
Towards a Framework to Measure
Security Expertise in Requirements Analysis

Hanan Hibshi1,2, Travis Breaux1

Institute for Software Research, Carnegie Mellon Univeristy1

Pittsburgh, Pennsylvania, USA
College of Computing, King Abdul-Aziz University2

Jeddah, Saudi Arabia
{hhibshi,breaux}@cs.cmu.edu

Maria Riaz, Laurie Williams
Department of Computer Science
North Carolina State University
Raleigh, North Carolina, USA

{mriaz,lawilli3}@ncsu.edu

Abstract—Research shows that commonly accepted security

requirements are not generally applied in practice. Instead of
relying on requirements checklists, security experts rely on their
expertise and background knowledge to identify security
vulnerabilities. To understand the gap between available
checklists and practice, we conducted a series of interviews to
encode the decision-making process of security experts and
novices during security requirements analysis. Participants were
asked to analyze two types of artifacts: source code, and network
diagrams for vulnerabilities and to apply a requirements
checklist to mitigate some of those vulnerabilities. We framed our
study using Situation Awareness—a cognitive theory from
psychology—to elicit responses that we later analyzed using
coding theory and grounded analysis. We report our preliminary
results of analyzing two interviews that reveal possible decision-
making patterns that could characterize how analysts perceive,
comprehend and project future threats which leads them to
decide upon requirements and their specifications, in addition, to
how experts use assumptions to overcome ambiguity in
specifications. Our goal is to build a model that researchers can
use to evaluate their security requirements methods against how
experts transition through different situation awareness levels in
their decision-making process.

Index Terms—Security; requirements analysis; patterns;
decision-making; situation awareness

I. INTRODUCTION
Each year, new security breaches exploit well-known

vulnerabilities that have obvious, well-documented solutions.
Hewlett-Packard’s top cyber security risks report in 2011
presents many popular attacks against web applications, such
as SQL injection attacks [14]. In addition, the OWASP Top 101
web application security vulnerabilities and the SANS Top 20
Critical Security Controls2 aim to reduce the most common
vulnerabilities. Finally, high profile standards bodies publish
security control catalogues, including the ISO/IEC 27000
Series standards and the U.S. National Institute of Standards
and Technology (NIST) Special Publication 800 Series that
contain best practice security requirements. Despite these
broadly disseminated, diverse and in-depth sources of security
knowledge, information systems continue to be susceptible to
known vulnerabilities. These systems operate with poor
security practices, such as unencrypted wireless networks, the

1 https://www.owasp.org/index.php/Top_10_2013
2 http://www.sans.org/critical-security-contro

same administrative password across multiple systems, and
unexpired, outdated passwords [2].

The lack of information system security is unlikely due to
an absence of security requirements analysis methods.
Research in requirements engineering has sought to address
security, including abuse and misuse cases [6, 20], anti-goals
[16], extended models that use anti-goals to surface
vulnerabilities [16], and the use of trust assumptions to
construct assurance arguments [12, 13]. Combined with the
wealth of available security knowledge, we hypothesize
insecure information systems persist because security analysts
experience two challenges: a) difficulty in perceiving relevant
risks in the context of their information system designs to select
appropriate security requirements; and b) difficulty in deciding
which requirements are appropriate to minimize risk. We
propose that requirements analysis methods evaluation should
address these two difficulties.

The contributions of this paper include:
• A novel coding methodology to apply Situation Awareness,

which we applied to a new domain (security);
• Security decision making patterns based on Situation

Awareness that distinguish novices from experts;
The remainder of this paper is organized as follows: in

Section II, we present background on Situation Awareness; in
Section III, we present our research method; in Section IV, we
present the research results, including an example decision-
making pattern from our study; in Section V we conclude with
our discussion and future work.

