
1997 IEEE  INTERNATIONAL FREQUENCY CONTROL SYMPOSIUM 

TIME SYNCHRONIZATION USING THE INTERNET 

Kenneth W. Monington 
JILA, University of Colorado 

and 
Judah Levine 

JILA, NIST and University of Colorado 
Boulder, Colorado 80309 

Abstract 

We  will discuss a new  algorithm  for 
synchronizing the clocks of networked computers using 
messages transmitted over the network itself. The design 
is  based  on  a  statistical  model of the  clock and the 
network,  and  uses this model to define the  parameters of a 
frequency-lock  loop  which  is  used to discipline the local 
oscillator.  We have tested  the  design  by synchronizing a 
standard  workstation to a  time server located 1200 km 
away; the  time  offset  between  the clock synchronized in 
this  way  and  UTC  is 2 ms rms. Our analysis  can also be 
used  to  design algorithms that provide lower  accuracy  at 
lower  cost. 

Introduction 

In this paper we  discuss synchronizing the clocks 
of  computers  using messages transmitted over a  packet 
network such as the  Internet. Such algorithms are  useful 
because  the  network  infrastructure  is  often  already 
installed and available so that  it  can be used  for  time 
synchronization  with  little or no additional cost. 

This work is a  generalization of the “lockclock” 
algorithm,  which  we  discussed in a previous paper [l]. 
That  algorithm  uses messages transmitted over dial-up 
voice-grade  telephone  lines  from  a  telephone  time server 
(such as the Automated  Computer  Time Service operated 
by NIST) to synchronize a  client system. The  current 
algorithm, which we call  “interlock,” performs about as 
well as “lockclock” but does not require access to  a 
telephone  line. Instead, it uses  calibration  information 
that is transmitted over a  packet  network  such  as the 
Internet.  It is compatible with existing network standards 
and  message  formats, and can be used  in  a  heterogeneous 
environment in conjunction with other algorithms  (such 
as NTP, the network time protocol [ 2 ] ) .  

The design  of the algorithm  is  based  on  a  model 
with  three components: a  clock  model,  a  model of the 
measurement process and a  model of the delay  in the 
network.  Each  of these models is further  subdivided  into 
deterministic and stochastic components. (A  deterministic 
parameter has a  well-defined value that  may  evolve 
slowly  with  time,  while  a  stochastic  parameter can only 
be specified  using  a  statistical  measure  such as a  variance 
or a  spectral  density.) 

The Clock Model 

The clock in a computer usually  consists of two 
parts:  an  oscillator that generates periodic  interrupts  and  a 
software  driver  that  counts these interrupts in a  register. 
The register  measures elapsed time from some  system- 
defined  origin. In almost all systems the oscillator 
hardware is  free-running and is  not under program 
control.  Software  processes of the type  we  will  discuss 
can adjust the time of the clock by changing the  value in 
the  system  register; in some systems it  is also possible to 
adjust  the  effective  rate  of the clock by  changing  the  value 
that is  added to the  register  on  each  increment. In the 
following  discussion,  a reference to a  computer  clock 
always refers to the  clock  register  maintained by the 
system, possibly  combined  with  a  method  of  interpolating 
between  ticks using either the system  hardware or a 
software timing loop.  Furthermore,  all time messages  and 
clock comparisons are made  using  UTC;  conversions to 
and  from the local  time  zone  (including  a  correction  for 
daylight  saving  time,  if  necessary)  are  made  by  other 
processes and are outside of the scope of  our  discussionl 

We characterize  a  clock  with two deterministic 
parameters:  a time offset,  which  specifies  the  difference 
between  its  time  at some epoch and UTC, and  a  rate 
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offset,  which specifies how this time offset  evolves.  If x k  
and Y k  specify the time offset and rate offset at  some 
epoch tk, then these parameters can be used to predict  the 
time  at  the  next epoch, tk+l using 

where 

At = tk+l - t,. (2) 

Although  quartz-crystal  oscillators  (which are the type 
almost  always  used  in computer clocks) usually have 
significant frequency aging, it  is difficult to estimate it  in 
the  presence of white  frequency noise and we therefore do 
not include it  in the  model. 

