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Abstract 

In this paper, the fundamental  nature of 
acceleration  sensitivity is reviewed  and  clarified. The 
driving  factor behind the acceleration-induced  frequency 
shift is shown  to be the deformation  of  the  resonator. The 
deformation drives  two effects:  an  essentially  linear 
change in the frequency determining dimensions of  the 
resonator, and an essentially  nonlinear  effect  of changing 
the velocity of  the propagating wave.  The basic 
properties  of  acceleration  sensitivity  are  illustrated 
through  the  simple examples  of  “BAW in a  box” and 
“STW in a  box”. These  examples  serve  to clarify  a 
number  of  concepts, including  the  role  of mode  shape 
and the basic difference between  the  bulk  acoustic wave 
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and acoustic  surface wave  cases. Finally.  these  basic 
understandings  are  extended  to other cases such  as BAW 
microresonators. 

Introduction 

With the advent  of modern  personal  satellite 
communications  systems,  acceleration  sensitivity has 
transitioned from being  a  military-specific  technology 
barrier to an important  specification of commercial 
hardware. In this paper,  the fundamental nature  of 
acceleration  sensitivity is reviewed and clarified. 

The vast majority  of communications  systems 
maintain  phase coherence through  the  use  of  low-noise 
crystal  oscillators.  Commercial  off-the-shelf  crystal 
oscillators  are capable  of meeting  nearly all systems 
requirements,  provided that the systems are at rest. 

Fig. 1. Output  spectrum  of a  commercially  available 809 MHz  oscillator a) at rest and b) when subjected  to a lg 
sinusoidal  vibration  at 330 Hz. 
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Fig. 2. Basic  principle  of  operation  of a generic  resonator. 

However,  the  noise  output  of  the  crystal  oscillator is 
increased and  the  capabilities  of  the  corresponding 
electronic  systems  are  decreased by environmental 
vibrations  encountered  when,  for  example,  the system is 
in motion.  The  magnitude  of this  problem is illustrated in 
Figure 1 wherein  the  output  of a commercially  available 
809 MHz  crystal  oscillator is shown  a) at  rest and  b) 
when  the  oscillator is subjected  to a l g  sinusoidal 
vibration at 330 Hz. This  phenomenon,  known  as 
“acceleration  sensitivity”,  translates directly  into 
increased  bit  error  rates  for  mobile  communications 
systems. 

The problem of acceleration  sensitivity in low- 
noise  crystal  oscillators  was first seriously  examined 
during  the 1960’s. Since  then,  the problem has been 
extensively  studied  by a wide variety of  researchers in 
the  military, industrial, and  academic  communities. 
However, it is only  within  the past several  years  that a 
clear  understanding  of  the  phenomenon  has  emerged. 

Fundamental  Nature 

A typical low-noise  oscillator  uses  a  crystal 
resonator  as  the  frequency  determining  element. An 
understanding  of  the  fundamental  nature  of acceleration 
sensitivity in crystal  oscillators resides  primarily in 
understanding  the  acceleration sensitivity of  the crystal 
resonator. 

ComDonents of  the  Acceleration-Induced Frequency  Shift 

The  basic  principle  of  operation  of a generic 
resonator is shown in Figure 2 .  A traveling  wave is 
combined with  a confinement  structure  to  produce a 
standing  wave  whose  frequency is determined  jointly by 
the velocity of  the  traveling  wave  and the dimensions  of 
the  confinement  structure. In the  case  of crystal 
resonators, the  traveling  wave is either a  bulk acoustic 
wave  propagating  through  the interior of a  piezoelectric 

crystal substrate  or an acoustic  surface  wave  propagating 
on the  surface  of a  piezoelectric  crystal substrate. In the 
case of bulk acoustic  wave  (BAW) resonators, the  wave 
is confined by the  substrate  surfaces,  while in the  case of 
acoustic surface  wave  resonators, the wave is confined 
by metal-strip  Fabry-Perot reflectors  deposited on the 
propagation surface. 