II. SITUATION AWARENESS AND SECURITY RISK
We investigated security expert decision-making using

Situation Awareness (SA), which is a framework introduced by
Mica R. Endsley in 1988 [9]. In SA, we distinguish a user’s
“perception of the elements in the environment within a
volume of time and space, the comprehension of their meaning,
and the projection of their status in the near future” during their
engagement with a system. Perception, comprehension and
projection are called the levels of SA. To illustrate, consider
SQL injection, in which an attacker inserts an SQL statement
fragment into an input variable (often via a web form) to gain
unauthorized database access. When an expert conducts a
source code vulnerability assessment, they look for cues in the
code to place input sanitization, which is a mitigating security

U.S. Government work not protected by U.S. copyright ESPRE 2014, Karlskrona, Sweden13

requirement. Upon finding such cues (perception), analysts
proceed to reason about whether the requirement has or has not
been implemented (comprehension). Once understood, they
can informally predict the likelihood of an SQL injection attack
and the consequences on the system (projection).

We believe SA can be used to explain how analysts
perform risk assessments. The NIST Special Publication 800-
30 defines risk as the product of the likelihood that a system
vulnerability can be exploited and the impact that this exploit
will have on the system. The ability to predict likelihood and
impact depend on the analyst’s ability to project prospective
events based on what they have perceived and comprehended
about the system’s specification. If the expert succeeds in all
three SA levels, then they have “good” SA and they should be
able to make more informed decisions about security risks.
Failure in any level results in “poor” SA that leads to incorrect
decisions or no decisions at all. In section III, we describe our
method to detect the SA-levels in security expert interviews.

The SA framework is flexible and could be customized
according to the needs of a system. Examples of fields in which
SA has been applied include military operations [7], command
and control [11], cyber security [3, 15] and many others [8, 19].
Researchers have modeled SA in intelligent and adaptive
systems [7, 11, 19]. Feng et al. [11] proposed a context-aware
decision support system that models situation awareness in a
command-control system. Their focus was to have entity agents
based on a “rule-based inference engines” that provide decision
support for users. They applied Endsley’s concepts and focused
on “Shared Situation Awareness” along with a computational
model that they applied to a case study of a command and
control application. Chen et al. extended a cyber intrusion
detection system using a formalization of SA concepts; the
logic formalization is derived from experts’ experiences [3].
Jakobson proposed a framework of situation aware multi-agent
systems that could be cyber-attack tolerant [15]. To our
knowledge, SA has not been widely adopted in requirements
engineering.

III. RESEARCH METHOD
We chose an exploratory, qualitative research method that

aims to understand the symbolic and cognitive processes of
specific security analysts, as opposed to testing hypotheses
against specific variables [5]. The purpose of this approach is
to develop a theory of security analysis from a rich dataset that
we can later test in a controlled experiment. Consequently, this
theory is grounded in the domain and findings from this study
are only valid for this dataset. Our method consists of three
main phases:
• The preparation phase, in which we developed the research

protocol, including customizing SA for security analysis,
selecting the system artifacts to use in the security analysis,
and the security analysts to interview;

• The interview phase where we elicited responses from the
selected analysts; and

• The qualitative data analysis phase in which we coded the
interview transcripts and systematically drew inferences
from the data.

We employed coding theory [18] to link SA concepts to the
dataset and validate whether our observations are consistent
and complete with respect to that dataset. In the first cycle, we
applied the hypothesis coding method to our dataset [18] using
a predefined code list derived from Endsley’s SA levels; this
method tests the validity of the initial code list. In the second
cycle, we applied theoretical coding to discover decision-
making patterns from the dataset.

We now discuss the three phases.
A. The Preparation Phase

The SA framework can be tailored to the field of interest by
mapping SA levels to statements made by domain analysts. We
tailored the framework by having the interviewer link the levels
to software artifact features by verbally probing the analyst
during the interview process. Thus, we expected the dataset to
show how analysts build situation awareness and to help us
further discover how perceptions of security risk evolve as the
analyst’s awareness increases. The inability to perceive risk
may be due to limitations in analyst’ knowledge or ambiguities
in the artifacts. We define the SA levels as follows:
• Level 1: Perception: the participant acknowledges perceiving

security cues in the given artifact. Examples include: “there
is a picture of a firewall here” or “there are SQL commands
in the code snippet.” Each observation excludes any deeper
interpretation into the meaning of the perception.