In addition to these  deterministic  parameters,  the 
frequency  of the oscillator  fluctuates  stochastically. 
These fluctuations  can  be  characterized as a  “white” 
Gaussian  process  for  relatively  short averaging times, but 
the  spectrum  of  these  fluctuations  exhibits  a  divergence  as 
lif (or faster)  at  lower  Fourier  frequencies  (i.e.,  longer 
averaging times). 

Unfortunately, we can observe the  oscillator 
frequency  only  through  its  effect  on  the time. The 
integration  of  the  frequency  implied  by eq. 1 means  that 
the  spectral  density of the time  fluctuations  resulting  from 
almost  any  kind  of  frequency noise is not white. In other 
words,  the time fluctuations  produced  by  frequency  noise 
can  never be characterized  by  a  mean  and  a  standard 
deviation;  while  these  parameters  will always exist in a 
formal  sense,  their  values  will  not  necessarily  correspond 
to our  intuitive expectations. In particular,  when  the 
performance  is  dominated  by  frequency  noise  (even white 
frequency  noise) the rms prediction  error of the time- 
difference  will  not be improved  by averaging repeated 
observations of xk. 

The  Measurement Process 

The  measurement  process  involves comparing 
the  time of the  clock  with  the  time  transmitted  over the 
network. The  delay  in  making  these  measurements  is 
usually on the order of microseconds in a  well-designed 
system - a  value  that  is small compared to the  error 
budget of the synchronization  process.  This  delay  has  a 
jitter  due to  variations in system  load  and  interrupt 
latency. We will assume that the factors  that  drive  these 
fluctuations  vary  rapidly  with time, so that the  variations 
in consecutive  delays  are  largely  uncorrelated  with  each 

other even  for measurements made only  a  few  seconds 
apart.  This jitter about  the  mean  is  therefore  a  random 
variable  with  a  reasonably  well-defined  standard 
deviation; we call  this jitter white  phase  noise,  by  analogy 
with the analogous fluctuations in hardware clocks. 

These  fluctuations exact a price from any client 
process  that  uses the clock to time-tag  an  event.  Since  a 
time-tag  involves  a  single  reading of the clock, the fact 
that  the  distribution  of  an ensemble of  such  measurements 
would  be  approximately  Gaussian cannot be  exploited. 
However,  this  Gaussian  distribution  does have an 
important  consequence  for  prediction  applications: it 
suggests that the average of N rapid-fire  measurements 
will have a  standard  deviation  that  is  smaller  than  that  of 

a  single  measurement  by  a  factor  of 1 / .\I(N - 1) . This 
improvement  depends, of course, on  the  assumption  that 
the measurements  are dominated by white  phase noise- 
in other words the deterministic  parameters of the other 
components of the model  must not change  during  the 
course  of  the N measurements, and the  contributions  of 
any non-white  noise source must be small. 

The  Network Delay 

The network delay enters  directly  into  the 
measurement of the time difference.  It is usually 
estimated  from  the  measurements themselves using  the 
usual  round-trip method. The client  machine  requests a 
time-packet  at  time t l ;  the  request arrives at the  time 
server  at time t2; the server responds at time t3  and  we 
receive  the  response at time  t4. The round-trip  delay  due 
to the  network  path  is 

A = ( t ,  - t , )  - (t ,  - t ,).  ( 3 )  

The  first  bracket  measures the total  time  that  has  elapsed 
from  when  the  request  was  sent  until the reply  was 
received as measured  by  the  clock in the client. The 
second  is the processing  delay in the  server  as  measured 
by  its clock. If  the  one-way  outbound  delay  is d, the  time 
difference  between  the  client  and the server is 

X = (tl + d )  - t,. (4) 

If the path  delay  is symmetrical, then d = A / 2, and 
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If the  path  delay  is  not  exactly symmetrical, this estimate 
will be wrong  by  an  amount  proportional to the 
asymmetry. If the actual outbound delay is given 
by d = kA, where 0 < k < 1, then the estimate above is 
wrong  by 

E = ( k  - 0.5)A, 

which depends both  on  the  path  delay  and  on  its 
asymmetry. 

