
Abstract— We propose an automatic spike sorting approach 
for the data recorded from a microelectrode array during 
visual stimulation of wild type retinas with tiled spot stimuli. 
The approach first detects individual spikes per electrode by 
their signature local minima. With the mixture probability 
distribution of the local minima estimated afterwards, it applies 
a minimum-squared-error clustering algorithm to sort the 
spikes into different clusters. A template waveform for each 
cluster per electrode is defined, and a number of reliability tests 
are performed on it and its corresponding spikes. Finally, a 
divisive hierarchical clustering algorithm is used to deal with 
the correlated templates per cluster type across all the 
electrodes. According to the measures of performance of the 
spike sorting approach, it is robust even in the cases of 
recordings with low signal-to-noise ratio.

I. INTRODUCTION

As the output layer of the retina, retinal ganglion cells 
(RGCs) connect in different neural structures that provide a 
broad repertoire of visual functions. These functions could be 
well understood by studying how spiking activity of RGCs 
reflects various retina behaviors, such as adaptation to the 
mean light intensity and temporal contrast.  To find the spike 
train dynamics recorded from a neuronal substrate using 
extracellular recordings, the problem often exists to sort 
spikes into different neuronal units. This problem is dealt 
with by detecting discriminatory features from individual 
spikes and using those features to identify spatiotemporal 
similarity among a group of spikes, which is in turn distinctly 
assigned to a neuronal unit. In most cases this involves a 
variety of statistical inferences to sort spiking activity of the 
units and to assess the reliability of the spike sorting [1]-[6].

In a microelectrode array (MEA) system, the interference 
of spiking activity from individual units in the presence of 
noise may make the spikes morphology amorphous.  This 
necessitates reliable data preparation and spike detection 
techniques. In addition, proposing effective similarity 
measures and basic representative signals to show the 
collective activity of spikes would reduce the space and time 
complexities and computational overhead. For example, after 
detecting the putative spikes from a set of the raw data and 
clustering them, their template waveforms are found as the 
basis to fit the rest of the raw data to them[1],[2],[4]. This 
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derivation has been useful in resolving overlapping events in 
which neuronal units proximate to an electrode fire 
synchronously and the overlap is not representative of any 
unit activity. However, the clustering techniques in these 
studies either require user intervention in localizing 
spatiotemporally distinct regions of spiking activity or in 
verification of the clustering performance. This points out the 
motivation for taking an approach that not only is capable of 
recovering individual spikes activity combined with noise, 
but also is implementable automatically with computing 
resources.

This work considers an MEA system, recording raw 
electrophysiological data from a piece of mouse retina 
stimulated with alternating black and white spots at 25 tiled 
locations. Here we propose a clustering-based spike sorting 
approach that imposes no constraints on the distribution of 
spikes within each cluster, but gradually reveals such 
distribution by sorting spikes. The approach starts by finding 
the signature negative local minima from the filtered data for 
each electrode. The probability density function of such 
minima is found and appears to possess a multimodal mixture 
distribution. This raises the question of how many 
components (clusters) have originated the mixture 
distribution, and if there is any structural grouping in the 
local minima. As the core of spike sorting, an iterative 
minimum-squared-error clustering algorithm [7] is used for 
each electrode individually. We next represent collective 
spiking activity of neuronal units in each cluster per electrode 
by a template waveform. With the results of spike sorting, we 
run reliability tests on all the templates per electrode. Then, 
only for reliable templates, we examine whether templates 
per cluster type across all the electrodes are correlated. We 
apply a divisive hierarchical clustering, based on a graph-
theoretic search, for this purpose [8],[9]. Finally, we assess 
the robustness of spike sorting approach by calculating false-
positive and false-negative errors occurred between the pairs 
of clusters per electrode [3],[4]. The performance metrics 
suggest that the spike sorting validation and reliability 
analysis in this work is effective. The herein approach is 
robust, automatic, considers measures for the correlation of 
neuronal spikes in an electrode and among electrodes
(spatial), and sorts neuronal units emitting bursts of spikes.                           

