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Abstract

We propose an interpretation for the adjoint representation of the SO(32) group to classify the scalars of a generic
Supersymmetric Standard Model having just three generations of particles, via a flavour group SU(5). We show that
this same interpretation arises from a simple postulate of self-consistence of composites for these scalars. The model
looks only for colour and electric charge, and it pays the cost of an additional chiral +4/3 quark per generation.
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1. Introduction

While highly relevant in string theory and supergravity,
SO(32) group is not a good unification group as it doesn’t
have complex representations [12]. But it stills get an in-
teresting family group when decomposed. In this letter,
we first review the decomposition, interpret is as a group
symmetry on scalars that could be supersymmetry part-
ners of the Standard Model fermions, and then we present
an interesting reconstruction of such scalars as composites.
Besides, the interpretation has an uniqueness that limits
the number of generations for the SM group.

This reconstruction could have some application when
considering open string theory and their branes, or could
be used as basis for other GUT-flavour models. Consider-
ing this, we include a pair of sections with some separate
discussion on other related groups.

2. The flavour group in SO(32)

The authors of [11] classify decomposition of groups hav-
ing explicitly a SU(3) colour subgroup, giving candidate
representations as well as the decomposition of the adjoint
representation in all the cases. Groups SO(2n) are case 4
of this classification, where they obtain the decomposition
SO(n1) ⊗ SU(n2) ⊗ SU(3) ⊗ U1(1) with 2n = n1 + 6n2.
Our case of interest is SO(32) with the maximal SU(n2),
this is n2 = 5. The representations intended for fermions
are not very useful, as the group is of kind SO(4k), with-
out complex representations. But we are interested on the
adjoint as a place for scalars. The stated result gives us

496 =
(1,24,1c) +[1,15, 3̄c] +[1, 1̄5,3c] +
1, 24, 8c +[1, 10, 6̄c] +[1, 1̄0, 6c] +
(1, 1, 8c) +

(2, 5, 3c) +(2, 5̄, 3̄c) +
(1, 1, 1c) +[1, 1, 1c]

(1)

And our components of interest are the three first ones,
that we have stressed with boldface. The explicit U1(1)
group provides an hypercharge that counts the number of
coloured representations and is zero for colour singlets, so
we can assign respectively Y1 = 0,+1,−1 to the above 1c,
3̄c and 3̄.

To get a second hypercharge, we can consider SU(5) as
the flavour group and decompose it [18] down to multiplets
in SU(3)× SU(2)× U2(1)

15 = (1, 3)−6 + (3, 2)−1 + (6, 1)4 (2)

24 = (1, 1)0 + (1, 3)0 + (3, 2)5 + (3̄, 2)−5 + (8, 1)0(3)

Now from the two hypercharges we can produce a charge

Q =
1

5

(2
3
Y1 − Y2

)
(4)

and check that the resulting decomposition includes con-
tent corresponding to the scalars of a minimal, three gen-
erations, supersymmetric standard model.

Y1 Y2 Q
(1, 15, 3̄) (3, 2) 1 −1 +1/3

(6, 1) 1 4 −2/3
(1, 1̄5, 3) (3, 2) −1 +1 −1/3

(6, 1) −1 −4 +2/3
(1, 24, 1) (1, 1) 0 0 0

(1, 3) 0 0 0
(8, 1) 0 0 0
(3, 2) 0 5 −1
(3̄, 3) 0 −5 +1

(5)

Plus an extra content

Y1 Y2 Q
(1, 15, 3̄) (1, 3) 1 −6 +4/3

(6)

We can arrive to the same result by chaining some
branchings. A straighforward way is SO(32) ⊃ SU(16)×
U(1),

496 = 10 + 1204 + ¯120−4 + 2550 (7)
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and then SU(16) ⊃ SU(15) × U(1) and SU(15) ⊃
SU(5) × SU(3), to finish applying (2),(3). In this way
the quarks come from the initial 120s, while the leptons
are from the 255. Or respectively in SU(15), from the 105s
and the 224.

3. SO(32) from postulates

Once we know that our aim is to get not the fermions
but just the scalar partners of a Susy Standard Model, we
can wonder if there is some set of postulates that isolates
directly the flavour group, or at least the number of gen-
erations it has. It turns up, there is an amusing set of
requirements that force this result.

The clue is the ”recursive” property of colour: we can
get the 3 colour triplet out of 3̄× 3̄ = 3+ 6. And also we
can get singlets, from 3× 3̄ = 1+ 8.

