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Abstract 
We propose an extension of the Time Variance and its square root, the  Time Deviation  denoted TVAR  and  TDEV, 
respectively, to improve the confidence of its estimate,  taking  advantage of information in time  series  which remains unused 
by TDEV. The extensions, called tlle Total  Time Variance and the  Total Time Deviation,  denoted  TotTVAR and  TotTDEV 
respectively,  use even reflections of the data  at the  beginning and at the  end  to almost triple  the  data length.  Computing 
TVAR of tlus extended  time  series  significantly  increases  the  equivalent  degrees of freedom used in the  variance estimate, 
while producing little bias in the values for phase-modulation (PM) noise types: white PM, flicker PM,  and random-walk PM. 

Introduction 

The  Time Variance,  TVAR [ l ] ,  does not  use all 
available  information  in a time  series, i n  the sense that the 
equivalent degrees of fieedom (edf) for  TVAR values are 
smaller than necessary. We describe a method here for 
increasing the edf for TVAR estimates of a given data set, 
partjcularly in the presence of phase  modulation (PM) noise 
types: wlute PM,  flicker  PM, and random-walk PM. These 
types of noise are often dominant in clock synclu-onization 
and measurement systems. For this rezzson, TDEV  has 
become accepted as a statistic for specifying standards in 
telecommunications systems. 

TotTDEV  Definition 

Time-transfer error in  time synchronizzztion and 
measurement systems can be characterized stochastically 
using 

where MVAR is the modified Allan kariance. We identify 
a new deviation  function as TotTDEV,  the  square root of 
TotTVAR,  defined as  the  TDEV values of an extension of 
the original  data. Time domain  data were extended in  the 
recent definition of a new statistic called Total  variance, or 
Totvar. This was  done because the  sample Allan variance. 
or AVAR, can "collapse" at long  averaging  time due lo 
symmetry in the data 12). Totvar  computes AVAR on an 
exqended data set, similarly to how our proposed TotTVAR 
is  related to TVAR. The irnproved confidence  and other 
properties of Totvar have recently been investigated i n  
relation to AVAR [ 31. 

The extension  designed  into  TVAR to produce 
TotrVAR is different from tllat  of Totvar because PM noises 
are treated as the main  focus. After removing a linear  fit to 
the time values, the time difference data  set { q} is extended 
to a new, longer virtual sequence {i} as follows: if N, is the 
number of points in the original data set, for n = 1 to N, let 
.< = x,,; for j = 1 to N, - 1 let 

'1 -1 = *y x N x + ~  = ",V,+) -J ' (2) 

TDEV is then  applied to { g  to produce  TotTDEV. 
Whereas it is possible  to  clroose different amounts of overlap 
in  computing  TDEV (41, we choose  the  maximal  overlap 
method as is done  in the ANSI standard [l]. 

We investigate properties of TotTDEV including  mean, 
equivalent degrees of freedom, and distribution. The main 
advantage of TotTDEV is its significantly improved 
confidence at  and near  the longest TDEV averaging  times 
of the  original  data set, for noise types such as white PM, 
flicker PM, and random-walk PM. For noise types with a 
stronger low-frequency, phase-modulation component such 
as flicker or randon1 walk FM. TotTDEV has problem due 
to the extension  procedure. We also note that Total  TDEV 
can produce variance  estimates for larger  integration  times, 
7, than TDEV  can. We caution  against  using  these as 
representative of the data,  unless the user  knows that the 
stochastic  behavior represented in the original  data set is 
representative of a data  set as long as tlle extended  one. 

Problems in Defining  TotTVAR 

Comparison of Totvur und TotTVAR 
TDEV  has found usage as a measure of the time 
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instability in applications involving PM noises  in which a 
constant frequency offset exists between oscillators being 
compared.  The PM  noises considered are white PM 
(WHF"),  flicker PM (FLPM), and random  walk  PM 
@WPM). 