II. DATA STRUCTURE and APPROACH OVERVIEW

This study focused on electrophysiological responses of 
wild type mouse RGCs to light stimulation.  All mouse 
handling procedures during this study were approved by the 
National Eye Institute Animal Care and Use Committee 
(ACUC). The retina in vitro recording was performed with a 

Robust Spike Sorting of Retinal Ganglion Cells Tuned to Spot 
Stimuli*

Alireza Ghahari, Member, IEEE, Tudor C. Badea

1745U.S. Government work not protected by U.S. copyright



standard MEA: 100 μm spacing, Multi Channel Systems 
MCS GmbH.  This MEA allowed simultaneous light 
stimulation and recording of 60 electrodes. We represented
the discrete-time stochastic data in each electrode by 

)(nxij , where i denotes column index, and j is row index.
Henceforth, we refer to this as the raw data.   Fig. 1 shows 
the arrangement of the grid and spatial distribution of 25 
projected spot stimuli. In an experiment, at each spot 
location, 10 repeats of 2 s white and 2 s black stimuli were 
presented on a gray background. A 1 s full field gray period 
separated spot stimuli. A customized optical path then 
projected each spot onto the excised retina placed on the 
MEA. 

The block diagram of the spike sorting approach is 
shown in Fig. 2. The clustering approach, together with the 
reliability tests, finds the most reliable template waveforms 
representing individual neuronal units per electrode. Error 
assessment gives a measure of the quality of the approach. 

II. DATA PREPARATION

Recording at sampling rate of fs=25 kHz from low-
impedance electrodes yields a typically low signal-to-noise 
ratio (less than 6 in our current experiment). In another 
context, when the dendrite-soma axes of the proximate cells 
are aligned, the signals from cells on an electrode overlay, 
and a compound fluctuating signal (local field potential) is 
generated. To ameliorate these existing physiological and 
bioelectrical constraints, respectively, the data preparation 
stage processed the raw data at two levels: (1) the 
periodogram estimate of power spectral density of the data 
was found; this estimate showed that low-frequency 
dominant range for local field potentials appeared to exist 
below 200 Hz, beyond which the power spectral density 
decreased notably. A zero phase-shift finite impulse response
(FIR) high-pass filter with cutoff frequency of 200 Hz was 
defined to counter the baseline fluctuation caused by local
field potentials, and (2) Eigendecomposition technique was 
applied. This technique has been a key tool in the subfield of 
discrete-time linear filter theory. An FIR filter designed with 
the optimization criterion as maximizing the

output signal-to-noise ratio is an eigenfilter [10]. The 
coefficient vector of the impulse response of such optimum
FIR filter is the eigenvector corresponding to the largest 
eigenvalue of the sample correlation matrix of the input
stochastic process. We denote the filtered data by )(nxij in 
the following.

III. SPIKE DETECTION

Spike detection was based on finding the signature 
negative local minima of the filtered data. The result was 
discrete-time random signal, ),(kmij where k is the index of 
minima. Local minima detection located the candidate spikes 
for each electrode. Such candidate spikes were clearly 
visually distinguishable from the minima detected due to 
noise fluctuations. We thus kept only minima from the 
candidate spikes, which differed from the average by more 
than two standard deviations. Fig. 3 shows a sample segment 
of raw data and filtered data for an electrode (i=3, j=5) during 
stimulation by spot 8. The demonstrations herein are all for 
spot 8 stimulation of the retina. 

In order to infer effective statistics from this random 
minima distribution, we started by finding its underlying
probability mass function. We used a kernel density 
estimator with a clipped Gaussian function [4]. The kernel
width was set 0.05 times the interquartile range of the local
minima. Fig. 3 shows the estimated density function of all
the local minima for the same electrode. With the 
multimodal mixture distribution of the local minima 
generated here, we searched for the techniques to reliably 
separate minima into different disjoint clusters. A possible 
idea was to find regions of high local density (modes) of the 
estimated density function and relate each one to an 
underlying cluster. This problem is addressed for maxima 
signatures by adaptive template matching for the case of 
separating one prominent mode from the other modes due to 
noise and less prominent neuronal units [4].

IV. SPIKE SORTING

Model selection procedures for making inferences about 
mixture densities have been investigated extensively in the 
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Figure 1. Spatial projections of 25 spots onto the microelectrode array with 
60 electrodes identified by a two-digit index. First index refers to the 
column number, and the second one points to the row number. We refer to 
electrodes throughout by their index in the square box (x- and y- axes 
represent microns in retinal plane).

Figure 2. Block diagram of the stages of spike sorting approach 
implemented in this work per electrode. After initial filtering and spike 
detection, a clustering-based approach is applied for spike sorting. Extracted 
templates per cluster per electrode are tested for reliability. Final number of 
templates is found by characterizing their correlation across all electrodes. 
Performance is measured in terms of false-positive and false-negative 
errors. 
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field of cluster analysis. In this field, mixture model-based
clustering entails two parts: the component density selection,
and estimating number of components. First, given the long-
tailed, skewed distribution of the local minima at previous 
stage, a proper choice would be to use skew-normal or skew-
t-mixture distribution. Specifically, if the true component 
distributions capture skewness and excess kurtosis, t-
distribution provides a more robust model for fitting 
asymmetric mixture densities [11],[12]. Second, finding the 
number of components in a mixture density is a key part of 
model selection procedures. Statistical methods such as log-
likelihood ratio test statistics and Bayes factors may 
overestimate the number of components and are sensitive to 
sample size. 

