 

Time Total Variance 

Time Total variance, as with the original Time 
variance, is derived directly from the Modified Total 
variance. We perform exactly the same removal of 
a linear trend and extension on the chosen 
subsequence as we did with the Modified Total 
variance (equations 1-3 above). Modified Total 

r L  Total - of (z) = - TotaIMod - ol (5) 
2 
J 

variance is computed (equations 4-5), and Total 
Time variance is finally derived: 

This definition supersedes an earlier definition 
given in ref. [7]. Bias and equivalent degrees of 
freedom for Time Total variance are derived as in 
Modified Total variance. 

Hadamard Total Variance 

At the expense of efficient use of data, the main 
advantage to the Hadamard variance over the Allan 
variance is its insensitivity to linear frequency drift. 
This is also true with the Hadamard Total variance 
over the Total variance. The method of computation 
is identical to that of the Modified Total variance, 
except here we are working with frequency data 
instead of time data. 

OYl = Y ,  -c , i  , 
We choose a subsequence b,}" of bfl}, 

consisting of 3m points, where m = dro Working 
only on this subsequence, we remove a linear trend 
(or slope) from the data: 

where cl  is a frequency offset removed to minimize 

i=n 

to satisfy a least-squared-error criterion for the 
subsequence. 

Extend the subsequence {oyl}. by an uninverted, 
even reflection: 

" # "  
Y ,  =Y3m+1-r 

O #  

Y3m+i = Yi 

Ybrn+r = Y3m+l-r 
" #  

to create 
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In the above equations, we are again creating 
and re-numbering the extended subsequence in one 
step. 

n+3m-I 

r=n-3m r=n-k We now have a tripled range of n-3m 5 i I 
M6m-1 with 9m points; in other words, the 
extended subsequence is now where k = L3ml21. 

("y: In = ( " y , # , i = n - 3 m  ,..., n + 6 m - l ) .  Bias and Equivalent Degrees of Freedom 

Define: 

TofaI - H  o~(m,ro,Nymm)= 

for 

and 

is calculated from the extended subsequence 

The method of computing the Hadamard Total 
variance directly from time-error data rather than 
frequency-error data is given in ref. [4]. 

We can somewhat decrease the computation time 
for the Hadamard Total variance by using a shortcut 
approach. Because of symmetries in the values of 
subestimates as a function of index n, we need to 
calculate 'yi# for only the range n-k I i 2 n+k+3m-l, 
and 'H,'(m) only for n-k 5 i 5 n+k. The shortcut that 
follows can also be applied to the Modified and 
Time Total variances by substitutjng >lz(rn) for 
OHl' (m). 

Like the Modified Total variance, the 
normalized bias and edf for the Hadamard Total 
variance are given by 

where E{+ is expectation of {+, 0 < r l  Tf3, r2 
16ro, and a, bo, and b, are given in Table 3. 

- 
WhiteFM I 0 I -0.005 I 0.559 I 1.004 

I Flicker I -1 I -0.149 I 0.868 I 1.140 I 
FM 

Random I -2 I -0.229 I 0.938 I 1.696 
Walk FM 

Walk FM 
Random 
Run FM 

Table 3 has the same values as Table 2 but with 2 
added to each value of a. This is because of the 
coincidence that the GPS Hadamard Total variance 
that acts on fractional frequency fluctuations is 
identical to the Modified Total variance acting on 
time fluctuations. 

For even m values, 
Conclusion 

Using the total approach on standard frequency and 
time variances results in a significant increase in 
equivalent degrees of freedom with only a modest 
bias. At the longest averaging times, edf is 
increased by a factor of 2 to 4, which means that the 

n+3m-I 

r=n-3m c ("Hl:(m))Z = 

n+k-1 

r=n-k+l ( o H ( i ( m ) ) Z  + ( O H ; - k  crn>>Z + ( O H ; + k  ( m ) > Z *  
For odd rn values, corresponding confidence interval is reduced by 

70% to 50% as compared to classical approaches. 
Thus, the often crucial task of determining noise 
levels and types at long averaging times is 
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substantially improved. We have summarized 
common total formulae and presented edf and 
normalized bias tables and formulae. 

t 

t 
Figure 1. Original data stream, {XJ. 

t 

Figure 2. Inverted, even reflection of original 
whole data run for computing Total-o,(T). 

Figure 3. Procedure for TotalMod-o,(r), 
Total-o,(r), and Total- Hcry(r) starts with original 

.data subsequence. 

Figure 4. Original data subsequence with slope 
removed. 

Figure 5. Extended data subsequence using 
uninverted, even reflection. 
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