Given that the  frequency of the  crystal  resonator 
is determined  jointly by the velocity of the acoustic  wave 
and  the  dimensions  of  the  confinement  structure,  there 
are  only  two possible effects which an acceleration can 
have  on  the crystal resonator: 

1.  The  wave velocity  can  be perturbed. 

2. The  confinement  dimensions can be changed. 

The first  effect is primarily  a  result of  the  nonlinear 
elastic behavior  of  the piezoelectric substrate,  while  the 
second effect is primarily  a  linear mechanical  effect. 

The portion of  the  acceleration-induced 
frequency shift caused by the wave velocity change is 
typically substantially larger  than  that caused by the 
confinement  dimension  change, and hence  the 
phenomenon is often thought  of in the purely nonlinear 
sense. However,  techniques such as aspect-ratio 
compensation can readily reduce  the  nonlinear  part  to 
levels such  that  the linear  part cannot be ignored. 

The linear  portion of the problem also causes an 
asymmetry in the  effective material constants  such that 
2 LvMcl # t yLabl with the  important practical  implication 
that both strains  and  rotations must be considered  when 
determining  the  acceleration-induced  biasing  state. 

Cause  of  the  Acceleration-Induced Frequency Shift 

The  driving  factor behind an acceleration- 
induced frequency shift is the  deformation  of  the 
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Fig. 3. Flow chart  of acceleration effects  for  constrained  and unconstrained resonators. 

resonator  as it reacts against its mounting structure. This 
is illustrated in Figure 3, wherein  the  effects  of 
acceleration  on a resonator  constrained by a mounting 
structure  are  compared to the  effects  of acceleration on an 
unconstrained  resonator. Acceleration  sensitivity is thus a 
special  case  of  the  more  fundamental  deformation 
sensitivity of  the crystal  resonator. 

The  relationship  of acceleration  sensitivity to  the 
force-frequency  effect,  planar stress compensation, etc. is 
clarified in Table I. All of  the listed phenomena  are 
special  cases  of  deformation sensitivity,  each 
distinguished by  a  particular driving  deformation. 

Basic Mathematical  Approach 

How  to  accurately calculate  acceleration 
sensitivity is now  well understood.  One  can, in theory, 
directly  solve  for  the  frequency under  acceleration  using  a 

TABLE I 
DEFORMATION  SENSITIVITIES 

Phenomenon Deformation  Driver I 
acceleration  sensitivity reaction against  mounting 

structure in response  to 
external acceleration 

aging  (stress relief) 

diametric  cornmession  force-freauencv  effect 
and/or mounting  structure 
relaxation of resonator 

planar  stresdthermal electrode/substrate 
transient  compensation interfacial  stress I 

l no  deformation 
(accelerated motion) 

l no  frequency  shift 

set of differential equations with spatially  varying 
effective elastic constants. I t  has  been shown  to be much 
more  efficient  to  calculate  the first perturbation in 
eigenvalue using the  formalism  of Tiersten [ l ] .  In this 
technique,  one  examines essentially  a weighted  average 
of  the spatially varying  effective  elastic  constants in that 
portion of  the plate where  the  mode is driven. It  is this 
effective  averaging  that is the basis of  the  various  “mode- 
shaping” proposals  recently  put  forth [2-71. 

Interpretation of  the Perturbation Equations 

The  basic  equations  employed in the 
perturbation approach  as  developed by Tiersten for  the 
case  of purely elastic nonlinearities are 

and 

H =  P 

where 
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and ADplication of  the Perturbation Equations 

Equation (1) shows  that  the  frequency under  acceleration, 
W ,  is shifted  from the  unperturbed  frequency, mp, by  a 
small amount Ap which can be calculated  using  equation 
(2)  and  “the  perturbation integral” of equation (3). The 
perturbation integral  given by  equation  (3) looks  quite 
complicated but actually  has a  rather simple 
interpretation: it is essentially  a weighted  average  of  the 
acceleration induced  bias throughout  the  volume  of  the 
quartz plate, where  the  weighting  factor  for the averaging 
is determined by the  acoustic  mode  shape. Equations (4) 
and (5) provide  the necessary normalization of the 

acoustic  mode  shape with  particle displacements U; 

(Note:  the  subscript/  superscript p in (1) through (5) 
denotes  the p“’ eigenmode). 