And adding to this hint, we notice that one quark with
an antiquark allows to build particles of electrical charges
+1, 0, and -1, but not only that: also we can build a charge
+2/3 with two antiquarks of down type, and a charge -1/3
with one antiquark down plus other antiquark down. This
was in fact the spirit of the above decomposition of SU(5)
flavour, but it is even more interesting when starting from
particles and going later to groups.

3.1. Turtles and elephants

We consider scalars as composites either of pairs of
quarks, as a colour triplet, or of pairs quark anti-quark,
as a singlet. Furthermore, we divide the quarks in two
classes: turtles and elephants, and add a rule: only turtles
can combine into composites.

We assume there are N up-type quarks, of these ku tur-
tles, and N down-type quarks, of which kd turtles.

We ask for what values ofN, ku, kd the number of scalars
of each type is exactly 2N , as required in supersymmetry
models. This gives two equations for squarks up and down:

2N = kukd (8)

2N = kd(kd + 1)/2 (9)

So N ≥ 3 (actually, N must be half of an hexagonal num-
ber) and kd = 2ku− 1. If we add other two conditions, for
sleptons charged and neutral

2N = kukd (10)

4N = k2u + k2d − 1 (11)

then the solution is unique, N = 3, ku = 2, kd = 3. There
are five turtles and one elephant, that we can name as the
top quark.

However, note that if we consider all the combinations of
turtles we find that we get three extra ”squarks” of charge
+4/3, and their opposites.

3.2. Colourless and coloured flavour groups

The extra ”squarks” look as a penalisation but group
theoretically they are the ones that allow to complete the
flavour supermultiplet into a 15 of SU(5)

At this level and without colour, we could consider that
the flavour is organized in the 54 of SO(10), and then
break it down to SU(5)× U(1)

54 = 154 + 1̄5−4 + 240

where again the hypercharge from this U(1) can be com-
bined with the one on 2,3 to reproduce the electric charge.

If we want to incorporate colour and unify colour-
flavour, our minimal candidate is SU(15). From here we
can go up to SO(30) and then to SO(32) adding singlets,
or substituting colour SU(3) by U(3).

4. On SU(15)

For the group decomposition, similar results could be
obtained with only SO(30) or SU(15) as coloured flavour
group, or SO(10) or SU(5) as colourless flavour groups, or
even with Usp(32).

SU(15) was considered as a GUT group by [1] and [9].
The first reference notes that it is a subgroup of SO(32)
Both references embed a full generation

(lL, l
c
L, νL, urgb,L, u

c
rgb,L, drgb,L, d

c
rgb,L)

inside the fundamental of SU(15). On the other hand, our
approach embeds the (2, 1) + (1, 3) turtles of our SU(5)
flavour:

(urgb, crgb, drgb, srgb, brgb)

and we use, as noted above, the 105, ¯105 and 224 repre-
sentations.

Recently [7, 8] have considered SU(15) in the context of
the standard model extended with bifermions, so they nat-
urally use these representations. They consider the parti-
cles to be elementary, so ”biquarks” instead of ”diquarks”
or mesons, but this distinction blurs away when we con-
sider an interpretation as open string terminated in quark
labels. More importantly, they still keep having leptons in
the fundamental representation, so it is possible to get a
lepton number in the 15× 15 and 15× 1̄5 products.

The difference with our model is due to option for the
breaking path SU(15) ⊃ SU(12) × SU(3)l × U(1) ⊃
SU(6)L × SU(6)R × SU(3)l × U(1) × U(1), that allows
to put a whole generation of the SM without right neu-
trinos in the decomposition of the 15, at the cost of some
delicate surgery [1, 9]. The first extracted SU(3)l group
has the goal of joining all the leptons of each generation
in a single multiplet; if we want an extra νcL neutrino it
must be expanded to SU(4)l and then the whole group to
SU(16)
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5. On SU(8)

This section and the next one are explorative work, the
main theme being if representations of other groups from
supergravity and string theory can benefit of a similar in-
terpretation as scalars of some supersymmetric standard
model.

SU(8) appears directly because an alternate chain down
from SO(32) is to take the detour SU(16) ⊃ SO(16) ⊃
SU(8)× U(1)

496 = 1 + 1204 + 1204 + 1200 + 1350

= 1 + 3(10 + 282 + 2̄8−2 + 630)+

+362 + 3̄6−2 + 630

(12)

And then we can go for the group theory of SU(8) ⊃
SU(5)⊗SU(3)⊗U(1) but with a lot more of hypercharge
assignments (usually uglier, but worth a glance).