A. Minimum-Squared-Error Clustering
An alternative to the model-based clustering was chosen 

based on clustering by sum-of-squared-error criterion. The 
basic iterative minimum-squared-error clustering [7] 
algorithm was applied to the mixture density of the local 
minima found previously. To find an optimal partition as 
one that minimizes the criterion, the procedure started from 
an initial set of clusters. For any sample point (local 
minimum), the algorithm first found the closest cluster to it; 
then, it reassigned the point to another cluster if that
reassignment further minimized the criterion function. This 
algorithm required careful choice of initial number of 
clusters together with their centers.

Instead of choosing random samples as the initial centers 
for a chosen number of clusters, we applied the basic leader-
follower clustering algorithm [7] for this purpose. After 
initialization of the clusters centers, this algorithm found the 
most similar cluster to any sample point (of a subset of local 
minima) on the minimum distance basis. If the distance 
measure was lower than a threshold θ, it then updated the 
center of the chosen cluster by a learning rate . If not, it 

created a new cluster from that sample point. Reiterating for 
the total number of samples, it finally returned the total 
number of clusters and their centers. We chose θ to be a 
third of the distance between the largest mode peak’s 
abscissa and the most negative local minima. The learning 
rate was defined as h)4.0( , where h is the iteration 
number. In addition, the algorithm was initialized with two 
centers for clusters. This was rationalized by inference from 
the mixture distribution of local minima for all of the 
electrodes.  One center was set at the largest mode peak’s 
abscissa, while the other was set to be greater than the most 
negative local minimum by a sixth of the distance between it 
and the largest mode peak’s abscissa. With the initial 
learning phase for number of clusters and their centers given 
by the basic leader-follower clustering algorithm, the basic 
iterative minimum-squared-error clustering algorithm was 
poised to find clusters among the local minima [7].  After 
the assignment by the algorithm and due to the updating of 
the centers at the last step, we realized that centers of some 
clusters became close to each other. Therefore, we 
implemented a merging mechanism for such clusters. The 
metric was based on calculating the distance between the 
centers of each pair of clusters and checking if this value 
was less than a threshold for merging them. Fig. 4
demonstrates the result of spike sorting for the detected 
spikes on the sample electrode shown in Fig. 3b,c. There 
were initially three clusters generated by basic leader-
follower clustering algorithm. The minimum-squared-error 
clustering, with merging addendum, resulted in two clusters.

In order to test the reliability of our spike sorting 
algorithm, we represented all the spikes in one cluster per 
electrode by a template waveform. We first informed our 
definition of spike event. Each spike event in the filtered 
data was cast around the corresponding minimum for Ts =
2.5 ms in which the depolarization was set 1.15 ms and
repolarization was set 1.35 ms. Therefore, each spike 
temporal cutout was represented by a vector of size 

ssTf 63. Following this, a template waveform was
defined as the point-wise median of all the spikes per cluster 
per electrode, denoted by )(nwc

ij , in which at this point the 
superscript c stands for the cluster index. Fig. 4c shows two
templates, each of which generated from the corresponding 
spikes per cluster for the whole duration of recording (41.2 
s) on the sample electrode. It is notable how the morphology 
of spikes and thus their corresponding template per cluster is 
distinguishable by the amplitudes.

B. Reliability Analysis
We assessed the robustness of the spike sorting through
reliability analysis of the templates per electrode in three
steps as follows. First, we found the distribution of
interspike interval (ISI) individually for each cluster per
electrode. Also, we defined a refractory period violation
when the ISI is less than 2 ms. Thus, for all acceptable
spikes per cluster per electrode there should not be any ISI

(b)

(a)

(c)

