
1997 IEEE INTERNATIONAL FREQUENCY CONTROL SYMPOSIUM

TIME SYNCHRONIZATION USING THE INTERNET

Kenneth W. Monington
JILA, University of Colorado

and
Judah Levine

JILA, NIST and University of Colorado
Boulder, Colorado 80309

Abstract

We will discuss a new algorithm for
synchronizing the clocks of networked computers using
messages transmitted over the network itself. The design
is based on a statistical model of the clock and the
network, and uses this model to define the parameters of a
frequency-lock loop which is used to discipline the local
oscillator. We have tested the design by synchronizing a
standard workstation to a time server located 1200 km
away; the time offset between the clock synchronized in
this way and UTC is 2 ms rms. Our analysis can also be
used to design algorithms that provide lower accuracy at
lower cost.

Introduction

In this paper we discuss synchronizing the clocks
of computers using messages transmitted over a packet
network such as the Internet. Such algorithms are useful
because the network infrastructure is often already
installed and available so that it can be used for time
synchronization with little or no additional cost.

This work is a generalization of the “lockclock”
algorithm, which we discussed in a previous paper [l].
That algorithm uses messages transmitted over dial-up
voice-grade telephone lines from a telephone time server
(such as the Automated Computer Time Service operated
by NIST) to synchronize a client system. The current
algorithm, which we call “interlock,” performs about as
well as “lockclock” but does not require access to a
telephone line. Instead, it uses calibration information
that is transmitted over a packet network such as the
Internet. It is compatible with existing network standards
and message formats, and can be used in a heterogeneous
environment in conjunction with other algorithms (such
as NTP, the network time protocol [2]) .

The design of the algorithm is based on a model
with three components: a clock model, a model of the
measurement process and a model of the delay in the
network. Each of these models is further subdivided into
deterministic and stochastic components. (A deterministic
parameter has a well-defined value that may evolve
slowly with time, while a stochastic parameter can only
be specified using a statistical measure such as a variance
or a spectral density.)

The Clock Model

The clock in a computer usually consists of two
parts: an oscillator that generates periodic interrupts and a
software driver that counts these interrupts in a register.
The register measures elapsed time from some system-
defined origin. In almost all systems the oscillator
hardware is free-running and is not under program
control. Software processes of the type we will discuss
can adjust the time of the clock by changing the value in
the system register; in some systems it is also possible to
adjust the effective rate of the clock by changing the value
that is added to the register on each increment. In the
following discussion, a reference to a computer clock
always refers to the clock register maintained by the
system, possibly combined with a method of interpolating
between ticks using either the system hardware or a
software timing loop. Furthermore, all time messages and
clock comparisons are made using UTC; conversions to
and from the local time zone (including a correction for
daylight saving time, if necessary) are made by other
processes and are outside of the scope of our discussionl

We characterize a clock with two deterministic
parameters: a time offset, which specifies the difference
between its time at some epoch and UTC, and a rate

395

U.S. Government work not protected by U.S. copyright

offset, which specifies how this time offset evolves. If x k
and Y k specify the time offset and rate offset at some
epoch tk, then these parameters can be used to predict the
time at the next epoch, tk+l using

where

At = tk+l - t,. (2)

Although quartz-crystal oscillators (which are the type
almost always used in computer clocks) usually have
significant frequency aging, it is difficult to estimate it in
the presence of white frequency noise and we therefore do
not include it in the model.

In addition to these deterministic parameters, the
frequency of the oscillator fluctuates stochastically.
These fluctuations can be characterized as a “white”
Gaussian process for relatively short averaging times, but
the spectrum of these fluctuations exhibits a divergence as
lif (or faster) at lower Fourier frequencies (i.e., longer
averaging times).