Networks  are  usually  configured so that  the 
inbound  and outbound paths are symmetrical, although 
there  is no physical reason why this must be true. There 
is no way  of detecting such a static asymmetry  using  only 
timing information transmitted over the  network  itself. 
We  will therefore assume that  either the static 
configuration  is symmetrical or else that any  static 
asymmetry  is  calibrated  using some external means. In 
either  case, it  is  unlikely  that E has a normal  distribution 
about this mean value so that 

o2 - ( E * )  - 

will  not have any simple interpretation  analogous to the 
variance  or standard deviation of a  traditional  distribution. 
The  problem  is  not  in A, because we measure it for  each 
transmission - it is in the degree of asymmetry, specified 
by (k-OS),  and the fact that this  asymmetry  varies  from 
one transmission to the next one. 

The  situation  is  more  favorable  if we consider 
the  distribution  of the mean  of  a group of closely-spaced 
calibration  messages. If  the spacing between  the 
messages in the group is close enough so that  the 
deterministic  parameters of the  clock  model  are 
essentially  constant,  while  at the same time being far 
enough  apart so that the variations in the  network  delays 
between consecutive messages are  independent  of  each 
other,  then  the Central Limit  Theorem guarantees that  the 
distribution of these group-means will have a  normal 
distribution,  independent of the distribution of the 
individual  messages. [3] A  typical computer clock  will 
take  at  least  several seconds to gain or lose 1 ms,  while  a 
typical  packet network will have processed  tens  of 
thousands of messages in the same  time  interval.  The 
requirement is therefore easily  satisfied,  even  if  the 
consecutive  requests  are  separated  by only IO0 ms. 
Furthermore,  the  Lindeberg  condition [4] is automatically 
satisfied by the time-out constraints that are incorporated 
into  the  design  of  all networks. 

Once we have computed the mean of the group 
of  measurements,  it  is  possible to look for  gross  outliers 
within  the group by examining the distribution  of  the 
individual  measurements  about  the mean. There  is  no 
robust  definition of the standard  deviation in this case, 
since the  distribution  of  the  measurements  is  not  a  normal 
one. If the true  asymmetry  varies  randomly  between  the 
two asymptotic  values  k 0 0 and  k 0 1, then  the  mean 
value  is  not  a  bad  estimate  of the actual  time  difference, 
but  the  situation  is  less  clear  when  there  are  a  few  outliers, 
with  all of the other values  clustering  about  a  single  value. 
We generally  choose to reject the outliers in this case  if 
they  differ  from  the  mean  by  more  than 3 standard 
deviations  of  the  points  that  remain  after  they  have  been 
rejected.  (Alternatively, we have used  the  difference 
between the outliers  and the median in the  same  manner, 
because  the  median  is  less  sensitive  than  the  mean to the 
presence  of outliers.) We reject the entire group of 
measurements  if  more  than 5% of the  measurements  are 
rejected  using  this  procedure - either  our  notion  of  the 
standard  deviation  is too optimistic  or the asymmetry  is 
too variable  to make a robust  estimate of the time 
difference. 

Separation of the Variance 

Any  method of clock  synchronization  usually 
has  only  one type of observation to work  with:  the  series 
xk, giving the time differences  at  consecutive epochs 
between  the  clock we are trying to control  and  some 
distant  server.  It is very  important  that we separate  the 
contributions to the variance  of  this  time  series  arising 
from  the  different components which  we  identified  above. 
The  reason  is  that  we  must not adjust the clock  because of 
noise in the measurement  process  that  did  not  arise  from 
the  clock in the  first place. While  equation 1 might 
suggest that if  the time of  the  clock  is  wrong  then  its 
frequency  must  be  wrong as well, this is not true in the 
environment we are considering.  Both  the  network  and 
the  measurement  process  make  contributions to the time 
difference  and  its  variance.  In other words, it is  possible 
to  observe  a  time  error  that is not due to the  frequency 
offset of the  clock - indeed it may have nothing to  do 
with  the  clock  at  all,  and  correcting  the  clock  for  this  error 
(either in time or in frequency)  will  simply  make  matters 
worse. 

CT:(T), is  a  time-domain  analysis  tool  which  is  very  useful 
i n  characterizing  the  spectral  density of a  time  series. 
This characterization is very  important  because  there  are 
statistically-optimum  measurement  strategies  for  each 
type of  noise,  and  knowing the noise type is therefore 
crucial to designing an  optimum  synchronization 
procedure. In addition, the spectral  density  of  the  noise is 

The  Allan  variance, [5] usually  denoted  by 
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often  an  important  indication  of  its source. See ref. 1 for 
more details. 