5 s
20 μV

1 s
2 μV

Figure 3. An example of raw data for the entire spot 8 stimulation and 
detected spikes shown on filtered data from electrode 35. (a) Raw data x35

tuned to reference period of spot 8 (offsets are marked). (b) Detection of 
negative local minima on the filtered data in 6 s starting at 20 s. (c) 
Estimated density function of all the detected local minima shown as well 
as an interval of such minima, emphasized to show the multimodal nature 
of the distribution.
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laid below 2 ms. We thus checked for any refractory period 
violation, and, upon detecting one, we removed the spike for 
which the ISI was below 2 ms from the corresponding 
cluster. We also recorded the rate of violations per cluster 
per electrode as a fraction in finding the false-positive error 
in overall performance assessment. Fig. 5a shows the 
histogram of the ISI for cluster 1 in Fig. 4. In the second 
step, inter-cluster (spike-time) cross-correlation function was
found for different pairs of clusters per electrode to check if 
spikes in each cluster had been emitted from a unique 
neuronal unit [3]. For two independent clusters, this function 
should appear constant (no gap around the time lag of zero). 
We found this function for different pairs of clusters per 
electrode and inspected if there was any gap about zero in 
time lag between spike times of one cluster and those of all 
the spikes of the other. Fig. 5b displays this function for the 
two clusters found from electrode 35. There is no gap around 
time lag of zero. In the third step, we found the histogram of 
the amplitude scale factor between each spike amplitude and 
the corresponding template amplitude. This distribution has 
shown to be unimodal around unity for reliable templates 
[1]. A normal distribution centered at unity with standard 
deviation of the amplitude scale factor was compared with 
the normalized histogram to assess the accuracy and 
variance thereof. Then, we run a test on the mean absolute 
error between the normalized histogram and the normal 
distribution. If the test outcome was significant at a level of 
30% for the null hypothesis, then we excluded from the 
cluster the spikes for which the amplitude scale factors were 
less than a threshold. This refinement of the cluster was 
necessary only for a few electrodes.

C. Resolving Correlated Templates

An aspect that circumscribes every robust spike sorting 
algorithm is finding correlated templates whose underlying 
spikes are spread among very few nearby electrodes. There is 
inferential evidence that correlated templates are similar in 
shape and their causal neuronal units have close receptive 
fields. The maximum number of nearby templates with very 
similar shape is found to be three on the basis of normalized 
cross-correlation greater than 0.9 [2]. In pursuit of an 
algorithm to detect correlated templates across all electrodes, 
we started this stage by speculating the geometrical relations 
between an electrode map and a graph. If an electrode map 
were perceived as an edge-weighted graph in this context, 
then the electrodes would be the vertices, and, with edges 
representing similarity relations, then weights may be 
assigned to the edges. When finding correlated templates 
with distinct similarities between them, then we would 
consider this as a search for a cluster that groups them 
together.  Altogether, then, we can solve our problem by a 
graph-theoretic clustering algorithm that searches for certain 
correlated templates in a similarity graph. A divisive 
hierarchical clustering algorithm based on a graph-theoretic 
concept; that is, dominant set is delineated [8],[9]. Each 
dominant set corresponds to a unique cluster, which here 
unifies correlated templates. Formulization of the similarity 
matrix and other specifics for this algorithm will appear in 
another work. After the correlated templates per cluster had 
been found, we retrieved the first spike of the spike train 
recorded from the corresponding electrode for each of the 
correlated templates. Among all such first appeared spikes, 
the one that had the least latency was found. Its respective 
electrode then was selected as the electrode that represented 
all the electrodes having recorded the spiking activity of one 
neuronal unit. Figure 5c shows seven unique templates for 
spiking activity from nine electrodes centered at electrode 35.

V. PERFORMANCE ASSESSMENT 

We examined the total error of spike sorting against the raw 
data signal-to-noise (SNR) ratio for all spot stimuli. The 
noise process was estimated by removing all the spikes from 
the raw data. The analysis showed that such estimated noise 
was an approximately stationary and colored process. The 
cross-correlation function of noise showed that it was
isotropic in x and y directions with a significant decay at 
minimum inter-electrode distance of 100 μm. Because here 
we estimated the noise signature based on the sorted spikes, 
the SNR will be an estimated SNR [4]. It can be defined as 
the difference between the sum of averaged variance of all 
spikes in a cluster and the sample variance of noise, divided 
by the sample variance of noise. The total error for single-
unit recording is defined in [4]. We extended this definition 
to the MEA system. The total error of spike sorting per 
cluster c per electrode ij was realized as the ratio                 

)/()( c
ij

c
ij

c
ij

c
ij

c
ij TPFNFNFPTE . The false-positive 

error, false-negative error, and true-positive probability are 
represented by c

ijFP , c
ijFN , and c

ijTP , respectively. The false-
positive error for each cluster per electrode was defined to be 
the maximum of single-cluster error and the multiple-cluster 
errors [3]. The single-cluster error was the ISI violation rate, 
whereas the multiple-cluster errors factored in the probability 
that overlap between a cluster and the others had made a false 
positive. Between each pair of clusters this probability was
calculated by fitting a multivariate normal distribution into 

