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Abstract

Large-scale computing systems provide great po-
tential for scientific exploration. However, the complex-
ity that accompanies these enormous machines raises
challeges for both, users and operators. The effec-
tive use of such systems is often hampered by fail-
ures encountered when running applications on systems
containing tens-of-thousands of nodes and hundreds-
of-thousands of compute cores capable of yielding
petaflops of performance. In systems of this size fail-
ure detection is complicated and root-cause diagnosis
difficult. This paper describes our recent work in the
identification of anomalies in monitoring data and sys-
tem logs to provide further insights into machine status,
runtime behavior, failure modes and failure root causes.
It discusses the details of an initial prototype that gath-
ers the data and uses statistical techniques for analysis.

1. Introduction

The computational power of today’s high-
performance computing (HPC) systems provides
enormous opportunities for scientific exploration.
As large-scale HPC platforms increase in size and
performance, their complexity grows as well. This
increased complexity raises significant challenges for
both, users and operators. These systems require great
care and attention, much of which is due to a rise in
failures caused by increased node/component counts.

Fault tolerance, or resilience, is a key challenge
for computing and a major factor in the successful uti-
lization of high-end scientific computing platforms. In
these systems, identifying failures and diagnosing their
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root cause are non-trivial tasks. As part of our work in
resilience we have begun to explore data gathering and
analysis techniques to aid in the identification of issues,
or anomalies, that may be sources of failure.

With this paper, we describe our initial work in
gathering the necessary system monitoring and log data,
and in using statistical methods for processing the col-
lected data to identify anomalous events. The paper is
structured as follows. Section 2 discusses related back-
ground and highlights key challenges associated with
the problem of large-scale system analysis. Section 3
introduces the technical approach. Section 4 describes
the developed prototype and presents results from a case
study. Section 5 concludes the paper with a summary
and a discussion of future work.

2. Background

There are several challenges when analyzing fail-
ures in large-scale systems. The system scale itself rep-
resents an issue related to data quantity as well as asso-
ciated sampling rates. Note that in some instances the
gathering of such data can cause the monitoring envi-
ronment itself to fail due to overload, which may result
in significant portions of the data being lost. The per-
formance requirements of large-scale HPC systems also
demand that the monitoring techniques do not perturb
application execution to avoid cascading system noise
issues. Data access is another problem as machine fail-
ure data is often considered business sensitive informa-
tion and making it publicly available may require to san-
itize/anonymize the data for release. Lastly, data qual-
ity varies significantly and in some instances the data
available for study is either ill-formed or erroneous.

There are several efforts that aim to collect system
data and potentially identify anomalies, notably Sisy-
phus [12], Ovis [1, 2], and CIFTS [7].

Sisyphus is a tool for anomaly detection in system
log files that uses ideas from text analysis. Its central
concept is to construct a document-term matrix, where
the documents are node-hour partitions of the system
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(a) The anomaly is not detected in the individual
attributes.

(b) After a multivariate transformation the
anomaly is detected in one of the transformed at-
tributes.

Figure 1. Scatter and individual rug plots for two attributes (A,B) with a red anomaly point.

log. Then, the entropy value of term distribution within
node-hours is used to identify anomalous log file events.
Ovis provides a mechanism to collect numerical data
from system nodes at regular intervals and a conve-
nient display of the data mapped onto a representation
of the system architecture. Anomalies are identified in
several ways, including univariate attribute comparison
to a learned reference, Bayesian parameter estimation
(univariate and bivariate), and Mahalanobis based mul-
tivariate distance. Finally, CIFTS is a project that is de-
veloping a prototype of a scalable data collection back-
plane in a hierarchical structure of agent modules. The
data will be potentially made available to various plug-
in modules for analysis, monitoring, and feedback.

3. Technical Approach

The anomaly analysis presented in this paper is
based on the same kind of data that Ovis collects and
analyzes. In fact, we use a small part of the Ovis data
collection infrastructure. We also reuse the node-hour
partitioning concept from Sisyphus. However, we pro-
vide a different kind of anomaly detection analysis that
is based on a nonparametric multivariate approach. It
is multivariate to account for attribute dependence rela-
tionships and it is nonparametric to handle nonlineari-
ties in this dependence.