Time of gpshub; + via ACTS, * via Bus 

- 'tt 

Log Meas. Interval (S) 

Fig. 1 .  Allan  deviation  measured  using  the  ACTS dial-up 
system (+) and  via  a  direct  connection to the computer 
bus (*). The straight  lines  have slopes of-l, -0.5 and 0 to 
illustrate the various  noise types. 

The power of  the Allan  variance  is  illustrated by 
the measurements  shown in fig. I .  We have  monitored 
the time  of a  computer  named gpshub using  two 
techniques: the "*" show the square  root of the Allan 
variance  when the time  of the clock  is  compared to the 
time of a  cesium  frequency  standard  using  an  interface 
connected directly to the computer  bus. The "+" data 
shows the Allan  deviation for the same clock  when the 
time differences are measured  using periodic dial-up 
connections to the NIST Automated  Computer  Time 
Service. (The  lines on the figure are to assist in the 
discussion and are not  otherwise significant.) In both 
cases the computer  clock  is  not adjusted. We also did  not 
use  any of the outlier-rejection schemes we discussed 
above. 

For  both  measurement  techniques,  the  initial 
slope is -1,  showing that both are limited  by  white  phase 
noise  at short times. The magnitudes are quite different in 
the two cases. The directly-connected  hardware  device 

has  a  white  phase  noise  level  of  about 80 p, while the 
link to the ACTS  system  has  a  noise  level of about 1 ms. 
We are not  looking  at the oscillator in either  case.  This  is 
measurement noise - it arises from the jitter in the 
measurement  process  and  has  nothing to do  with the 
clock. The measurements  made  using the ACTS  system 
have  additional jitter because of the hardware  and 
software that are required to receive data using  a  modem 
and  a  serial  line,  while the directly-connected  device  is 
limited  primarily by the much  smaller  latency  in 
processing  an  interrupt  request to read  a  hardware  device 
on the bus. 

Since this is  white  measurement  noise,  it  would 
be  a  mistake to use these data to adjust the clock - as  we 
mentioned  above, this is time jitter with no corresponding 
frequency variations.  We  can  decrease  our  uncertainty  of 
the time difference by averaging  consecutive  readings 
since we are sampling  a  Gaussian  random  process. The 
limit to this improvement comes at  about 100 S for the 
measurements  made  via  the  bus  device  and  at  about 3000 
S for the ACTS  comparisons. The improvement in either 
case  would  be  proportional to the  square  root of the 
number of measurements in the average,  but  this 
improvement  is only available to a process that can 
benefit  from  an average time offset. Furthermore  the cost 
of adding  more  data to the average  increases  linearly  with 
the number of points so that the codbenefit ratio 
becomes  increasingly  unfavorable as the  uncertainty  is 
decreased. 

The Allan  variance  is  not  sensitive to 
deterministic  rate offsets, since it  is  computed  using  the 
second-difference  of the time-difference  measurements. 
However,  a  rate offset between the client  and the server 
will  result  in  a deterministic trend in the  time-difference 
measurements.  This  trend  will  introduce  a  bias  into  the 
averaging  procedure and must therefore be  removed 
before the average  is  computed. 

Note that the  uncertainty  of  a single time-tag  will 
remain  unchanged  at the value specified by the white 
phase  noise  level  of the measurement  process.  A 
prediction  procedure  cannot  improve  on  this  limit  because 
the fact  that the slope  of the Allan  deviation  as  a  function 
of averaging time  on a  log-log  plot  is -1 implies  that 
oy (z)z is  a constant. This  is the essence of a  process 
with  a  normal distribution: the  previous data are of  no 
help in predicting the magnitude of  the next observation. 
Adjustments to the clock  made  using the measurements 
acquired in the  white  phase-noise  domain  will  degrade  the 
stability  of the clock  on the average  because  these 
adjustments  convert  measurement  noise into frequency 
noise.  There are only  two strategies that can  improve 
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matters in this domain: either the  measurement  noise of a 
single  time-tag must be  decreased or the  process  that  uses 
the  time-tags  must be designed so that it can  benefit  from 
averaging  a  number of them. 