Unfortunately, we can observe the oscillator
frequency only through its effect on the time. The
integration of the frequency implied by eq. 1 means that
the spectral density of the time fluctuations resulting from
almost any kind of frequency noise is not white. In other
words, the time fluctuations produced by frequency noise
can never be characterized by a mean and a standard
deviation; while these parameters will always exist in a
formal sense, their values will not necessarily correspond
to our intuitive expectations. In particular, when the
performance is dominated by frequency noise (even white
frequency noise) the rms prediction error of the time-
difference will not be improved by averaging repeated
observations of xk.

The Measurement Process

The measurement process involves comparing
the time of the clock with the time transmitted over the
network. The delay in making these measurements is
usually on the order of microseconds in a well-designed
system - a value that is small compared to the error
budget of the synchronization process. This delay has a
jitter due to variations in system load and interrupt
latency. We will assume that the factors that drive these
fluctuations vary rapidly with time, so that the variations
in consecutive delays are largely uncorrelated with each

other even for measurements made only a few seconds
apart. This jitter about the mean is therefore a random
variable with a reasonably well-defined standard
deviation; we call this jitter white phase noise, by analogy
with the analogous fluctuations in hardware clocks.

These fluctuations exact a price from any client
process that uses the clock to time-tag an event. Since a
time-tag involves a single reading of the clock, the fact
that the distribution of an ensemble of such measurements
would be approximately Gaussian cannot be exploited.
However, this Gaussian distribution does have an
important consequence for prediction applications: it
suggests that the average of N rapid-fire measurements
will have a standard deviation that is smaller than that of

a single measurement by a factor of 1 / .\I(N - 1) . This
improvement depends, of course, on the assumption that
the measurements are dominated by white phase noise-
in other words the deterministic parameters of the other
components of the model must not change during the
course of the N measurements, and the contributions of
any non-white noise source must be small.

The Network Delay

The network delay enters directly into the
measurement of the time difference. It is usually
estimated from the measurements themselves using the
usual round-trip method. The client machine requests a
time-packet at time t l ; the request arrives at the time
server at time t2; the server responds at time t3 and we
receive the response at time t4. The round-trip delay due
to the network path is

A = (t , - t ,) - (t , - t ,). (3)

The first bracket measures the total time that has elapsed
from when the request was sent until the reply was
received as measured by the clock in the client. The
second is the processing delay in the server as measured
by its clock. If the one-way outbound delay is d, the time
difference between the client and the server is

X = (tl + d) - t,. (4)

If the path delay is symmetrical, then d = A / 2, and

396

If the path delay is not exactly symmetrical, this estimate
will be wrong by an amount proportional to the
asymmetry. If the actual outbound delay is given
by d = kA, where 0 < k < 1, then the estimate above is
wrong by

E = (k - 0.5)A,

which depends both on the path delay and on its
asymmetry.

Networks are usually configured so that the
inbound and outbound paths are symmetrical, although
there is no physical reason why this must be true. There
is no way of detecting such a static asymmetry using only
timing information transmitted over the network itself.
We will therefore assume that either the static
configuration is symmetrical or else that any static
asymmetry is calibrated using some external means. In
either case, it is unlikely that E has a normal distribution
about this mean value so that

o2 - (E *) -

will not have any simple interpretation analogous to the
variance or standard deviation of a traditional distribution.
The problem is not in A, because we measure it for each
transmission - it is in the degree of asymmetry, specified
by (k-OS), and the fact that this asymmetry varies from
one transmission to the next one.

The situation is more favorable if we consider
the distribution of the mean of a group of closely-spaced
calibration messages. If the spacing between the
messages in the group is close enough so that the
deterministic parameters of the clock model are
essentially constant, while at the same time being far
enough apart so that the variations in the network delays
between consecutive messages are independent of each
other, then the Central Limit Theorem guarantees that the
distribution of these group-means will have a normal
distribution, independent of the distribution of the
individual messages. [3] A typical computer clock will
take at least several seconds to gain or lose 1 ms, while a
typical packet network will have processed tens of
thousands of messages in the same time interval. The
requirement is therefore easily satisfied, even if the
consecutive requests are separated by only IO0 ms.
Furthermore, the Lindeberg condition [4] is automatically
satisfied by the time-out constraints that are incorporated
into the design of all networks.