Totvar is defined as the Allan variance of an extension 
of the original data set. If  we denote a time-difference 
measurement data set as {x,} ,  and  the associated frequency- 
difference  series as {y,}, Totvar extends Cy,} at both ends to 
produce a new, longer, virtual sequence {y,"} by an even 
reflection at the  beginning  and end of the sequence. This 
extension has the effect of applying an a84 or mirrored 
reflection at the adjoins of the phase sequence { x , } ,  as 
shown  in  Figure la. Figure lb  illustrate the duplication that 
occurs in the  left  and right extensions. Our goal in defining 
TotTVAR was to construct an estension on {x,}, apply 
TDEV to the extended sequence and have results which can 
be interpreted  like  TDEV,  but  with improved confidence for 
avenging times at and ncar T/3, the longest averaging time. 

r 

1 (b) 
Figure 1 (a) Extension of the original T-length phase 
data for computation of Total variance. The data are 
extended to a virtual sequence of 3T-length using an odd 
mirror-reflection about both ends. (b) Circular 
representation of the estended dah  set showing 
duplication (fold over) of left  and right extensions. 

Ewe consider WHPM noise  and  apply the same mirror- 
reflection extension to the phase sequence {x,} as done in 
Totvar, we are  likely to create a phase step at the adjoins, as 
illustrated in Figure 2a. To avoid this, we apply the 
extension to sequence {x,} ( in  the same way that Totvar 
applies it to {y,}) to produce a virtual sequence { S , ' }  as 
defined above, and illustrated in Figure 2b.. 

b -T b b + T  b + 2  
Uspaed t h e  

Figure 2 (a) Phase sequence of WHPM noise which is 
extended using Total variance's odd mirror-reflection at 
both ends can cause a phase step at each extension 
interface. (b) Phase sequence of WHPM  noise which is 
extended using Total TDEV's even reflected extension at 
both ends eliminates the phase steps. 

The Effect of an Overall Frequency Dijference 
A frequency  offset  between oscillators being compared 

results in a linear rate offset  in phase {x,}. When the even 
extension is applied to data which contains WHPM plus 
such a linear function, the effect  is a periodic term 
impressed on the virtual sequence with period 2T, as shown 
i n  figure 3b (3a shows what would happen with a mirror- 
reflection extension for comparison). For this reason, an 
estimate of overall frequency difference must  be  removed 
from the {x,} sequence before the virtual sequence {xt*} is 
constructed. For TotTVAR we remove a linear fit to the 
time data before extending. 

I 
to -T b b + T  b+ 27 

Elapsed t h e  

Figure 3 (a) Phase sequence of WHPM noise with a 
linear phase ramp (which is a frequency offset) is 
extended using Total variance's odd mirror-reflection. (b) 
Phase sequence of WHPM noise  with a linear phase ramp 
is extended using Total TDEV's even reflection. An 
estimate of this linear phase ramp (a frequency offset) 
must  be  removed to eliminate the effects of a periodic 2T 
component impressed on the extended data set. 

Data Discontinuity at the Extcmsion 
It is necessary to fonndate the extension so that a particular 
statistic such as TDEV is expected to have the same value 
with exqended data  as without. In simulation trials that 
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appear later, Total TDEV, with its extensions at the 
beginning  and end, can be interpreted like TDEV for the 
PM noises.  However, Total  TDEV in the presence of highly 
dispersive processes such as random-walk FM a n  lead to 
large, undesirable transient components in  TDEV. A 
discontinuity may occur at the extension which is not  typical 
of the process as a whole and which affects values 
corresponding to smaller integration times. 

Studies  Using Simulation 

We used simulation to compare TDEV and TotTDEV. 
In pmiadar, we generated 10,OOO time series each of length 
1024 points, simulating the five most common noise types 
in time and frequency equipment, white PM, flicker PM, 
random walk PM, flicker FM and random-walk F M .  We 
conlpared the mean values, the estimated edf, and the 
distribution functions. 