In  both data sets, the slope changes to 4 . 5  at 
longer averaging times showing a  transition to white 
frequency noise.  The time differences  can no longer  be 
characterized as a  Gaussian  random  variable.  Now it is 
thefrequency that has this  distribution. We can  continue 
to improve our knowledge by averaging, but  we  must  now 
average the frequency (i.e., the first difference of the time 
measurements) rather than the time measurements 
themselves. The transitions to white frequency noise 
occur  at  different  values for the two measurement 
schemes, but the two data  sets lie  on almost exactly  the 
same  line after it. This is to be expected. Once we are 
limited  by the frequency stability of the local  oscillator 
(and  not  by the measurement process), the noise in the 
measurement  process must not matter anymore, and  any 
measurement  process  that can achieve this goal  will 
result in  the  same  longer-term performance. 

If  we operate our synchronization  loop in the 
white-frequency  domain  then the optimum  strategy  would 
be to  acquire xk data as fast as possible, average these  data 
until  we  reach the transition to the white-frequency 
domain,  then average the  first-difference  of  these 
averages to reduce the  uncertainty  of the frequency 
estimate. This process could continue until  the end of the 
white-frequency domain, where  it  is no longer optimum. 
For  the  system  whose  Allan  deviation  is  shown in fig. 1 ,  
the  upper  end  of  the  white-frequency  domain  is  at  an 
averaging interval of about 12 hours. 

In contrast to the  white  phase  noise domain, 
where the prediction error for  a single measurement is 
independent  of the averaging time, the prediction  error  for 
time  differences in this  domain  is  proportional  to TO - 

there  is  now  an  explicit trade-off between  the  time 
accuracy  of  a  single  time-tag  and the cost of obtaining  the 
synchronization  data. The cost of averaging increases 
linearly  with  the  number of points that  are  averaged, 
whereas the uncertainty decreases only as the square root 
of this  number.  Incremental  improvements in the 
accuracy of a  single time-tag therefore  become  more  and 
more  expensive. 

Just as correcting the time of  a  clock  is not 
optimum in the  domain where the  spectrum of its 
fluctuations is  dominated  by  white  phase  noise,  correcting 
its  frequency  is  equally  inappropriate  in  the  domain  where 
that  spectrum is dominated by  white  frequency  noise.  As 
above, the  prediction  of the future performance of a 
parameter  whose fluctuations are  given  by  a  normal 

distribution cannot be  improved by a  linear  combination 
of  previous observations. The optimum  strategy  is  to 
average  the  frequency observations until  their  spectral 
density  can no longer  be  characterized by a  normal 
distribution. This is  usually done with a recursive  filter 
that  realizes  an  exponential  response in the  time  domain. 
(Ref. 1, equation 3). The time constant  of this filter  is  set 
to the point  at  which  the  noise  spectrum  is  no  longer 
dominated  by  white  frequency  noise. This time  constant 
is independent  of the rate  at  which  data  are  acquired  or 
the  phase  noise of the measurement  process - it is 
determined  only  by the characteristics of the oscillator 
itself. 

The Network 

Network delay +=loopback, x=LAN, *=Internet 
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Fig. 2. The  Allan  deviation of the  network  delay;  loop- 
back to the sending machine (+); machines on  same  local 
area network (x); machines on the Internet, 1200 km 
apart (+). Line of slope -1 for reference and the line  of 
slope 4 . 5  is copied fi-om fig 1. 

As  we  pointed out above,  the  distribution  of  the 
means of groups of relatively  closely-spaced  messages 
will have a  normal  distribution even though  the 
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distribution  of the individual  messages  is  almost  never 
Gaussian. We conducted a  series of experiments to verify 
that this is true; the  results  are  presented in fig.  2. 

We sent packets in the  network  time  protocol 
format  between two time servers whose clocks were  both 
independently  synchronized to UTC. For each  packet, we 
computed the time-difference  between  the  two systems 
using  equation 5. We repeated  this  process 25 times  with 
requests  spaced one second apart  and  averaged  these 
results  to form a  single  time-difference  point. We  then 
repeated this entire process every 5 minutes  for  several 
days. These data  are not used to discipline  either  clock - 
that  is  accomplished  by  procedures  that  are  outside of the 
scope of  the  experiment.  The  Allan deviations of  these 
measurements  are  shown in fig. 2. 