While most anomalies may be detected in individ-
ual attributes, multivariate methods provide greater sen-
sitivity due to their ability to account for dependence be-
tween attributes. For example, consider the scatter plot
in Figure 1 (a) with two attributes A and B that display
positive correlation. The individual points may be one-
minute averages of processor utilization (A) and proces-
sor temperature (B). Individually, within the A distribu-
tion and the B distribution (shown by the rug plot along

Figure 2. A nonlinear attribute relationship
with an outlier that is not detectable with linear
and globally Gaussian methods.

the axes) the red data point does not appear anomalous.
However, due to the correlation structure between A and
B, the red point is clearly anomalous. Detecting this
anomaly requires either a multivariate approach within
Figure 1 (a) or an appropriate multivariate transforma-
tion of the two variables into two new uncorrelated vari-
ables A + 0.43B and A− 0.43B, shown in Figure 1 (b).
In either case, a multivariate statistical technique is re-
quired. This same concept extends to higher dimensions
and higher than two-way dependence.

When the attribute dependence relationship is non-
linear, as between attributes A and C in Figure 2, a lin-
ear multivariate transformation can no longer provide
a new attribute that detects the anomaly. At the same
time, the implicit global Gaussian assumption of Ma-
halanobis distance would prevent anomaly detection in
such nonlinear situations. The extreme points in the
main cluster of Figure 2 have a greater Mahalanobis
distance than the outlying red point. Such situations are
handled well by nonparametric methods that use a local
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definition of density.
Our approach uses single-linkage clustering, which

is also known as minimum spanning tree clustering [6].
While this is a very old technique, it continues to be sub-
ject of much active research [13]. It is nonparametric
since no model is assumed for the clusters. Clusters are
assembled based on nearest neighbor distances. Nearest
neighbor techniques can be thought of as nonparametric
multivariate density estimators since distance to neigh-
bors is inversely related to local density.

4. Anomaly Analysis System

We implemented a proof-of-concept anomaly anal-
ysis prototype for large-scale HPC systems that receives
information on system state about individual compo-
nents and identifies anomalous component behavior,
e.g., configuration, performance, or failure anomalies.
It also provides the ability to view groups of compo-
nents as statistical distributions in any computed at-
tribute space. The developed solution primarily demon-
strates that there is sufficient information available to
determine some actionable anomalies among a large
number of components with standard multivariate anal-
ysis techniques. If in addition good, i.e., accurate
enough, failure data is available, the multivariate anal-
ysis techniques can be tuned to provide an actionable
failure prediction capability, which in-turn allows an-
ticipatory reconfiguration, such as migration of compu-
tation away from components that are about to fail [4].

4.1. Analysis Techniques

To manage the anomaly detection problem size, we
select a window of interest and data granularity. For ex-
ample, we can consider node-hours over a day of HPC
system operation and identify those node-hours that are
most different from the rest. Depending on the reaction
time required and the type of analysis that is needed, it
may be appropriate to consider node-seconds over the
last minute or the last hour.

Given a window of interest and granularity, we
make attribute selections based only on statistical prop-
erties, without injecting any expert system knowledge.
A scalable implementation of our system is possible
as it relies only on statistical properties of simple data
summaries. Its power comes from the ability to exam-
ine high-dimensional nonlinear relationships, such as
the correlation shown in Figures 1 and 2.

The developed anomaly analysis prototype is based
on the R Project for Statistical Computing [11] and on
the GGobi visualization software for exploring high-
dimensional data [5]. Broadly, we provide the capa-

bility to identify anomalous components and anoma-
lous time periods by applying clustering techniques and
by exploring linked projections of high-dimensional
representations. The clustering methodology pro-
vides automated anomaly identification while the high-
dimensional visualization provides a powerful interac-
tive exploratory tool for system data after clusters are
identified. Our anomaly analysis is a capability dif-
ferent from the tools discussed in Section 2 (Sisyphus,
Ovis, and CIFTS) and it can both benefit from these
tools as well as extend their functionality. It is imple-
mented via the following steps:
• We collect raw attribute data at an appropriate fre-

quency and over a selected time window.
• Node-period data is then aggregated from the raw

data granularity using standard statistical functions,
e.g., means over time, variance over time, etc. The
aggregated data forms a matrix whose rows are node-
periods and columns are the attributes.

• The matrix columns are standardized to have zero
mean and variance one. Constant columns are dis-
carded as they do not contribute to the analysis. The
standardization is required to compensate for differ-
ent units of measurement of different attributes. For
n nodes and p periods over m retained attributes, the
node-period data forms an np×m matrix X .

• The node-periods and attributes are clustered via
single-linkage hierarchical clustering, giving a den-
drogram on the node-periods. Hierarchical clustering
allows the exploration of all cluster configurations by
cutting the dendrogram at various heights.

• A given dendrogram cut resulting in k clusters, parti-
tions X into k sets of rows. For each k, a node-period
anomaly measure can be computed from the size of
the cluster to which it belongs. Although we can have
1 ≤ k ≤ np, typically it is not useful to visualize k
much larger than 10.