• Level 2: Comprehension: the participant explains the
meaning of cues that they perceived in Level 1. They provide
synthesis of perceived cues, analysis of their interpretations,
and comparisons to past experiences or situations. Examples
of comprehension include: “the firewall will help control
inbound and outbound traffic...” and “the SQL commands
are used to access the database which might contain private
information, so we need to check the input to those
commands, but this is not done in the code...”

• Level 3: Projection: the participant has comprehended
sufficient information in Level 2, so they can project future
events or consequences. In security, projections include
potential, foreseeable attacks or failures that result from poor
security. Examples include: “this port allows all public
traffic, which makes the network prone to attacks... ”,
or ”unchecked input opens the door to SQL injection…”

At Level 3, we expect participants can make security
related-decisions. Decisions include steps to modify the system
to mitigate, reduce or remove vulnerability. Continuing with
the SQL injection example, one decision could be: “this port
should be closed” or “a function should be added here that
checks the input before passing it to the SQL statement.”
Closing the port prevents an attacker from exploiting the open
port in an attack, whereas checking the input can remove
malicious SQL in an SQL-injection attack.

1) Security Artifacts: We presented each participant with
two security-related artifacts. We chose the artifacts to reflect
a stratified cross-section of a system and its environment,
noting that security requirements should be mapped to each
artifact in different ways and analysts require different skills to
do this mapping:

14

Source Code: we present participants with JavaScript code
snippets, corresponding SQL statements, and a user interface
related to the snippet. The code contains two vulnerabilities, an
SQL injection attack and unencrypted user information.
JavaScript is a subset of a general purpose programming
language, i.e., no templates, pointers, or memory management,
thus, we expect analysts with general programming language
proficiency and knowledge of SQL injection to be able to spot
these vulnerabilities. We also list a high level security goal and
we ask participants if the goal had been met.

Network Diagrams: we present participants two network
diagrams in sequence: ND1 followed by ND2. Diagram ND1
shows an insecure network, and diagram ND2 show a network
with security measures that address weaknesses in ND1. We
ask participants evaluate ND2 and decide whether it is an
improvement over ND1. Finally, we present 15 security
requirements to participants, which we explain are part of a
security improvement process, and we ask participants to
assess whether the network in ND2 satisfies the requirements.

The two selected artifacts are typical examples comparable
to what is taught in college-level security courses.

2) Choosing Experts for the Study: In this study, we aimed
to observe how security expertise affects requirements
analysis. However, security experts are not all equal: some
people have more expertise than others in particular areas, and
training in academia is different than hands-on practice. To
cover a broad range of expertise, we invited former
practitioners and Ph.D. students at different stages of
matriculation, all working in security.
B. The Interview Phase

We designed the interviews to study the process used by the
expert to reach a solution or security-related decision, and not
to study the correctness of the decision or degree of security
improvement. We only ask the following kinds of questions:
• What cues did the participant look at? (Perception)
• How were the cues interpreted? (Comprehension)
• Why did they interpret a cue that way? (Comprehension)
• Do they recognize any other possible interpretations, if so,

why? (Comprehension)
• What are the future consequences of each interpretation?

(Projection)
• Based on those projected consequences, what is the best

practice? (Decision)
Our approach differs from how SA is traditionally studied in
human operator environments (e.g., airplane cockpits and
nuclear power plants) using the Situational Awareness Global
Assessment Technique (SAGAT), in that our participants are
not immersed in a simulation per se. Rather, we present
artifacts (source code, network diagrams) to participants with
prompts to evaluate artifacts for vulnerabilities. We observe
their ability to conduct requirements analysis in their proposed
modifications (decisions) and evaluation of requirements
satisfaction in ND2.