The  bottom set of  points  (with  the  symbol “+”) is 
from  a  loop-back  test, so that the  fluctuations in the  clock 
itself  are  irrelevant.  (A  straight  line  with  a  slope  of - 1  is 
shown superimposed on  these  data  for  reference.) The 
data  are  characterized by white  phase  noise over the  entire 
time domain; the magnitude is about 240 p ,  which 
represents  the  fluctuations in the  symmetry  and  delay in 
the machine itself. 

The  next two plots  show  the  Allan  deviation  of 
the  measurements  between two time-servers  on  the  same 
local area network (shown by  the  symbol  “x”)  and  two 
machines  on  the  Internet  separated  by  about  1200  km 
(shown  with  the symbol “*”). All of the  data  are  clearly 
limited  by  white  phase noise at short  periods.  The 
magnitude of the  noise  increases  with  the  length  of  the 
network  path,  but  its character does  not change until  we 
reach  periods  longer  than  about 6 hours  where  large, 
correlated  fluctuations in the  network  delay  become 
important.  (Such  correlated  fluctuations  violate  the 
conditions needed  for the validity  of  the  Central  Limit 
Theorem.) 

Superimposed  on  these  upper  two  plots  is  a  line 
with  a  slope of 4 . 5  copied from fig. 1 .  As  we  discussed 
above, that  line  represented  an  estimate  of  the  magnitude 
of the  frequency  noise in the clock oscillator  of machine 
gpshub. The parameters of  an  algorithm  to  synchronize 
the  clock of this machine can  be  deduced  from  the  figure 
by comparing the noise  associated  with the network  with 
the  frequency noise of  the  clock  itself. 

We limit  our adjustments of the clock to those 
portions  of  the  spectral  domain  where  the  calibration  data 
adds  information -that is,  where  its  noise  spectrum  is 
better  than  that  of the local  clock  itself.  The  spectral 
density  of  the  noise of the  local  clock  is  almost always 
less  than  the  noise of the time server  when  seen  through  a 

noisy  channel  and measurement process, so that  some 
kind of averaging of the calibration  messages is  usually 
necessary to realize  an  optimum  design. 

If  we  plan  to  synchronize gpshub using  a  time 
server that  is  connected to the same local area network, 
for  example,  then the variance  of  the  calibration  signals 
will  be  given  by  the data shown  by “x” on  the  plot.  The 
variance of these  calibration  signals  falls  below  the 
variance  due to the frequency  noise  of  the  clock  for 
averaging times longer than  about 150 S. This is the 
minimum time-constant that we  should  use in correcting 
the time of the  clock so as to not degrade its  inherent 
stability  with  network  noise.  It is also  the maximum time 
over which  the  time-differences  are  dominated by white 
phase  noise  and so could  be  improved  by  averaging  them. 
The  Allan  deviation  results  shown  on  the  plot  were 
obtained by averaging 25  consecutive  time-difference 
measurements  spaced 1 S apart, so that  these  data  are  well 
within  the  white  phase-noise  regime where averaging 
them  is justified. Since the  cross-over  point  is a function 
of  network  load  and  other  factors,  we  could  estimate  the 
frequency  of  the  local  clock  using  consecutive  groups of 
time-differences spaced no  less  than  about 180 S apart to 
be  sure  that we are  well  into the domain  where  the 
spectrum  is  dominated  by  white  frequency  noise.  These 
frequency  estimates  would  be  averaged  using  a  time- 
constant of about 14000 s - the  upper-end  of  the  domain 
in which  white  frequency  noise  dominates  the  spectrum as 
seen  from  fig. 1 .  This  average  frequency  could  then be 
used to correct  the  clock  using  the  method  described in 
ref. 1.  The  exact  values  of these parameters  would be 
determined  based  on  a  trade-off  between  how  well  we 
want to synchronize  the  clock  and  how  much  we  are 
willing  to  pay in terms of computer cycles  and  network 
bandwidth.  This  trade-off  enters  at  two  points:  how  many 
consecutive  time  requests  we choose to  average  to  build 
each  mean  time-difference,  and  how  long  we  wait 
between  each  group once we  are in the  white  frequency 
noise  regime of the clock.  Using  the  choices  above,  the 
minimum  uncertainty in the  clock  synchronization  would 
be about 1800,( 180) = 200ps, assuming,  of  course,  that 
the time of  the  server  was  known  this  well.  This is  an 
impressive  performance,  but  it is  pretty  expensive - it 
requires  groups  of 25 time packets every 180 S or about 1 
packet  every 7 S on  the average. 