Once we have computed the mean of the group
of measurements, it is possible to look for gross outliers
within the group by examining the distribution of the
individual measurements about the mean. There is no
robust definition of the standard deviation in this case,
since the distribution of the measurements is not a normal
one. If the true asymmetry varies randomly between the
two asymptotic values k 0 0 and k 0 1, then the mean
value is not a bad estimate of the actual time difference,
but the situation is less clear when there are a few outliers,
with all of the other values clustering about a single value.
We generally choose to reject the outliers in this case if
they differ from the mean by more than 3 standard
deviations of the points that remain after they have been
rejected. (Alternatively, we have used the difference
between the outliers and the median in the same manner,
because the median is less sensitive than the mean to the
presence of outliers.) We reject the entire group of
measurements if more than 5% of the measurements are
rejected using this procedure - either our notion of the
standard deviation is too optimistic or the asymmetry is
too variable to make a robust estimate of the time
difference.

Separation of the Variance

Any method of clock synchronization usually
has only one type of observation to work with: the series
xk, giving the time differences at consecutive epochs
between the clock we are trying to control and some
distant server. It is very important that we separate the
contributions to the variance of this time series arising
from the different components which we identified above.
The reason is that we must not adjust the clock because of
noise in the measurement process that did not arise from
the clock in the first place. While equation 1 might
suggest that if the time of the clock is wrong then its
frequency must be wrong as well, this is not true in the
environment we are considering. Both the network and
the measurement process make contributions to the time
difference and its variance. In other words, it is possible
to observe a time error that is not due to the frequency
offset of the clock - indeed it may have nothing to do
with the clock at all, and correcting the clock for this error
(either in time or in frequency) will simply make matters
worse.

CT:(T), is a time-domain analysis tool which is very useful
i n characterizing the spectral density of a time series.
This characterization is very important because there are
statistically-optimum measurement strategies for each
type of noise, and knowing the noise type is therefore
crucial to designing an optimum synchronization
procedure. In addition, the spectral density of the noise is

The Allan variance, [5] usually denoted by

397

often an important indication of its source. See ref. 1 for
more details.

Time of gpshub; + via ACTS, * via Bus

- 'tt

Log Meas. Interval (S)

Fig. 1 . Allan deviation measured using the ACTS dial-up
system (+) and via a direct connection to the computer
bus (*). The straight lines have slopes of-l, -0.5 and 0 to
illustrate the various noise types.

The power of the Allan variance is illustrated by
the measurements shown in fig. I . We have monitored
the time of a computer named gpshub using two
techniques: the "*" show the square root of the Allan
variance when the time of the clock is compared to the
time of a cesium frequency standard using an interface
connected directly to the computer bus. The "+" data
shows the Allan deviation for the same clock when the
time differences are measured using periodic dial-up
connections to the NIST Automated Computer Time
Service. (The lines on the figure are to assist in the
discussion and are not otherwise significant.) In both
cases the computer clock is not adjusted. We also did not
use any of the outlier-rejection schemes we discussed
above.

For both measurement techniques, the initial
slope is -1, showing that both are limited by white phase
noise at short times. The magnitudes are quite different in
the two cases. The directly-connected hardware device

has a white phase noise level of about 80 p, while the
link to the ACTS system has a noise level of about 1 ms.
We are not looking at the oscillator in either case. This is
measurement noise - it arises from the jitter in the
measurement process and has nothing to do with the
clock. The measurements made using the ACTS system
have additional jitter because of the hardware and
software that are required to receive data using a modem
and a serial line, while the directly-connected device is
limited primarily by the much smaller latency in
processing an interrupt request to read a hardware device
on the bus.