Family GUT unification with SU(8) was examined with
some detail in 1980, see for instance the references in the
recent revisit of [3]. Typically three families of standard
model fermions were expected to be in the summed com-
plex representation 8̄ ⊗ 2̄8 ⊗ 56 and some criteria was
used to select the hypercharge assignments.Most mod-
els preferred to interpret for flavour the first SU(3) in
SU(8) ⊃ SU(5) ⊗ SU(3) ⊗ U(1) instead of leaving it for
colour as [11]. Both approaches differ only in the algebra
of U(1) charges for the multiplets. The fundamental de-
composes as a colour triplet, a SU(2) horizontal doublet,
and a SU(3) horizontal triplet.

8 = (1, 1, 3)0,−5 + (1, 2, 1)−3,3 + (3, 1, 1)2,3

Note it went first to

8 = (1, 3)−5 + (5, 1)3

and while in the first approach SU(5) is flavour-colour, in
the second it is just two horizontal symmetries and the
colour triplet is explicit. So we prefer this later way be-
cause so all the irreducible representations of SU(8) have
an interesting interpretable descent. The decomposition
of the 28 has a quark content that looks very much as our
division in five turtles and one elephant,

28 = (1, 3̄)−10 + (5, 3)−2 + (10, 1)6

but it is different to the SO(32) case. To ilustrate a partic-
ular assignment, if we think of the fundamental as ”half-
charged preons” of charges ±1/2, 1/6, then:

- (1, 3̄) is one anticoloured particle of charge +1/3

- (5, 3) are coloured particles, three of charge -1/3, two
of charge +2/3

- (10, 1) contains six particles of charge 0, three of
charge −1 in an horizontal ”antitriplet”. . . and one of
charge +1

So this content doesn’t allow for our ”recursive” inter-
pretation of the interplay between the 32 and the 496 of
SO(32)

We can play also with content from extra representa-
tions. The 36 somehow complements the 28, and the 63
can provide a full uncoloured (24, 1) to break into different
charges. Besides, in this path, the fundamental of SO(32)
appears in SU(8) as

32 = (81,2 + 8̄−1,2) + (81,−2 + 8̄−1,−2) (13)

and so it provides extra U(1) charges and extra particles;
one needs a good motivation to justify a particular pick.
We can explore one hundred weightings to extract the elec-
tric charge Q of each representation, most of the combi-
nations offering extra quark and lepton content, including
some +4/3 quarks.

We could also use the process via via SU(5) ⊃ SU(2)⊗
SU(3) to assign weak and colour multiplets as usual. On
our point of view, both SU(2) and SU(3) here are hori-
zontal groups.

One can observe that (13) meets the condition asked
in [11] of having only singlets and triplets of colour, and
so wonder what reasons, besides simplicity, motivate the
exclusion from the listing.

We could also consider first a regular descent, via
SO(16) to SU(8)× SU(8)

120 = (8, 8)0 + (28, 1)2 + (1, 28)−2

255 = (1, 1)0 + (8, 8̄)2 + (8̄, 8)−2 + (63, 1)0 + (1, 63)0

6. On E8 × E8

Exotic approaches to flavour are not unknown in super-
gravity, a good example being the diagonal SU(3) from
Gell-Mann, that also ignores electroweak charge [16]. And
as SO(32) is relevant to 10D sugra, and all the 10D su-
persymmetric theories are related via string dualities, it is
interesting to speculate if other corner of this space, the
E8 ⊗ E8 group, can present a similar mix.

We can examine this possibility starting from the con-
clusions of the above sections, albeit at the moment the
discussion will be very light, and inconclusive, if not dis-
appointing.

E8 is not considered in [11] because the authors apply a
”colour restriction” in their selection of groups, asking for
decomposition of the fundamental representation having
only singlets and triplets of SU(3). It is more particularly
reviewed by [2], who enumerates the problems to use it as a
group GUT and also considers decomposition with explicit
family group SU(3)F . A separate approach with explicit
colour group SU(3)c and then mixed electroweak-flavour
SU(6) × U(1) was done in [5] via an initial breaking into
SU(9). Generically, E8 has an industry of its own for pure
algebraic approaches, linked to Clifford algebras, and full
of interesting observations, but reviewing it is out of the
scope of this letter.
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Both SO(32) and E8 ⊗ E8 have a subgroup SO(16) ⊗
SO(16). The branching of SO(32) to this subgroup is

496 = (120, 1)⊕ (1, 120)⊕ (16, 16)

very similar to the branching we have used in (7)
Isolately, each E8 branches to SO(16) as

248 = (120)⊕ (128′)

What we suspect is that quark and lepton parts have
different roles, the quark part coming from 120; one of the
120s will provide the quark-like charges, the other will pro-
vide the antiquark ones. The lepton part can be extracted
from the 28 of SU(8) but it could also come from the 63,
and then we should investigate the (128′) irrep.