The  same  analysis  would  determine  the 
parameters for a  synchronization  loop  using  the  distant 
server  on  the  Internet. These data are much  noisier  and so 
we  would  have to average for  a  much  longer  time ~ the 
noise  of  the  network-based  time-difference  measurements 
does not  fall  below  the  noise of the  clock  itself  until an 
averaging  time  of almost 5.3 h, and this would  set  the 
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minimum  time-constant for the time clock-correction 
loop.  The  performance of this loop would not be as good 
as  the  first one, of course, because the prediction  error 
increases as TO.’ in the white frequency noise domain. 
Since the  network noise is so high, the  clock  would  be 
essentially free running for averaging times  less  than 
about 5 h.  

We could improve matters by averaging more 
than  25  time-differences in each group. The  spectral 
density of the time-difference measurements would  only 
improve  as  the square root of this  number, so that 
significant improvements become expensive pretty 
quickly. Assuming we kept 25 time-differences in each 
group, the best we could do would be to estimate the 
frequency  using measurements about every  5.3  h  (which 
is the earliest  time that the measurement noise  due to the 
network  fluctuations  becomes  small  enough  that  we  can 
begin  to see the fluctuations in the  clock  oscillator  itself). 
The  prediction error using this time-constant  would  be 
about 19000~~,( 19000) = 1.5 ms. This is comparable to 
the  uncertainty  that we achieved  with  “lockclock”,  which 
is not surprising. As  we  pointed  out above, the  source  of 
synchronization does not matter  very  much once the 
fluctuations  are  dominated  by  the  frequency noise of  the 
local  oscillator. Note that this performance  is just about 
at  the edge of  what  can  be achieved with  this  clock 
hardware, because the  cross-over  point at which  the 
network  noise drops below the time  dispersion  due to the 
frequency  noise of the  clock  is  very close to the  upper  end 
of the  region in which  the  clock  noise is still  white 
frequency  noise. If the network  noise  was  greater or the 
frequency  stability of the  clock  oscillator  was  worse,  we 
could still go through the motions of averaging,  but  the 
mean  value no longer  has  the  nice  properties that we 
expect  from  a  normal  distribution,  and  the  prediction 
variance degrades accordingly. 

In  summary, the analysis  using  the  Allan 
deviation  can  be  used to evaluate the  trade-off  between 
the  synchronization accuracy we  can  obtain  and  the  cost 
of realizing  it.  As  the  noise in the  channel  used  to 
transmit  calibration data gets worse, we  must compensate 
by  adding more measurements to each group of time- 
differences  and by increasing the time interval  between 
groups so that  the equivalent frequency-measurement 
noise of the  channel drops below  the  inherent  frequency 
noise of the clock. The local  clock  is  better  than  its 
calibration source (as  seen  through  the  network) for times 
shorter  than  this cross-over, so that  correcting it in this 
domain  (either in time or in frequency) is  a  mistake. 
Since averaging improves matters only by a  factor  that is 
proportional  to the square root  of the number  of 
measurements. improvements realized  by  including  more 

time  differences in each group become  expensive  very 
quickly. Conversely, the costhenefit ratio becomes 
much  more  favorable  if we can  settle for poorer  time 
synchronization  (in  an  rms  sense).  Using 3 time- 
differences in  each group instead  of 25 and  increasing  the 
interval  between measurements from 5.3 h to 12 h  would 
decrease the cost by  a  factor of about 20, while  still 
providing  synchronization  with  an  uncertainty  of  better 
than 30 ms rms. 

Detecting False-tickers 

A  “false-ticker’’  is a time server whose  status is 
shown as healthy  but  is  nevertheless  transmitting  the 
wrong time. This “should never happen,”  but a client 
must  be  prepared  for  it. The simplest  strategy  for 
detecting  this  problem  is to get  a  second  opinion  from  a 
different  time-server,  and  then  a  third  opinion to allow  a 
decision by majority  voting.  Clearly,  this  can get pretty 
expensive.  It  potentially  doubles  (or  maybe  triples) the 
load  on  every  server. 