Degrees of freedom in a random variable are defined as 
follows. If s2 denotes the usual sample variance of n 
independent and identically distributed Gaussian 
measurements (i.e., white noise) with actual variance a2, 
then it is well known that the random variable 

has a chi-square distribution with v = n-1 degrees of 
freedom [ S ] .  In the classical situation. the degrees of 
freedom associated with a’ are integer values depending 
only on the number of measurements. Exact confidence 
limits on the measurement variance are calculated using 
percentiles of the appropriate chi-square distribution. 

Since the common time and  frequency stability 
measures  (AVAR, WAR, TVAR) are calculated from data 
arising from  non-white  noise  processes, the confidence l imi t  
procedure outlined above is an approximate method [6]. 
The method  is based on approxinlating the distribution of U 
in (3) with the chi-square distribution with degrees of 
freedom 

where a’ represents the appropriate stability measure (e.g., 
TVAR), s2 represents its corresponding estinmtor, and 
Var(s2) is the expected variance of  the S* estimators. The 
quantity v here is called the equivalent degrees of freedom, 

edf, since i t  need not be integer-valued. Equations for the 
edf of MVAR and TVAR have been published previously 
141, [7], [S], [9]. In our sinlulation we  used the mean  of the 
10,000 variances as IS*, and the variance of those variances 
as Var(s*). We then applied equation (4) to determine the 
edf  we report here. 

The edf found for TDEV and TotTDEV are presented 
below in Table 1. Note that TotTDEV can estimate 
deviations at integration times beyond those possible for 
TDEV.  These  should  usually  not be taken as representative 
of the underlying physical system that the data measure. 
They  are available because  we have extended the data to 
almost three times the original data length. However, this 
extension may  not  reflect the performance of the system at 
times greater than were actually measured. 

We also presenl, i n  Table 2, the ratios of the rms values 
of TDEV/TotTDEV taken over the simulation results. For 
these ratios we use only the values of T available from 
TDEV. 

Results from Simulation 

First we  note IIut the  distribution of both the TDEV and 
TotTDEV  results from sin~ulation approximate chi-squared 
distributions with appropriate degrees of freedom for all 
noise types. Figure 4 below illustrates the distribution of the 
TotTDEV values adjusted  according to equation (3) from the 
T= 128 integration  time  for flicker PM data.  The agreement 
with  the  clu-squared distribution with the same edf  is  good. 
The only apparent  difference  is that the simulated data have 
a lugher peak than the theoretical chi-squared distribution. 
This justifies using the chi-squared distribution to estimate 
confidence intervals. 

Figure 4 The jaggcd line is the distribution of the 
TotTDEV values for r=12S, from si~nulated flicker PM 
data, adjusted as in  equation (3). The smooth line is the 
chi-squared distribution with the same number of edf. 
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Comparing the results in  Table 1 we see a significant For example, from Table 1 we find that the edf for 
increase in edf with TotTDEV over TDEV for all of the r=256 for flicker PM increase from 2.1 to 3.6 using 
noise  types except RWFM. Improving confidence at long TotTDEV over TDEV.  This is an improvement in edfby 
integntjon times is ptuticularly valuable. In order to obtain more than a factor of three. The corresponding confidence 
an estimate of TDEV(T)  with a minimum of cotlfidence, one intervals cllange from 5.0 11s to 2.2 11s. In addition, we see 
must take data for three times the averaging time, T. i n  Table 2 that there are no significant biases for any of the 
Therefore measuring TDEV at long averaging times with common noise  types  except RWFM. 
significant confidence may be difficult. The improvement 
in edf  with TotTDEV is greatest at long averaging times. 