Since this is white measurement noise, it would
be a mistake to use these data to adjust the clock - as we
mentioned above, this is time jitter with no corresponding
frequency variations. We can decrease our uncertainty of
the time difference by averaging consecutive readings
since we are sampling a Gaussian random process. The
limit to this improvement comes at about 100 S for the
measurements made via the bus device and at about 3000
S for the ACTS comparisons. The improvement in either
case would be proportional to the square root of the
number of measurements in the average, but this
improvement is only available to a process that can
benefit from an average time offset. Furthermore the cost
of adding more data to the average increases linearly with
the number of points so that the codbenefit ratio
becomes increasingly unfavorable as the uncertainty is
decreased.

The Allan variance is not sensitive to
deterministic rate offsets, since it is computed using the
second-difference of the time-difference measurements.
However, a rate offset between the client and the server
will result in a deterministic trend in the time-difference
measurements. This trend will introduce a bias into the
averaging procedure and must therefore be removed
before the average is computed.

Note that the uncertainty of a single time-tag will
remain unchanged at the value specified by the white
phase noise level of the measurement process. A
prediction procedure cannot improve on this limit because
the fact that the slope of the Allan deviation as a function
of averaging time on a log-log plot is -1 implies that
oy (z)z is a constant. This is the essence of a process
with a normal distribution: the previous data are of no
help in predicting the magnitude of the next observation.
Adjustments to the clock made using the measurements
acquired in the white phase-noise domain will degrade the
stability of the clock on the average because these
adjustments convert measurement noise into frequency
noise. There are only two strategies that can improve

398

matters in this domain: either the measurement noise of a
single time-tag must be decreased or the process that uses
the time-tags must be designed so that it can benefit from
averaging a number of them.

In both data sets, the slope changes to 4 . 5 at
longer averaging times showing a transition to white
frequency noise. The time differences can no longer be
characterized as a Gaussian random variable. Now it is
thefrequency that has this distribution. We can continue
to improve our knowledge by averaging, but we must now
average the frequency (i.e., the first difference of the time
measurements) rather than the time measurements
themselves. The transitions to white frequency noise
occur at different values for the two measurement
schemes, but the two data sets lie on almost exactly the
same line after it. This is to be expected. Once we are
limited by the frequency stability of the local oscillator
(and not by the measurement process), the noise in the
measurement process must not matter anymore, and any
measurement process that can achieve this goal will
result in the same longer-term performance.

If we operate our synchronization loop in the
white-frequency domain then the optimum strategy would
be to acquire xk data as fast as possible, average these data
until we reach the transition to the white-frequency
domain, then average the first-difference of these
averages to reduce the uncertainty of the frequency
estimate. This process could continue until the end of the
white-frequency domain, where it is no longer optimum.
For the system whose Allan deviation is shown in fig. 1 ,
the upper end of the white-frequency domain is at an
averaging interval of about 12 hours.

In contrast to the white phase noise domain,
where the prediction error for a single measurement is
independent of the averaging time, the prediction error for
time differences in this domain is proportional to TO -

there is now an explicit trade-off between the time
accuracy of a single time-tag and the cost of obtaining the
synchronization data. The cost of averaging increases
linearly with the number of points that are averaged,
whereas the uncertainty decreases only as the square root
of this number. Incremental improvements in the
accuracy of a single time-tag therefore become more and
more expensive.

Just as correcting the time of a clock is not
optimum in the domain where the spectrum of its
fluctuations is dominated by white phase noise, correcting
its frequency is equally inappropriate in the domain where
that spectrum is dominated by white frequency noise. As
above, the prediction of the future performance of a
parameter whose fluctuations are given by a normal

distribution cannot be improved by a linear combination
of previous observations. The optimum strategy is to
average the frequency observations until their spectral
density can no longer be characterized by a normal
distribution. This is usually done with a recursive filter
that realizes an exponential response in the time domain.
(Ref. 1, equation 3). The time constant of this filter is set
to the point at which the noise spectrum is no longer
dominated by white frequency noise. This time constant
is independent of the rate at which data are acquired or
the phase noise of the measurement process - it is
determined only by the characteristics of the oscillator
itself.