In addition, we ask participants to share information about
their decision-making, such as unstated assumptions and what
artifacts cues led participant to reach a decision. We were

careful not to guide participants in a certain direction by
keeping our questions general. We avoided questions such as:
what do you perceive, comprehend, or project. For example, if
the participant identified an attack scenario, we would follow
with “why would you think such an attack would occur”, or
“could you describe how it could happen?” In their responses,
we found participants returning to the artifact to identify cues,
and explain their interpretation.

Given our interest in distinguishing novice from expert
analysts, we asked participants to provide a brief description
of their relevant background. Questions to elicit background
information were asked twice: at the interview start, we ask
participants about their security background, their education,
industry experience, and security topics of interest; at the end,
we ask the participant about analysis process they used during
the interview and how it relates to their background while the
participant is describing their analysis process. Finally, we
recorded the interviews for transcription and analysis.
C. The Qualitative Data Analysis Phase

Grounded analysis is used to discover new theory and to
apply existing theory in a new context [5]. We apply grounded
analysis [5] in three steps: (1) we transcribe the interviews; (2)
beginning with our initial coding frame (see Table I), we code
the transcripts, while discovering new codes to further explain
the data; and (3), we review previously coded datasets to
ensure the newly discovered codes were consistently applied
across all transcripts. Table I shows the complete coding frame:
the first eight codes (P, C, J, D, including the variants that
account for uncertainty U*) constitute the initial coding frame
and were inspired by Ensley’s terminology for the Situation
Awareness [8]; the remaining four codes were discovered
during our analysis to account for the interview mechanics.
Two researchers (the first and third authors) separately coded
the transcripts and then met to resolve disagreements. To
efficiently identify disagreements, we used the Fuzzy Lookup
Excel add-in that is based on fuzzy string matching developed
at Microsoft Research [1]. Each coder recorded their start and
stop times.

To ensure all statements are coded, we applied the null code
{NA} to any statements that did not satisfy the coding criteria,
such as when participants request a scrap of paper to draw a
figure, or when they ask how much time is remaining for the
interview, and so on. We code statements, such as: ”I took a
course in security...” or “I saw on the news a security breach
related to this artifact” as background {BG}, including their
personal experience and knowledge. If the participant compares
and contrasts comprehended information from the artifact to
their experience or knowledge, then that information is coded
as comprehension {C}. To improve construct validity, the two
raters resolved borderline cases by discussing and refining the
definitions and heuristics.

After the first cycle coding, we conducted a second cycle or
axial coding to identify decision-making patterns. We defined
cut offs between coded sequences by sequentially numbering
each statement and then assigning group numbers to statements
that address the same idea. The groups serve to delineate
transitions between units of analysis. We programmatically

15

extracted SA-level sequences that we later associated with
separate, named patterns, and we searched the dataset without
the paragraph cut offs to assess pattern validity (i.e., does the
SA-level sequence always correspond to the pattern name that
we assigned). We recorded false positives from results, which
we report as pattern accuracy. We now discuss our results.

TABLE I. SITUATION AWARENESS ANNOTATION CODES
Code Name and
Acronym

Definition and Coding Criteria Used to
Determine Applicability of the Code

Perception (P) Participant is acknowledging that they can see
certain cue(s)

Comprehension
(C)

Participant are explaining the meaning of cue(s)
and conducting some analysis on the data perceived

Projection (J) Participant is predicting possible future
consequence(s) or risk(s) involved

Decision (D) Participant is stating their decision.
Uncertain
Perception (UP)

Uncertainty at perception level: participant is
missing certain data that would help they need to
analyze the artifact.