(a)

(b)

(c)

1 s
2 μV

Cluster 3 Cluster 1

Figure 4. Results of the spike sorting approach for the same electrode and 
demonstrations in Fig. 3. (a) Three clusters are identified on the mixture 
distribution of minima based on the basic leader-follower clustering 
algorithm run on a subset of data. Highlighted interval of minima 
illustrates the level of minima, nearly -8.6 μV, at which clusters 1 and 2
are separated. (b) Detected spikes are sorted into two different clusters 
shown by different markers. Note that the merging at the end of the 
minimum-squared-error clustering combined clusters 2 and 3 in (a). (c) 
Spike cutout (2.5 ms) overlay and generated template (bold) for each 
cluster (left: cluster 1 with 947 spikes, and right: cluster 2 with 34 spikes).

Cluster 2
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the spikes in each cluster [3]. Also, the false-negative error 
for each cluster per electrode was calculated by combining 
the terms of the single-cluster error and multiple-cluster 
errors. In [3] an amplitude threshold detection technique is 
used for spike sorting, and the single-cluster error is formed 
based on that. The multiple-cluster errors deal with the 
overlap between pairs of clusters by expressing the errors in 
terms of the probability that a sample spike from one cluster 
is misassigned to another cluster. In addition, the true-
positive probability was calculated by finding the probability 
that spikes in a cluster indeed belong to that cluster. We 
calculated this probability as well as fractional false-positive 
and false-negative errors for each cluster per electrode to find 
the corresponding total error. We found that the total error 
was dominated by false-positive error per cluster type across 
the electrodes. The false-negative error turned out to be very 
low. The algorithm performed optimally in the sense that it 
minimized the probability of false-negative errors. Fig. 5d
shows the total error for cluster 1 as a function of the 
estimated SNR across all electrodes for four different stimuli. 
It can be seen that the total error remains quite low for the 
range of estimated SNR for these experiments. Initial number 
of clusters from the spike sorting ranged from 127 to 149
across all 25 spot stimuli. With the reliability tests passed and 
after dealing with correlated templates, the total number of 
clusters reduced to 58 to 72 (median: 64). Here the MEA 
recording area was 0.49 mm2, and, with an approximate
density of mouse RGCs estimated from 4,000 to 8,000/mm2,
there had been potentially from 1,960 to 3,920 individual 
cells to detect and characterize. With the median as 
representative of final number of cells, it follows that our 
implementation revealed at most 3% of the total number of 
cells. Retina excitation with more types of stimuli would 
increase this ratio.  

Spike sorting is considered a classic of the era of spike 
frequency analysis in the cortex, thalamus, and hippocampus. 
A recent software suite (Klusta) is provided for automatic 
spike sorting in dense electrode arrays [13]. The clustering 
program by appealing to a heuristic masked expectation-
maximization algorithm has been robust and resolved the 
temporally overlapping spikes. Here, we adapted Klusta to 
analyze a 10 s recording of our raw data in spot 8 for 32 
electrodes. We generated a configuration map to include 32 
electrodes arranged in four rows starting from electrode 12 
through electrode 85 (see Fig. 1). Klusta initiated the 
clustering with three clusters across all 32 electrodes, and 
through its dynamic merging and splitting it finished the 
process by rendering one cluster. There were 18,010 spikes 
detected from all the 32 electrodes. Sample spike stamps are 
shown for electrode 35 on the filtered data in Fig. 6. It thus
appears that Klusta performed unsuitably on our data and 
may have to be tweaked to account for the differences in 
recordings. 
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Figure 5. Reliability analysis and performance assessment of the spike 
sorting algorithm. (a) Histogram of the interspike interval for cluster 1 in 
electrode 35; the violation rate for this cluster with 947 spikes was 3.1%. 
The refractory period violation range (ISI<2 ms) is zoomed (bin width: 
0.5 ms). (b) Cross-correlation function between the spike times for the 
two clusters (various firing rates) shown in Fig. 4 (bin width: 2.5 ms). (c) 
Seven unique templates of spiking activity in cluster 1 in a grid of 3×3 
centered around electrode 35 (see Fig. 1). Two dominant sets (first row, 
label 2, and third row, label 7) are categorized. (d) Total error against the 
estimated SNR for four different stimuli measured in terms of false-
positive and false-negative errors from the approach for cluster 1.

Figure 6. Detection and sorting of spikes for electrode 35 run on the 
Klusta and shown on 1.8 s of the filtered data. ISI violation rate for 10 s
data in this electrode was 2.67% among 562 spikes.
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