The  acceleration-induced  biasing  state is most 
conveniently written using  the material cofactor 
representation [S] 

where 

( 5 )  
Equation (S) may be evaluated analytically  or 

numerically.  The  major  advantage of the  analytic 
approach is that it can be used to  derive  design  equations 
yielding a  clear understanding of the  functional 
dependencies  of  the acceleration  sensitivity  upon real- 
world  design  and  fabrication  parameters [9. IO].  The 
numerical approach  using finite element  techniques  to 
determine  the  acceleration-induced biasing state  has 
advantages in the  analysis of complicated  support 
structures  and resonator geometries. 

Basic Properties  of  the  Normal Acceleration Sensitivities 
of SimDle Bulk and  Surface  Modes 

It is generally  known that the  acceleration 
sensitivity of a  given resonator type depends upon the 
support configuration,  choice of substrate material, 
substrate orientation,  substrate  dimensions, type of 
mode, acoustic mode profile,  acoustic mode location, 
etc. In order  to obtain  a more detailed understanding  of 
the roles  these parameters play in determining  the 
acceleration  sensitivities of both bulk and surface  wave 
resonators, it is useful to  examine the  instructive cases  of 
the  typically dominant,  normal acceleration  sensitivities 
of rotated Y-cut quartz resonators  simply supported  along 
rectangular  edges. 

~ L Y M ~ ~ K N  = C L ~ M ~ K N  + C L M K N ~ ~ ~  Cases  Considered 

+ C L ~ K M & N  + CLKM&N (7) The  modes  considered here are  the  simple 
thickness modes  described by 

and h,, represents  the  Kronecker  delta.  The w ~ , ~  factor in 
equation (6) represents  the nine acceleration-induced = M,.  s i n [ ~ p ( x z  - A)] (AT-cut  a-lmode),  (9a) 
biasing  deformation  gradients (N and K take  values 
1,2,3), and  contains all of  the  required information on 
how  the  shape  of  the crystal  plate is deformed by the u3 = M b  .sin[Pp(x2 -A)]  (AT-cut  b-mode),  (9b) 
acceleration. Which ? terms  are required is 
determined by the  mode  of  operation, and  each ? LyMa and 
term is the  sum of the  deformation  gradients, each 
multiplied by the  relevant material cofactors  kLyMaKN as 
defined in equation (7). As  applied to the  calculation of ul = M, .sin[Pp(x2 - A)] (AT-cut  c-mode),  (9c) 

the  normal  acceleration sensitivity, equations  (1) through 
(3) readily  yield for 

.. 

where v denotes  the resonant frequency  and  ai  denotes  the 
external acceleration  applied  along  the xi direction. and 
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Fig.  4a. BAW  device plan view. 
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Fig. 4b. BAW  device cross-section. 

and the simple  surface transverse wave  (STW)  mode 
described by 

for 

and 

l 
2a 

XI 
Fig. 5a. STW device plan view. 

2d 

x2 
Fig. 5b. STW  device cross-section. 

In equations (9) and (IO) ,  M represents the modal 
amplitude,  and p a 2 d  represents the relevant 
propagation constant. For  the BAW modes,  we consider 
2h = pW2 with p=1,3,5, ... denoting  the  harmonic 
number. For the STW mode, we take the length 1 of the 
active area  to  be a  large,  integer number of wavelengths 
and consider h >> d. 

The  modes are considered to be propagating in 
flat, rotated Y-cut quartz plates  simply  supported along 
rectangular edges as illustrated in Figures 4 and 5. For 
the  BAW  case,  we  allow  the  mode location to be 
displaced from the  central  plane  of  the  substrate by a 
distance A along the  thickness  direction. For both BAW 
and  STW modes, we  consider the  in-plane mode location 
to be displaced by (&E) along  the rotated X- and  Z-axes 
respectively. The calculated  normal  acceleration 
sensitivities are listed in Table 11. 
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TABLE I1 
NORMAL  ACCELERATION SENSITIVITIES OF SIMPLE BULK AND SURFACE MODES 

FOR ROTATED Y-CUT QUARTZ FLAT PLATE RESONATORS SIMPLY  SUPPORTED ALONG RECTANGULAR EDGES 
Mode I Normal Acceleration  Sensitivitv 