Uncertain
Comprehension
(UC)

Uncertainty at comprehension level: participant is
not missing data but they can’t interpret their
meaning confidently

Uncertain
Projection (UJ)

Uncertainty at projection level: participant cannot
predict possible future consequences confidently

Uncertain
Decision (UD)

Uncertainty in decision: participant is not confident
about the decision that should be made

Assumption (A) Participant is stating assumption(s)
Ask Question (Q) Participant is asking the interviewer questions
Probe (Pro) Interviewer is triggering the participant’s thinking

with questions or guidance information
Background (BG) Participant is providing information regarding their

personal background
Null code (NA) Statement is not applicable to code criteria above

D. Pilot Study

We piloted the study on two experts: P1 is an expert with
extensive hands-on and academic expertise in networks and
systems security; and P2 is a novice who has only academic
security experience. The purpose of the pilot is to test our
interview protocol and apply any needed modifications to the
questions or protocol before conducting additional interviews.

Both participants analyzed the network diagram artifact, but
P2 refused to think deeper about certain details and reported
more uncertainties. One insight that we observed in the pilot
was the ability of the more experienced participant to make
assumptions when faced with uncertainty. When the novice
participant was faced with uncertainty, their solution was to ask
the interviewer clarifying questions. The following excerpt is
an example of an assumption that participant P1 made when
they analyzed a requirement to implement time synchronization
for logging and auditing capabilities (the codes in curly
brackets are defined in Table I, above):

{UP}I don’t see an NTP server on this network{/UP}
{C}but I know that Windows Domain Controller can act
as NTP{/C}, {A}so I am going to assume that when they
install it they’ll probably leave that box checked
because it’s a default option{/A}.
{D}I think that is probably happening here {/D}

 When P2 was faced with uncertainty, however, they turned
to the interviewer and asked: “{Q} What kind of software
does this thing has? {/Q}”

An observation during our pilot is that, although we asked
participants to verify security requirements, they actually
performed requirements validation. An explanation may be
that security experts rely on background knowledge and apply
known security requirements. We found experts often adding
missing requirements, explaining how to apply a requirement,
evaluating whether a requirement was feasible, and prioritizing
requirements, as P1 does with ND2 when analyzing a
requirement from the list pointing out that this specific
requirement is less critical than another requirement that they
had analyzed earlier in the interview: {C} but I don’t think
its as critical as say the DMZ one, but I think its
sort of whatever is the next tier of criticality{/C}.

IV. ANALYSIS RESULTS
In this section, we report preliminary results from analyzing

two additional interviews: advanced expertise (P3) and novice
level expertise (P5). In total, we conducted 9 interviews; due to
space limitations, however, we only present two contrasting
examples. We computed Cohen’s Kappa to measure inter-rater
reliability for agreement between two raters [4], which was
0.65 for participants P3 and P5. Table II shows the number of
coded statements for the two participants broken down by
code; the two interviews yielded 526 statements covering both
participants and all artifacts (code and network diagrams).

Participant P3 has more hands-on experience (+15 years)
compared to P5 (almost 10 years). Alternatively, P5 has an
M.S. degree in software engineering compared to P3, who has
a B.S. degree. Notably, P3 with less formal education,
produced more perceptions, comprehensions, projections, and
decisions compared to P5 who reported more uncertainties and
made less assumptions.

TABLE II. FREQUENCIES OF CODED STATEMENTS FOR PARTICIPANTS
P3, P5

Code P3 P5
Perception 50 19

Comprehension 69 5
Projection 32 3
Decision 41 10

Uncertain Perception 4 24
Uncertain Comprehension 15 20

Uncertain Projection 2 1
Uncertain Decision 2 1

Probe 93 17
Question 18 5

Assumption 11 2
Background 3 3

NA 64 12
Total 404 122

 Similar to the pilot, participants verified and validate the
requirements by providing deeper analysis based on their
background knowledge. Participant P3 did this more often,
perhaps due to their extensive hands-on experience. The
following example shows how P3 analyzes the first
requirement and links the requirement to diagram ND2:

{P}your firewall.{/P} {C}which is your first point
of entry to both DMZ traffic and intranet site

16

traffic and also to your users, has all of these on
separate subnets{/C} {D}So the first rule here about
stuff being unavailable all comes down to whether or
not this firewall is properly configured. {/D}

Participant P5, however, asked to see more specific information
about the underlying software and configuration of the servers
and firewalls. P5 also said that without detailed specifications,
the requirements analysis could not be performed.