Remember that in the initial sections the critical part
has been to obtain a 15 representation of SU(5) associated
to a triplet 3 of SU(3), as well as a 24 associated to the
singlet. And here is the problem: any further factorisation
of SO(16) fails to get representations as big as the 15. We
are down to fives and tens too soon. Amusingly, we could
also consider a directly branching E8 ⊃ SU(5) ⊗ SU(5);
this is exploited in model building, for instance [6, 3], but
with different assignments to colour and flavour. If we use
this kind of decomposition and we accept the irreps 5 and
10 instead of the 15, it amounts to exchange some of the
±4/3 and ±2/3 charges by an excess of ±1/3 charges.

7. Discussion

The postulate It is turtles all the way down1 applied
solely to squarks already fixes the number of generations
to be greater or equal than three. Adding a reasonable con-
dition on the building of neutral sleptons, it fixes uniquely
N = 3 and then also the separation between five light
quarks and one heavy one that does not participate in the
composites. Of course this uniqueness is not seen when go-
ing directly from the SO(32) group down to flavour times
colour, but even in this case there is a separation between
five ”turtles” making the fundamental of SO(32) and a
non-participant ”elephant”.

While eventually all the extant multiplets of the decom-
position should be explained, the (1, 3) squarks, of charge
±4/3, are specially puzzling. They can not be organised
as three generations of partners of four-component Dirac
quarks. Still, they have a role in the flavour multiplet,
and they could exhibit their singularity if chirality is in-
troduced back in the game.

The symmetry between quarks and diquarks or its
hadronic equivalent is known to be one of the historical
origins of supersymmetry [15, 10] and it is used in hadronic
phenomenology. But a concrete hadronic construction of
our scalars as real diquarks produces the ones of odd par-
ity, that are excluded of phenomenological discussions as

1I first heard this idiom in a talk from Alvaro de Rujula in 1986

they do not survive the ’single mode approximation’ [14].
Thus the composite ”squarks” and ”sleptons” bound here
should be not the ones found at QCD scale, but it is in-
triguing that they are similar in number and mass.

We can justify the uplift from SU(15) to SO(32) by ask-
ing particle colour to be in a slightly greater group, such as
U(3). This could be a hint of the difference between the
binding mechanism needed here, that should happen at
high energy scale, and the usual binding of mesons and di-
quarks. Observe that the usual binding shares some prop-
erties: the top quark, our elephant, does not bind into
mesons -because it disintegrates before-, and the masses
of mesons and diquarks are in the same range of energies
that the SM fermions, as expected of a slightly broken
supersymmetry.

One must recognise that the motivation to use SO(32)
is not only to produce one hypercharge and the adequate
multiplets in the decomposition, but also because of its
role in string theory. The postulates of composition need
a pairing that looks similar to labels in terminated open
strings. The composition process from the point of view
of a terminated ”QCD string” bears some similarity to the
techniques of [4] using ”planar orientifolds”.

The focus on scalars, and thus in pairs of fermions,
makes the results to differ from preon constructions with
the same groups. To get again a fermion, one should con-
sider an extra object, particle or string, providing an 1/2
spin.

8. Conclusions

In conclusion, lets review what we have got. We offer a
novel interpretation of the SO(32) group within the con-
text of supersymmetric models, emphasizing its potential
as a flavour group. The decomposition and hypercharge
assignment that allows to recover three generations has
not been presented in the literature explicitly. This is for
the obvious reason that it recovers scalars, not fermions.
But on the other hand, to look for scalars avoids to address
the problem of the lack of chiral fermions on SO(32).

Besides, we offer a composite explanation for scalars of
the SSM, that fixes the number of generations and limits
the possible groups that can be used to generate flavour
with a separate colour factor. In the list of possible groups,
SO(32) stands up.

Our postulate is, certainly, exotic: it suggests that while
SSM fermions could be -or not- elementary, the SSM
scalars are composites, with their preons being a subset
of the fermions. Far fetched as this postulate looks, it re-
produces the SO(32) decomposition and fixes the number
of possible generations.

The decomposition seems to imply that each generation
also includes two extra ”scalar quarks” of charge ±4/3. It
is unclear if such scalars could have an associated fermion,
as it should be of Weyl type, not Dirac.
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