NOTE: am ~ ; 
mn - ml . 2n pn 
2a  2b ' h 2h 

Kn=-  E L ~ M ~  and F L ~ M ~  as  defined in [9,10]; P = - = - 

Interpretation  of  the  Solutions 

The  various  terms in the  simplified  solutions 
presented in Table 11 clarify  the basic  properties of  the 
normal  acceleration sensitivities as  follows: 

odd odd 

m n  
c c  

+l- 

1 

P 
- 

1 

Vmode 
2 

96  96 
or - __ 

n 7[ 
5 

quotient 

- the  summations reflect the fact that  the 
flexural  deformation is described by a 
Fourier series expansion 

- reflects  that  the sign of  the  frequency 
shift can  be correctly  determined 

- proportional  to inverse of  the  harmonic 
number  for  BAW  modes 

- proportional  to inverse square  of the 
modal velocity 

- proportionality constant  depends on 
whether  the  device is a  bulk or surface 
wave  resonator 

- directly proportional to complicated sum 
of linear and  nonlinear  stifmesses via 
ELyMu and FLyMu 

anisotropic plate stiffnesses y 1 1 ,  y 3 3 ,  

y13 7 and y55 

- net proportionality  to  the  square  of  the 
lateral dimensions, i.e.. proportional to 
area  of  the  major  surface 

aspect-ratio compensation  when ELyMa and 
FLyMa are  of  opposite sign 

- proportionality to an x,-direction  mode 
center offset 

- proportionality to an x,-direction mode 
center  offset  for BAW modes 

- proportionality to an x3-direction mode 
center offset 

- proportionality to  the  x,-direction  mode 
profile 

- inversely proportional  to plate 
thickness, with no proportionality to  the 
x,-direction mode profile 

- inversely proportional  to linear stifmesses ~ K , E )  

controlling flexural  rigidity via  Voigt's K ,E 

- proportionality to  the x;-direction mode 
profile 
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Similarities  and  Differences  between  the  Bulk  and 
Surface  Wave  Solutions 

The  properties  of  the  BAW  and  STW  solutions 
are essentially  identical  with regard  to most design 
parameters,  particularly with  respect to in-plane 
variations  such  as  mode  center offset. The  differences in 
sign  and  the  additional l ln factor in the  BAW  case  are 
not significant  with regard to  the  nature  and properties of 
the  solutions. 

There  are two factors  which  appear  only in the 
BAW  solution. First, the  consideration  of  harmonic 
operation in the  BAW  case leads to a  factor of  l/p not 
found in the  STW  case,  where  only  fundamental  mode 
operation is considered.  Second,  the  BAW  case includes 
a  term sin(2pA)  causing  the  BAW  acceleration sensitivity 
to be proportional  to  the  thickness direction mode  center 
offset,  whereas  the  STW acceleration  sensitivity has no 
dependence  upon  the  thickness direction properties  of the 
acoustic  mode  shape. 

The  BAW  and  STW  acceleration sensitivities 
both depend upon the plate thickness. In the  BAW case, 
the  thickness is also the frequency  determining 
dimension.  As a  result,  there is a net  frequency 
dependence  of  the  BAW acceleration  sensitivity for 
scaled  designs  such a microresonators. 

Additional  Discussion  of  the  BAW  Solutions 

The  BAW  acceleration sensitivity depends upon 
the  harmonic  number in two  ways. First, there is a  direct 
I/p  dependence upon harmonic  number p. Second, the 
propagation  constant p, = 2nIh = pnRh  appears in the 
sin(2ppA) term,  which  may  be rewritten  as sin(px2P,A). 
The  direct  lip  dependence  tends  to  decrease the 
acceleration sensitivity  with increasing  harmonic. If the 
thickness  direction  mode  center offset A is taken  to be  the 
same  for  the  various  harmonics, then  the  sin(2pPA)  term 
increases  with increasing  harmonic,  tending  to increase 
the  acceleration  sensitivity with  increasing  harmonic. 
Published  experimental  results on the  harmonic 
dependence  of  acceleration sensitivity  indicate an initial 
decrease in acceleration sensitivity  with  increasing 
harmonic  number,  after  which  the acceleration  sensitivity 
is essentially  constant  or  slightly increased [ 1 l]. 