V. DECISION-MAKING PATTERNS
Frequencies of SA-levels are insufficient to distinguish

experts from novices, and conceal the participants’ decision-
making process and transitions between SA levels. To address
this limitation, we extracted decision-making patterns that
ground the SA framework in the data. We now present these
patterns, using the acronyms from Table I to express patterns.

The classic SA pattern follows Endsley’s SA framework:
P→C→J→D, wherein perception statements (P) precede
comprehension statements (C), and the “→” means the coded
statement on the left-hand side appeared before the coded
statement on the right-hand side in the transcript. While this
pattern did not appear in our dataset, variations on this original
pattern do exist, including two occurrences of P→C→J for
participant P3 with 100% accuracy (no false positives). Table
III summarizes the identified patterns for the two participants,
including the pattern sequence (Pattern Seq.), the number of
occurrences (Freq.), the accuracy, which is the ratio of verified
pattern instances among the total number of occurrences, and
the participants who exhibited each pattern. The table presents
patterns from the analysis of both participants reviewing all
three artifacts (code and network diagrams).

TABLE III. VARIATIONS OF SA PATTERNS
Pattern Seq. Freq. Accuracy Participants
P→C→D 2 100% P3

C→D 9 77% P3

C→J 6 83% P3, P5

UP→UC 2 100% P3, P5

UC→A 2 100% P3

UC→Q 1 100% P5

The pattern P→C→D in Table III shows how participant P3
jumps from comprehension to decision without reporting any
projections to the interviewer. The patterns C→D and C→J
show how a participant appears to skip perception and directly
begin comprehension, which in turn, may lead to either
projection or decision. These patterns do not assume that
participants are not experiencing the missing SA levels.
However, it may be that more experienced participants
transition between SA levels more quickly in their mind than
they can verbally articulate in the interviews.

The remaining three patterns in Table III concern
uncertainty. Uncertainty arises when the participants are not
certain about a perception (UP), comprehension (UC), and so
on. Based on the few observations in Table I, uncertainty may
propagate from one level to another (UP→UC), it may lead to an
assumption (UC→A), or it may lead to a question (UC→Q). For
example, we see participant P5’s uncertain perception from

looking at the source code that led to uncertain comprehension.
Participant P5 expresses what would be ideal is for them to
view the complete code and not only the snippet, which could
provide missing cues to support their analysis:

{UP}You know, certainly it would be better if I
actually had real code in front of me instead of
having a printout. But I don’t know the schema.{/UP}
{UC}So I’m gonna have guesses, right, and then
whether or not it’s actually any good. I have no way
to evaluate whether it’s doing the right thing or not
without knowing the schema. I’m not sure.{/UC}

The more experienced participant P3 perceives that a
firewall is connected to three subnets in ND2, but was not sure
what to comprehend about the firewall rules that were not
shown. Hence, P3 assumes the following (UC→A):
{A} Presumably it's gonna have routing rules about
which subnet can talk to which subnet and which
cannot talk to which subnet. {/A}

This assumption improves network security, because it limits
potentially malicious communications across the subnets. The
less experienced participant P5, however, asked questions
when faced with uncertainty (UC→Q):

{P}So looking at this one, first of all, its’ nicely
colorized lines,{/P} {UC}but I’m not sure if it’s to
discriminate the different networks or actually that
they have different semantics such as like one
network is encrypted, one network is non-
encrypted.{/UC} {Q} Do people have to have tunnels on
here?{/Q} {Q}Are they all administrated by the same
domain controller?{/Q}