Table 1 

TDEV I TotTDEV Degrees of Freedom 

Integrated Points White PM 

l 

160.21162.2 8 

301.81306.7 4 

193.41194.4 2 

517.2~517.5 

16 

3.015. l 256 

7.219.9 128 

17.5120.3 64 

38.9141.5 32 

80.5183.1 

512 11.8 

Table 2 
Ratio of Values: TDEVmotTDEV 

Integrated Points White PM 

1 

1 .0 8 

l .o 4 

1.0 2 

1 .o 

l .0 128 

I .o  64 

1 .o 32 

1 .o 16 

256 1 .o 
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One might wonder wvllether the improvement in edf  is 
artificial, in that we have extended the measured data in a 
somewhat artificial way.  To  check this we extended the data 
with  even reflections to increase the  data length far beyond 
the factor of three in the definition of TotTDEV. We then 
computed the values of TDEV for these large data 
extensions, and found the edf using equation (4) as we had 
done for TotTDEV. We found that the edf do not increase 
significantly beyond what we already found in TotTDEV. 
This implies that there is a specific amount of information 
in a given  data set, as reflected in tlle  edf for particular 
vari,mce  estimates,  and that TotTDEV makes nearly optimal 
use of this information. 

We illustrate the results of our simulations in Figures 5-9. 
We find both an increase in confidence from using 
TotTDEV and a lack of biases from TDEV, for all noise 
types except RWFM. For RWFM we find that TotTDEV 
significantly worsens both the confidence and the biases 
over the  use of TDEV.  This is due to the phenomenon of 
discontinuity that we discussed earlier. Because of the 
change in average frequency from the beginning to the cnd 
of a RWFM data set, we introduce a frequency discontinuity 
at the points of extension when we extend with an even 
reflection. 

Conclusions 

1. Total TDEV increases confidence on the deviation 
estimates, particularly at long averaging times, by using 
more equivalent degrees of freedom which are available in  
the data, except in the case of RWFM. 

2. There is little indication of bias in Total TDEV over 
TDEV for any of the five common noise types, except for 
RWFM. Total TDEV should not be  used  if the data are 
consistent with a RWFM model. 

3.  The distribution of TDEV and Total TDEV estimates 
from our simulations are consistent with a chi-squared 
distribution. 
4. Total TDEV extends phase sequences {x,} in the same 
way that the Total variance extends frequency sequences 
{ Y d .  

5. An estimate of frequency difference is removed  from  the 
phase sequence { x , }  in the definition of  Total TDEV to 
remove a linear ramp in phase. 

G. Total TDEV is designed to cllaracterize principally tlle 
three common PM noises (WHPM, FLPM, and RWPM), 
over integration times available to TDEV. 

7. Values  of  Total TDEV are available for integration times 
beyond those available  for TDEV. These should usually not 

be taken as characterizing the underlying physical system. 
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TDEV 8c T o t T D E V  
S i r ~ ~ u I ~ ~ t e c l  White PM 

Figure 5 RMS values over 10,000 simulated white PM series of 
TDEV (circles) and TotTDEV (squares). The  smaller confidence 
intervals are for TotTDEV. 

Fipre  6 R M S  values over 10,000 simulated flicker PM series of 
TDEV (circles) and TotTDEV (squares). The  smaller confidence 
intervals are for TotTDEV. 

TDEV 22 TotTDEV 
Sirnulnt.etl R a n d o r n  Walk PM 

N 

Figure 7 R M S  values over 10,000 simulated random walk PM 
series of TDEV (circles) alld TotTDEV (squares). The  smaller 
confidence intervals are for TotTDEV. 
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TDEV & TotTDEV 
Simulated Flicker FM 

-4 m -  

1 

T i n  S 

Figure 8 RMS values  over  10.000  simulated  Flicker FM series of TDEV (circles) and 
TotTDEV  (squares).  The  smaller  confidence  intervals are  for TotTDEV. 

Figure 9 RMS values  over 10,000 simulated random  walk FM series  of  TDEV (circles) 
and TotTDEV  (squares).  The  TotTDEV  values are biased, and confidence  is  degraded. 
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