The  qualitative  effects  of  energy  trapping  on  the 
acceleration  sensitivity can be understood readily from 
the  solutions presented  here by  taking  the case of a more 
tightly trapped  mode  to  correspond  to  an increased  modal 

amplitude M,, M,, or M, in conjunction with  a decrease in 
the  active  area given by 2 1 x 2 ~ .  

Extension to In-Plane  Acceleration  Sensitivities 

The  various  terms in the solutions listed in Table 
II arise from  specific  aspects  of  the  phenomenon.  For 
example,  the Fourier series  expansion,  direct 
proportionality to  substrate  area, inverse proportionality 
to  substrate  thickness,  and inverse proportionality  to  the 
stiffnesses governing  flexure  are all reflections of  the 
flexural biasing  deformation. By considering  the 
similarities  and differences between  the cases  of  normal 
and in-plane accelerations, the  results given  for  the 
normal  acceleration  sensitivities  readily can be extended 
to  the  understanding  of the  in-plane acceleration 
sensitivities. 

Advanced  Properties  of More Complicated  Modes 

Additional  insights  into the  fundamental  nature 
of acceleration  sensitivity are obtained  from the  analysis 
of  more  complicated  modes  such  as  trapped  energy 
modes. 

Limitations of  the  Simple  Mode  Analvses 

The  simple  mode  solutions as listed in Table 11, 
while  instructive, are  exact only for  the  considered  cases 
of uniform amplitude,  pure-mode propagation (only u I  or 
u2 or  u3 present). In reality, the  modes  driven in practical 
resonators  have  spatially varying  amplitudes  and 
components  of  the particle displacement  along all three 
axes  (ul, U?,  and u3 all present).  Such modes lead to 
solutions with slightly  more  complicated  functional 
behaviors, and  to  solutions  that  are  the sum of  multiple 
terms.  This is illustrated in Table Ill wherein the  simple 
mode STW solution is compared to the trapped  energy 
STW solution  from [9 ] .  Additional complications  are 
introduced in the Rayleigh wave  case  where  the  surface 
acoustic  wave  (SAW)  mode is composed  of  the  sum  of 
four partial waves. 

It is important  to note that the  simple  mode 
solutions  correspond  to  the  dominant  terms in the  trapped 
energy  solutions.  Hence,  where aspect-ratio 
compensation is not used (as,  for  example, in 4-point 
mounted BAW  resonators), the simple  mode  solutions 
provide  useful guidance  for  the  design  of 1O-Io/g 
performance  devices. 
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TABLE 111 
COMPARISON OF SIMPLE AND TRAPPED ENERGY  STW MODE NORMAL  ACCELERATION SENSITIVITIES 

Mode  Type 
Simple 

Trapped  Energy 

Normal Acceleration  Sensitivitv 

Oddodd 24 a2b2[(m~n)E3,3,b2  +(n.m)F3131a2] c c--- 2 2 2 2  COs(Ct,b) COS(K ,,E) 
m n v2 x 2  yl lm4b4+yj3n4a4  +(2y13  +4y55)m n  a  b 

+ 12  other  smaller  terms 

Important Properties of  the  Smaller  Terms 

The  dominant  term in the  trapped  energy 
solutions  can be minimized readily through  the use of 
aspect-ratio compensation, in which  case  the properties 
of  the  smaller  terms  must be  considered. The most 
significant  difference in the  properties  of  the smaller 
terms  as  compared  to  the  dominant term is in their 
proportionalities  to in-plane mode  center offsets. 
Whereas  the  dominant term is proportional to  the cosines 
of  the  mode  center offsets, the  various smaller terms 
have  combinations  and  permutations  of  sine  and  cosine 
proportionalities. 