Less experience could lead to lower confidence, which may
explain the difference between participants who produce
assumptions instead of questions in the face of uncertainty.
Based on how participants described their background, P3 had
more hands-on experience with systems compared to P5, who
had less hands-on experience and more training in research.
This difference in background may explain why we observe
more assumptions made by P3 as opposed to more questions
asked by P5. Another difference we noticed is that P5 exhibits
a stronger ability to trace requirements to network diagram
elements and decides whether a requirement was satisfiable
based on their comprehension. Participant P5, however, could
not trace the requirements and commented that those
requirements are too abstract and that they would need to see
more detail to make a decision. As we discuss in Section VI,
the SA levels provide insight into how security analysts make
decisions to improve security.

VI. DISCUSSION
In our study, we observe how the Situation Awareness (SA)

framework can be used to measure how security analysts with
varying expertise analyze requirements and specifications. The
SA framework summarizes human cognition in three levels
(perception, comprehension and projection) that were
previously applied to user interface design [8, 10]. Compared
to prior work, security requirements analysis is a natural fit for
SA: analysts inspect visual notations (specifications) to
evaluate requirements satisfiability; the failure to satisfy

17

requirements leads to security failures, which appear as
projections in SA. The advantage of SA in this context is the
ability to quantify and connect perceptions and comprehensions
to failures, noting that novices and experts may command this
ability differently with different notations. Recall from Section
V that expert and novice participant react to uncertain
comprehensions, differently. While the expert was likely more
confident to make assumptions about the system’s
configuration and behavior, the novice instead asked questions
in an attempt to obtain more cues that enable deeper analysis.

We believe the SA method described herein can be used to
motivate new approaches to requirements presentation and
evaluation. Presently, requirements can be characterized and
presented using different methods, such as scenarios, use cases,
goal models, and so on. What is missing, however, is an
empirically valid framework for comparing these methods
based on a measurable impact from security analysts. Our early
findings suggest that SA can be used to measure how experts
react differently to the same artifact and that requirements can
be presented in ways to link perceivable cues to desirable
projections while accounting for varying levels of expertise.
Abstract presentation, such as high-level goals, offer flexible
interpretations that may depend on expert abilities to reason
through uncertainty, whereas detailed presentations such as
textual use cases may be easier for novices who depend on
more prescriptive descriptions. Mead and Christian claim that
security requirements can be either too vague (high-level) or
too constrained (low-level), which makes them unusable [17];
we believe our results further support this claim. As part of
future work, we propose to investigate how SA can be used to
analyze the effect of ambiguity in requirements and
specification and its impact on reaching sound security
decisions. The result of future work would be a framework to
empirically evaluate new security requirements methods and to
measure the role of expertise in those methods based on
observable analyst behavior.

VII. CONCLUSIONS
In this paper, we present a new approach to measure

security requirements expertise and to understand expert
decision-making processes. Our contribution is a systematic
method to apply the Situation Awareness (SA) framework to
trace how analysts move from perception and comprehension
to projection and decision-making. We summarize preliminary
results to show traces across the SA levels in the form of
patterns that can be used to distinguish experts from novices.
While the original SA framework aims to model the decision-
making process with respect to user interfaces, we are
interested in discovering how security analysts comprehend
problem descriptions and requirements notations, and how this
comprehension leads to changes in requirements or design
decisions. In future work, we plan to report results of a larger
study and to evaluate these results in a controlled experiment.

ACKNOWLEDGMENT
We thank our study participants and Dr. Jennifer Cowley at

SEI-CERT who consulted on SA. This research was funded by

Army Research Office (Award #W911NF-09-1-0273) and
National Security Agency.

REFERENCES
[1] A. Arasu, S. Chaudhuri, K. Ganjam, R. Kaushik, “Incorporating String

Transformations in Record Matching,” 2008 ACM SIGMOD Int’l Conf.
Mgmt. Data, 2008, pp. 1231–1234.