The Network

Network delay +=loopback, x=LAN, *=Internet

-5

3 -6

;>

Q)

'E
3 -7

h o -8
5
Fn

S"
- 10

-1 1

* x I

*

Log Meas. Interval (S)

Fig. 2. The Allan deviation of the network delay; loop-
back to the sending machine (+); machines on same local
area network (x); machines on the Internet, 1200 km
apart (+). Line of slope -1 for reference and the line of
slope 4 . 5 is copied fi-om fig 1.

As we pointed out above, the distribution of the
means of groups of relatively closely-spaced messages
will have a normal distribution even though the

399

distribution of the individual messages is almost never
Gaussian. We conducted a series of experiments to verify
that this is true; the results are presented in fig. 2.

We sent packets in the network time protocol
format between two time servers whose clocks were both
independently synchronized to UTC. For each packet, we
computed the time-difference between the two systems
using equation 5. We repeated this process 25 times with
requests spaced one second apart and averaged these
results to form a single time-difference point. We then
repeated this entire process every 5 minutes for several
days. These data are not used to discipline either clock -
that is accomplished by procedures that are outside of the
scope of the experiment. The Allan deviations of these
measurements are shown in fig. 2.

The bottom set of points (with the symbol “+”) is
from a loop-back test, so that the fluctuations in the clock
itself are irrelevant. (A straight line with a slope of - 1 is
shown superimposed on these data for reference.) The
data are characterized by white phase noise over the entire
time domain; the magnitude is about 240 p , which
represents the fluctuations in the symmetry and delay in
the machine itself.

The next two plots show the Allan deviation of
the measurements between two time-servers on the same
local area network (shown by the symbol “x”) and two
machines on the Internet separated by about 1200 km
(shown with the symbol “*”). All of the data are clearly
limited by white phase noise at short periods. The
magnitude of the noise increases with the length of the
network path, but its character does not change until we
reach periods longer than about 6 hours where large,
correlated fluctuations in the network delay become
important. (Such correlated fluctuations violate the
conditions needed for the validity of the Central Limit
Theorem.)

Superimposed on these upper two plots is a line
with a slope of 4 . 5 copied from fig. 1 . As we discussed
above, that line represented an estimate of the magnitude
of the frequency noise in the clock oscillator of machine
gpshub. The parameters of an algorithm to synchronize
the clock of this machine can be deduced from the figure
by comparing the noise associated with the network with
the frequency noise of the clock itself.

We limit our adjustments of the clock to those
portions of the spectral domain where the calibration data
adds information -that is, where its noise spectrum is
better than that of the local clock itself. The spectral
density of the noise of the local clock is almost always
less than the noise of the time server when seen through a

noisy channel and measurement process, so that some
kind of averaging of the calibration messages is usually
necessary to realize an optimum design.

If we plan to synchronize gpshub using a time
server that is connected to the same local area network,
for example, then the variance of the calibration signals
will be given by the data shown by “x” on the plot. The
variance of these calibration signals falls below the
variance due to the frequency noise of the clock for
averaging times longer than about 150 S. This is the
minimum time-constant that we should use in correcting
the time of the clock so as to not degrade its inherent
stability with network noise. It is also the maximum time
over which the time-differences are dominated by white
phase noise and so could be improved by averaging them.
The Allan deviation results shown on the plot were
obtained by averaging 25 consecutive time-difference
measurements spaced 1 S apart, so that these data are well
within the white phase-noise regime where averaging
them is justified. Since the cross-over point is a function
of network load and other factors, we could estimate the
frequency of the local clock using consecutive groups of
time-differences spaced no less than about 180 S apart to
be sure that we are well into the domain where the
spectrum is dominated by white frequency noise. These
frequency estimates would be averaged using a time-
constant of about 14000 s - the upper-end of the domain
in which white frequency noise dominates the spectrum as
seen from fig. 1 . This average frequency could then be
used to correct the clock using the method described in
ref. 1. The exact values of these parameters would be
determined based on a trade-off between how well we
want to synchronize the clock and how much we are
willing to pay in terms of computer cycles and network
bandwidth. This trade-off enters at two points: how many
consecutive time requests we choose to average to build
each mean time-difference, and how long we wait
between each group once we are in the white frequency
noise regime of the clock. Using the choices above, the
minimum uncertainty in the clock synchronization would
be about 1800,(180) = 200ps, assuming, of course, that
the time of the server was known this well. This is an
impressive performance, but it is pretty expensive - it
requires groups of 25 time packets every 180 S or about 1
packet every 7 S on the average.