"Mode Shaping" 

Techniques  for  minimizing  the acceleration 
sensitivity through  control  of  the  acoustic  mode  shape 

have been proposed by Ballato [2], EerNisse,  et  al. [3-61, 
and  Smythe and  Horton [7]. The  solutions presented in 
Table I1 clarify the distinctly different roles of  mode 
shape, i.e. "profile", and  mode location. Note  that  the 
theoretical zero acceleration  sensitivity of  the ideal 
(symmetric), rotated  Y-cut simple  BAW  resonator 
considered  here arises solely  from the  thickness direction 
symmetry.  While  the  trapped  energy  resonator will, in 
fact, require a  full three-dimensional  symmetry  to  obtain 
zero acceleration  sensitivity,  the dominant  and  hence 
most important  symmetry in practice in the AT-cut is not 
the in-plane symmetry but  rather the thickness-direction 
symmetry (see, for  example, [ 121). 

Other  Types  of  Resonators 

The  discussions  of  the  fundamental  nature  of 
acceleration  sensitivity  and simple  mode results also 
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clarify  important  aspects  of  the  phenomenon in other 
types  of  resonators. 

BAW  Microresonators 

The  simple  mode  solutions  for  BAW resonators 
indicate  potentially superior acceleration  sensitivities for 
BAW  microresonators,  provided that  fabrication 
tolerances  are  properly  controlled.  For scaled designs 
(i.e., similar  diameter-  and electrode-to-thickness  ratios, 
relative dimensional  tolerances,  etc.) there is a net  l/f 
dependence  of  the  acceleration sensitivity. Hence a 
lo-’’/& design  at 10 MHz could  yield 10-’*/g when 
implemented as  a 1 GHz microresonator. 

Dielectric Resonators 

The basic principle  of  operation  of a generic 
resonator  as illustrated in Figure 2 also  applies  to  the 
dielectric  resonator.  Consequently,  the  fundamental 
nature  of  acceleration sensitivity in the dielectric 
resonator is essentially  the  same  as  that  for  the crystal 
resonator, i.e., there  are  only two possible  effects which 
an acceleration  can have  on  the  dielectric resonator: 

1. The  wave velocity can be perturbed. 

2 .  The  confinement  dimensions can be  changed. 

For the  dielectric  resonator,  the  wave velocity change is a 
result of  the  nonlinear  piezooptic  effect, while the 
confinement  dimension  change is primarily a linear 
mechanical  effect.  As  for  the crystal resonator,  the 
driving  factor  behind  the  acceleration-induced  frequency 
shift is the  deformation  of  the  dielectric resonator  as it 
reacts  against its mounting  structure [ 131. 

Measurement  and Specification 

Understanding  that  the  deformation  of  the 
resonator is the  driving  factor behind  acceleration 
sensitivity highlights a critical  but  as yet  unaddressed 
issue in measurement  and  specification: the  measurement 
and specrfication of acceleration  sensitivity  are  only 
meaningful  with  respect to a well defined mechanical 
interface. 

To illustrate  this  point, consider  the  simple 
mode  solutions  presented in Table 11. These  solutions 
assume  that  the  resonator  supports  remain perfectly 
planar under  acceleration, as might be the case in 
practice for a resonator  attached  to a  sufficiently  thick 
ceramic  substrate.  However, in the vast  majority of 

practical applications,  the  mounting  “plane”  of  the 
resonator and/or oscillator is substantially distorted  under 
acceleration. A common  example would be a  resonator 
or oscillator attached  to a much larger  printed  circuit 
board. In this  case, the resonator deformation is the  sum 
of  the “free” deformation  of  the ideal resonator plus the 
defined strain  imposed  by the  deformation  of  the circuit 
board.  Hence  the  specification,  design, and 
measurement  of  resonators  for such an application  must 
account  for  the  defined strain  imposed by the  circuit 
board. 

Conclusions 

The  fundamental  nature of acceleration 
sensitivity is now  well understood.  The  driving  factor 
behind the  acceleration-induced  frequency shift is the 
deformation  of  the  resonator.  The  acceleration 
sensitivities of practical resonators can be accurately 
calculated  using the perturbation theory of Tiersten. 

The perturbation equations  have been solved 
analytically to obtain reliable design equations  for  BAW, 
SAW,  and  STW  resonators.  The design equations  clarify 
the  functional  dependencies  of  the  acceleration 
sensitivities on the full range of crystal resonator design 
and  fabrication  parameters. 
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