[2] Travis D. Breaux, David L. Baumer. Legally “Reasonable” Security
Requirements: A 10-year FTC Retrospective. Computers and Security,
30(4):178-193, 2011

[3] P.-C. Chen, P. Liu, J. Yen, and T. Mullen, “Experience-based cyber
situation recognition using relaxable logic patterns,” IEEE Int. Multi-
Disciplinary Conf. on Cognitive Methods in Situation Awareness and
Decision Support (CogSIMA), 2012, pp. 243–250

[4] J. Cohen, “Weighted kappa: Nominal scale agreement provision for
scaled disagreement or partial credit.,” Psych. B., 70(4): 213, 1968.

[5] J. Corbin, A. Strauss, “Basics of Qualitative Research: Techniques and
Procedures for Developing Grounded Theory,” SAGE Pubs. 2007.

[6] J. McDermott, C. Fox, “Using abuse case models for security
requirements analysis,” 15th Annu. Comp. Sec. Apps. Conf., 1999., pp.
55–64.

[7] G. Digioia and S. Panzieri, “INFUSION: A system for situation and
threat assessment in current and foreseen scenarios,” in 2012 IEEE Int’l
Multi-Disciplinary Conf. on Cognitive Methods in Situation Awareness
and Decision Support (CogSIMA), 2012, pp. 316–323.

[8] M. R. Endsley, D. G. Jones, Designing for situation awareness: An
approach to user-centered design. Taylor & Francis, 2003.

[9] M. R. Endsley, “Design and evaluation for situation awareness
enhancement,” HFES Annual Mtg., 1988, 32: 97–101.

[10] M. R. Endsley, “Toward a theory of situation awareness in dynamic
systems,” J. Hum. Factors & Erg. Soc., 37(1): 32–64, 1995.

[11] Y.-H. Feng, T.-H. Teng, A.-H. Tan, “Modelling situation awareness for
Context-aware Decision Support,” Expert Sys. with Apps., 36(1): 455–
463, Jan. 2009

[12] C. B. Haley, R. C. Laney, J. D. Moffett, B. Nuseibeh, “The effect of
trust assumptions on the elaboration of security requirements,” 12th
IEEE Int’l Req’ts. Engr. Conf., 2004, pp. 102–111

[13] C. B. Haley, R. C. Laney, J. D. Moffett, B. Nuseibeh, “Using trust
assumptions with security requirements,” Req’ts. Engr., 11(2): 138–151,
2006.

[14] HP Top cyber Security Risks Report, Hewlett-Packard Development
Company, L.P.. Tech. report

[15] G. Jakobson, “Using federated adaptable multi-agent systems in
achieving cyber attack tolerant missions,” IEEE Int. Multi-Disciplinary
Conf. on Cognitive Methods in Situation Awareness and Decision
Support (CogSIMA), 2012, pp. 96–102

[16] A. Van Lamsweerde, S. Brohez, R. De Landtsheer, D. Janssens, “From
system goals to intruder anti-goals: attack generation and resolution for
security requirements engineering,” RHAS, 3: 49–56, 2003.

[17] N. R. Mead and T. Christian, “Security Quality Requirements
Engineering (SQUARE) Methodology,” in Proc. of the 2005 Workshop
on Soft. Engr. for Secure Systems & Building Trustworthy Applications,
New York, NY, USA, 2005, pp. 1–7.

[18] J. Saldana, The Coding Manual for Qualitative Researchers, SAGE Pubs,
2012.

[19] K. E. Schaefer, D. R. Billings, P. A. Hancock, “Robots vs. machines:
Identifying user perceptions and classifications,” IEEE Int. Multi-
Disciplinary Conf. on Cognitive Methods in Situation Awareness and
Decision Support (CogSIMA), 2012, pp. 138–141

[20] G. Sindre, A. L. Opdahl, “Capturing security requirements through
misuse cases,” NIK 2001, Norsk Informatikkonferanse 2001, http://www.
nik. no/2001, 2001.

18