The same analysis would determine the
parameters for a synchronization loop using the distant
server on the Internet. These data are much noisier and so
we would have to average for a much longer time ~ the
noise of the network-based time-difference measurements
does not fall below the noise of the clock itself until an
averaging time of almost 5.3 h, and this would set the

400

minimum time-constant for the time clock-correction
loop. The performance of this loop would not be as good
as the first one, of course, because the prediction error
increases as TO.’ in the white frequency noise domain.
Since the network noise is so high, the clock would be
essentially free running for averaging times less than
about 5 h.

We could improve matters by averaging more
than 25 time-differences in each group. The spectral
density of the time-difference measurements would only
improve as the square root of this number, so that
significant improvements become expensive pretty
quickly. Assuming we kept 25 time-differences in each
group, the best we could do would be to estimate the
frequency using measurements about every 5.3 h (which
is the earliest time that the measurement noise due to the
network fluctuations becomes small enough that we can
begin to see the fluctuations in the clock oscillator itself).
The prediction error using this time-constant would be
about 19000~~,(19000) = 1.5 ms. This is comparable to
the uncertainty that we achieved with “lockclock”, which
is not surprising. As we pointed out above, the source of
synchronization does not matter very much once the
fluctuations are dominated by the frequency noise of the
local oscillator. Note that this performance is just about
at the edge of what can be achieved with this clock
hardware, because the cross-over point at which the
network noise drops below the time dispersion due to the
frequency noise of the clock is very close to the upper end
of the region in which the clock noise is still white
frequency noise. If the network noise was greater or the
frequency stability of the clock oscillator was worse, we
could still go through the motions of averaging, but the
mean value no longer has the nice properties that we
expect from a normal distribution, and the prediction
variance degrades accordingly.

In summary, the analysis using the Allan
deviation can be used to evaluate the trade-off between
the synchronization accuracy we can obtain and the cost
of realizing it. As the noise in the channel used to
transmit calibration data gets worse, we must compensate
by adding more measurements to each group of time-
differences and by increasing the time interval between
groups so that the equivalent frequency-measurement
noise of the channel drops below the inherent frequency
noise of the clock. The local clock is better than its
calibration source (as seen through the network) for times
shorter than this cross-over, so that correcting it in this
domain (either in time or in frequency) is a mistake.
Since averaging improves matters only by a factor that is
proportional to the square root of the number of
measurements. improvements realized by including more

time differences in each group become expensive very
quickly. Conversely, the costhenefit ratio becomes
much more favorable if we can settle for poorer time
synchronization (in an rms sense). Using 3 time-
differences in each group instead of 25 and increasing the
interval between measurements from 5.3 h to 12 h would
decrease the cost by a factor of about 20, while still
providing synchronization with an uncertainty of better
than 30 ms rms.

Detecting False-tickers

A “false-ticker’’ is a time server whose status is
shown as healthy but is nevertheless transmitting the
wrong time. This “should never happen,” but a client
must be prepared for it. The simplest strategy for
detecting this problem is to get a second opinion from a
different time-server, and then a third opinion to allow a
decision by majority voting. Clearly, this can get pretty
expensive. It potentially doubles (or maybe triples) the
load on every server.