Another  strategy is to  use time of  the  local  clock 
itself to validate  the  received data. If  it  has  been T 
seconds since our last  calibration,  then  the  time  dispersion 
of  the  local  clock  is of order Dy(r)T, and  a  time  correction 
that is  much  bigger  than  this  is suspect - something has 
changed in the interval since the  last  calibration  cycle. 
Deciding  what  “much  bigger”  means  is a matter  of 
probabilities:  we  can choose to classify  small  conforming 
fluctuations as errors by setting  the  threshold  too  low  or 
we  can  include  glitches as acceptable data by setting it too 
high. We  have  found  that  a  threshold of 3 times the 
standard  deviation  of  the  running  mean  is  a  reasonable 
compromise above which we assume that  something  has 
gone  wrong. If the  data  pass this test,  then  we  can 
assume that  nothing  strange  has  happened.  and  we  can use 
the data as part of our  update  procedure. if, on  the other 
hand,  this  threshold has been crossed, there  are  four 
possibilities: 

1 .  The  server is broken. 
2.  Our  clock  has  experienced  a  time-step. 
3. Our clock has experienced  a  frequency  step. 
4. There has  been  a  large  change in the 

parameters of the  network delay. 

We can  differentiate  among  these  possibilities 
by switching to another server and  seeing if  its data  are 
consistent  with  the  time  of  our  local  clock  using  the 
procedure  we  outlined above. If yes, then  we  vote  the 
first server as sick  by  a  vote of 2- 1 ,  including  ourselves in 
the  decision. If the two servers agree (within  the 
uncertainty  of the network noise), then  we  vote  ourselves 
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We evaluated the accuracy of the  procedure by 
comparing the time of  strain to UTC using  periodic  calls 
to  the NIST ACTS  system  (fig. 3). The  noise  and  the 
accuracy of the ACTS comparison are  about 1 ms, so that 
differences  on  this order or  less  are not statistically 
significant. The Allan  deviation of these  data  are  shown 
in fig. 4, with the usual  straight  line  with  a  slope  of -1 for 
comparison. The rms time error  is about 2 ms for  all 
averaging times,  but the large 10 ms spikes make  an 
appreciable  contribution to the variance. Residual 
fluctuations in the network  asymmetry  that  are  not 
completely  removed  by  the averaging also  contribute. 

-6 

-7 

-8 

4 5 6 

Log. of Measurement interval (S) 

Time of Strain - ACTS 

Fig. 4. The Allan  deviation  of  the  data  shown in fig. 3. 
The  straight  line has a slope of -1 .  The  points deviate 
from  this  straight  line starting at  a  period  of  about 1 day, 
due to the  long-period  fluctuations  that  are  visible in the 
data set. 

Conclusions 

We have discussed  the  considerations  that 
govern  the  design  of algorithms used  to  synchronize 
computer clocks  using messages transmitted  over a packet 
network  such as the Internet.  We have used  this  method 
to design  an  algorithm  for synchronizing the clock of  a 
standard  workstation using a server about 1200 km away. 
Both the client  and the server are  connected to local area 

networks  which are in turn  connected to the  Internet  using 
standard  methods and hardware. The client  system 
operated in a  standard  office environment with  no  special 
control of the ambient  temperature or any other 
environmental  parameter. 

The  communication  between  the  client  and  the 
server  used the standard  protocols  and  format  of  the 
Network  Time  Protocol  O\[TP),  but  the  remainder of the 
algorithm  is  completely  different. We  used only  one 
server for this study, although  we  outlined  procedures  for 
querying a  second  server  when the first  one  seems to be 
broken.  The  procedures for adjusting the time of the  local 
clock  are  the  same as we  described  previously in 
reference 1. 

The  performance of the  algorithm  is  comparable 
to that  obtained  with  the  “lockclock”  algorithm  or  with 
the  network time protocol  using  a  directly-connected 
radio  clock.  This  algorithm  can  therefore  provide  near 
“stratum- 1 ” performance  using  only  network  data. 

In addition,  the  procedures  we  have  discussed 
provide  a  quantitative  way of evaluating the  trade-off 
between  synchronization  accuracy  and cost. As  we  have 
shown, the  costibenefit  ratio is not  linear - an  increase  in 
accuracy by a  factor  N  requires  and  increase in cost 
proportional to  NZ. A moderate relaxation in  the 
synchronization  accuracy can therefore  result in 
substantial savings both  in the  network  bandwidth  that  is 
required  to  realize it  and  in the  number  of  public  servers 
that  must  be supported. 
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