• We then display this information using different vi-
sualization techniques, e.g., node-hour dendograms,
high dimensional data vizualizers, etc.

• It is also possible to cluster XT , the transposed ma-
trix, producing diagnostic information on the selected
metrics. Those metrics that provide similar informa-
tion are likely to be in the same cluster.

Intuition suggests that an anomaly measure should
be high for small clusters and low for large clusters.
Given a set of k clusters of sizes n1,n2, . . . ,nk, where
∑

k
i=1 nk = np, we propose two possibilities. A simple

inverse realtionship

αi =
1
ni

,

which gives values between 0 and 1 and is the measure
used in our case study evaluation in this paper.
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A better anomaly measure is formed by using the
counting measure to define a cluster size probability.
This is reasonable under the assumption that node-
periods are sampled from some unknown distribution so
that the number that falls into a cluster is proportional
to the probability of that cluster (the integral of the un-
known distribution over the cluster region). To compute
how unusual is a given small cluster size n, we add the
probability of all equal or smaller clusters. That is

pi =
1
n ∑

n j≤ni

n j.

Then, converting to increase from 0 to 1 we have

αi = 1− pi

as a probability based measure of anomaly.

4.2. Evaluation

For proof-of-concept, we connected various com-
ponents of existing software tools in a way that may
not be scalable but shows the potential of such analysis.
In the following, we briefly discuss these tools and the
testbed used for our experimentation.

4.2.1. Testbed. The testbed for our prototype was the
eXtreme TORC (XTORC) cluster at Oak Ridge Na-
tional Laboratory, which is maintained by our group for
system software research and development. The sys-
tem is configured in a standard Beowulf fashion with
1-2 service/login nodes and 64 compute nodes∗. All
nodes are single processor Intel Pentium 4 machines
connected via a Fast-Ethernet (100 Mbps) switch. The
head nodes export a Network File System (NFS) share
to all compute nodes, e.g., the ‘/home’ user directories.

The XTORC software configuration varies based
on the current testing and development needs of the
group. In our initial our experiments, the nodes spanned
several generations of Linux distributions, to include:
Fedora Core 4 (FC4) & 5 (FC5), and one Red Hat 9
(RH9) installation (node53)†. Note, there is consider-
able difference in these configurations, e.g., RH9 has
a Linux 2.4 kernel, and FC4&5 a 2.6 kernel. There-
fore the first experiments were generally characterized
as configuration anomalies. In later tests we rebuilt the
system with a uniform software build (Ubuntu 8.04) to
investigate performance and failure anomalies.

∗Due to the cluster’s age and hardware failures, there are typically
between 45-60 nodes available for testing.

†The full node/OS breakdown was: RH9 on node53; FC4 on
node4,58,59,60; & FC5 on node1-3,5-52,61.

4.2.2. Tools. The Ganglia monitoring software [9] was
used on all nodes in the cluster. The Ganglia architec-
ture includes a per node daemon, gmond, that collects
local “metrics”. Additional metrics can be added via
the gmetric utility. All nodes subscribe to a multi-
cast channel and broadcast their current information to
all other nodes in the system. Every node maintains
a copy of the current metrics and values for all other
nodes in the system. The data is structured using XML
and is stored in memory. The gmond is run on all nodes
providing data to the monitoring system, i.e., service
and compute nodes. The service nodes run the Gan-
glia Meta Daemon (gmetad), which collects the data
from nodes (multicast stream) and writes each metric to
a Round Robin Database (RRD) file [9].

By default, Ganglia gathers basic system settings
(os name) and information on memory consumption,
processor load, disk utilization, and network trans-
fer statistics. We supplimented this default data with
additional metrics using the gmetric utility, e.g.,
CPU temperature via LM-Sensors [8]. As part of our
proof-of-concept prototype, we have used pieces of the
Ovis v1.1.1 toolkit [10] (RRD reader scripts) to inter-
face with the data maintained by Ganglia.

4.2.3. Case-study: Configuration Anomalies. The
following outlines the steps used to test our prototype on
48 hours of data from 52 nodes, i.e., 2496 node-hours.
These are primarily configuration anomalies highlight-
ing configuration/service differences among nodes.

• Data is collected via Ganglia into RRD files on 44
attributes at 15 second intervals. Using the Ovis RRD
reader scripts, we converted the RRD files into flat
files, one per node.

• The flat files are converted into a set of attributes for
each node-hour with a function written in R. The R
system is particularly rich in statistical attributes that
can be computed from data. In this experiment, we
only compute the mean for each attribute node-hour,
giving a 2496 by 44 matrix.

• Standardizing the matrix and discarding constant
columns reduces it to 2496 by 24.