Another strategy is to use time of the local clock
itself to validate the received data. If it has been T
seconds since our last calibration, then the time dispersion
of the local clock is of order Dy(r)T, and a time correction
that is much bigger than this is suspect - something has
changed in the interval since the last calibration cycle.
Deciding what “much bigger” means is a matter of
probabilities: we can choose to classify small conforming
fluctuations as errors by setting the threshold too low or
we can include glitches as acceptable data by setting it too
high. We have found that a threshold of 3 times the
standard deviation of the running mean is a reasonable
compromise above which we assume that something has
gone wrong. If the data pass this test, then we can
assume that nothing strange has happened. and we can use
the data as part of our update procedure. if, on the other
hand, this threshold has been crossed, there are four
possibilities:

1 . The server is broken.
2. Our clock has experienced a time-step.
3. Our clock has experienced a frequency step.
4. There has been a large change in the

parameters of the network delay.

We can differentiate among these possibilities
by switching to another server and seeing if its data are
consistent with the time of our local clock using the
procedure we outlined above. If yes, then we vote the
first server as sick by a vote of 2- 1 , including ourselves in
the decision. If the two servers agree (within the
uncertainty of the network noise), then we vote ourselves

40 1

We evaluated the accuracy of the procedure by
comparing the time of strain to UTC using periodic calls
to the NIST ACTS system (fig. 3). The noise and the
accuracy of the ACTS comparison are about 1 ms, so that
differences on this order or less are not statistically
significant. The Allan deviation of these data are shown
in fig. 4, with the usual straight line with a slope of -1 for
comparison. The rms time error is about 2 ms for all
averaging times, but the large 10 ms spikes make an
appreciable contribution to the variance. Residual
fluctuations in the network asymmetry that are not
completely removed by the averaging also contribute.

-6

-7

-8

4 5 6

Log. of Measurement interval (S)

Time of Strain - ACTS

Fig. 4. The Allan deviation of the data shown in fig. 3.
The straight line has a slope of -1 . The points deviate
from this straight line starting at a period of about 1 day,
due to the long-period fluctuations that are visible in the
data set.

Conclusions

We have discussed the considerations that
govern the design of algorithms used to synchronize
computer clocks using messages transmitted over a packet
network such as the Internet. We have used this method
to design an algorithm for synchronizing the clock of a
standard workstation using a server about 1200 km away.
Both the client and the server are connected to local area

networks which are in turn connected to the Internet using
standard methods and hardware. The client system
operated in a standard office environment with no special
control of the ambient temperature or any other
environmental parameter.

The communication between the client and the
server used the standard protocols and format of the
Network Time Protocol O\[TP), but the remainder of the
algorithm is completely different. We used only one
server for this study, although we outlined procedures for
querying a second server when the first one seems to be
broken. The procedures for adjusting the time of the local
clock are the same as we described previously in
reference 1.

The performance of the algorithm is comparable
to that obtained with the “lockclock” algorithm or with
the network time protocol using a directly-connected
radio clock. This algorithm can therefore provide near
“stratum- 1 ” performance using only network data.

In addition, the procedures we have discussed
provide a quantitative way of evaluating the trade-off
between synchronization accuracy and cost. As we have
shown, the costibenefit ratio is not linear - an increase in
accuracy by a factor N requires and increase in cost
proportional to NZ. A moderate relaxation in the
synchronization accuracy can therefore result in
substantial savings both in the network bandwidth that is
required to realize it and in the number of public servers
that must be supported.

References

[l] Judah Levine, “An Algorithm to Synchronize the
Time of a Computer to Universal Time,” ZEEEIACM
Trans. on Networking, Vol. 3, pp. 42-50, 1995.

[2] D. L. Mills, “Network Time Protocol (version 3);
Specification, Implementation and Analysis,” DARPA
Network Working Group Report RFC- 1305, Univ.
Delaware, 1992.

[3] John R. Taylor, “An Introduction to Error Analysis,”
Mill Valley, California: University Science Books, 1982,
Ch. 10, pp. 197-199.

[4] C. W. Gardiner, “Handbook of Stochastic Methods,”
New York: Springer Verlag, 1990, Ch. 2, pp. 37-39.

[5] D. B. Sullivan, D. W. Allan, D. A. Howe and F. L.
Walls, Eds., “Characterization of Clocks and Oscillators.”
NIST Technical Note 1337. 1990.

403