• We cluster both, the node-hours as well as the at-
tributes. The dendrograms for the 24 attributes and
a portion of the node-hours that belong to the smaller
clusters are shown around the heat map plot in Fig-
ure 3. A more readable version of the attribute den-
drogram together with a vertically compressed full
matrix heat map is in Figure 4.

• The yellow-red heat map is the raw attribute data or-
dered according to the dendrogram. It shows how
the attributes are similar within the node-hour clus-
ters and within the attribute clusters.
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Figure 3. A portion of the transposed data matrix heat map showing the smallest 10 of 11 clusters.
Attributes and node-hours are ordered by the dendrograms.

Figure 4. Attributes can be clustered accord-
ing to their behaviour among node-hours. Data
matrix heatmap (2496 by 24) is highly com-
pressed in vertical direction.

During the 48-hour test period only Ganglia and
Ovis processes were running in addition to normal idle-
time operating system activity. After some investiga-
tion, the smallest of 11 clusters have an explanation that
would normally lead to corrective action on a produc-
tion HPC system. We make the following observations
about the clusters identified.
• Node 0 is the most different from the rest, particularly

its hours 13, 37, 46, and 47. This is the head node
where most services are running. Note that hours 13
and 37 are 24 hours apart, indicating a daily service.
• Node 53 (all hours) runs the older Red Hat 9 while

the others run Fedora Core 4/5.
• Nodes 12, 31, 39, 43, and 63 were all down.
• Node 13 was distinct, particularly hour 47, for unde-

termined reasons.
• Node 1, Node 5, and Node 30 (hour 7) were also dis-

tinct for undetermined reasons.
We can also interpret the attribute clusters appar-

ent from the dendrogram in Figure 4. The first group
is a set of temperature and memory related information,

the second group is mostly processor related informa-
tion, and the third group is mostly I/O related informa-
tion. There are also finer groups, like the last four giving
bytes/packets in and out. Note that the dendrogram im-
poses an ordering on the attributes that places similar
attributes close to each other.

Another way to examine the data and clustering
results is with the GGobi [14] interactive high dimen-
sional analysis. The strengths of GGobi include the
ability to browse projections of very high-dimensional
data (easily 20 to 50 dimensions), linked displays that
allow identifying points in different projections, and op-
timization for searching the projection space with var-
ious criteria. GGobi is also connected with R [3] so
that the clustering resluts can be used to color-code the
displayed node-periods. Here, the color-code is based
on the simple anomaly measure of inverse cluster size
spanning colors from purple through yellow to red. Fig-
ure 5 shows two different planar projections of the same
high-dimensional attribute space. This display is highly
interactive. The data in this view is based on a later fail-
ure anomaly experiment as discussed in the following.

5. Conclusions and Future Work

We have primarily identified anomalies which do
not indicate failures, rather they indicate an unusual lo-
cation or situation. The data was gathered on a mostly
idle system with varied configurations. Our current
work is looking into the behavior under various loads.
It is not clear yet what computed features will turn out
to be most useful. Also, we need to investigate what
time intervals, such as node-minutes, may be optimal
for given use. In order for the anomalies to focus on
failures, some failures need to be observed while the
monitoring is in progress. These may be induced fail-
ures, such as unplugging a link cable or disabling a fan.

In recent experiments, we have injected (perfor-
mance) faults into parallel benchmarks. Figure 5 shows
a projection of data gathered during such an experiment.
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(a) (b)

Figure 5. A projection of node-periods in a combination of four attributes emphasizing anomalies (a)
and another projection in a node by period arrangement (b). Faults, which show up as anomalies,
were injected during application execution/data collection.

In Figure 5 (b), each column represents a node (gaps re-
flect down/offline nodes) and the vertical axis reflects
the time periods (start at bottom, stop at top). The in-
jected faults are picked up by the clustering anomaly
measure. A final anomaly is detected just before the ap-
plication failed. Upon failure the application terminates
and data collection is stopped as shown by the single
anomaly at the end (top) of the periods. We plan to con-
tinue these controlled experiments and to improve the
use of fault injection techniques to refine our detection
and monitoring methods. This will also require inves-
tigation of the types of faults observed on production
systems to improve the fidelity of our synthetic faults.

Processing of the data that becomes a set of node-
hour attributes is currently done in a central location.
For scalability, this needs to take place either on in-
dividual nodes or on distributed service nodes so that
only the attribute data is forwarded to a central loca-
tion. Additionally, the data gathering methods would
need to be revised. The sampling methods used were
rather heavy weight, such as starting a shell script to
run the lm-sensor utility to gather temperature, and then
starting separate utilities to log the event. More light-
weight methods are needed.
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