
  

 

Abstract— Automatic prostate segmentation in MR images is 

a challenging task due to inter-patient prostate shape and 

texture variability, and the lack of a clear prostate boundary.  

We propose a supervised learning framework that combines 

the atlas based AAM and SVM model to achieve a relatively 

high segmentation result of the prostate boundary.  The 

performance of the segmentation is evaluated with cross 

validation on 40 MR image datasets, yielding an average 

segmentation accuracy near 90%.     

I. INTRODUCTION 

Segmentation of T2 weighted (T2w) prostate MRI images 
is important for automated prostate cancer diagnosis and 
therapy planning. Current literature on MRI prostate 
segmentation focuses on atlas-, shape- and machine learning-
based models. Klein et al. [1] proposed an automatic 
segmentation method based on atlas matching with non-rigid 
registration.  Yin et al. [2] proposed an automated 
segmentation model based on normalized gradient field 
cross-correlation for initialization, and graph search based 
framework for refinement.  Ghose et al. [3] proposed to use 
texture feature from approximation coefficients of a Haar 
wavelet transform for propagation of a shape, and Active 
Appearance Model (AAM) to segment the prostate.  Toth et 
al. [4] extended the traditional AAM model to include 
intensity and gradient information, and used level-set to 
capture the shape statistical model information with a multi-
feature landmark free framework.  A registration scheme is 
used to locate the coarser prostate region.   Habes et al. [5] 
proposed support vector machines (SVM) based automatic 
MRI prostate segmentation by using combined three-
dimensional (axial, sagittal, coronal) image texture features.   

In this paper, a novel combination of partial idea from 
above approaches [1-5] is used to create a new non-
parametric atlas based method to automatically segment the 
prostate in 3D T2w MRI images.  To build the atlas, we 
extract 2D slices from 3D prostate images, and apply AAM 
training and SVM classifier on a 2D slice-by-slice basis.   To 
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fully automatically segment a new 3D prostate MRI image, 
we propagate an automatic segmentation pipeline to each 2D 
slice to generate the final prostate contour.   The method 
utilizes an adaptive AAM model to initialize the coarser 
prostate contour, followed by SVM to refine the prostate 
boundary.  The two proposed models are 2D based. 

II. METHOD 

A.  Atlas Based AAM Segmentation 

The atlas based AAM training is 2D slice based as Figure 
1 with the algorithm propagating from slice 1 to slice n. The 
algorithm extracts a 2D slice to create a volume of interest 
(VOI) based atlas.  An exhaustive search algorithm 
subdivides the atlas into smaller groups with a similar shape 
measure.   The similarity measure follows the work of Arkin 
et al. [6] to categorize VOI shapes with the shapes’ turning 
functions.  The    metric on the turning functions is used to 
compute the shape resemblance.   After forming the smaller 
group, the search algorithm marks the relevant images and 
VOIs as visited, and iteratively searches the data in the atlas, 
terminating when no more similarity shapes can be found.          

 

Figure 1. Atlas based AAM training 

Each smaller group performs AAM training 
independently.    We follow the work of Stegmann et al. [7] 
and Cootes et al. [8] to create the AAM model with the 
images and VOIs inside the smaller group.  The AAM 
algorithm contains two stages: the AAM model creation and 
the AAM model fitting.    The AAM model performs 
statistical analysis with the shape, the texture, and combined 
appearance of shape and texture.  The images and VOIs 
inside the smaller group form the training set.  The shape 
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training images are aligned using Procrustes Analysis [8].  
The 2D prostate images are warped to the mean shape  ̅ and 

normalized, yielding the texture vector   .  By applying 
principal component analysis (PCA) to the normalized data, 
linear models are obtained for both shape,     ̅      , and 
texture,    ̅       , where  ̅  ̅ are the mean vectors, 

      are sets of orthogonal modes of variation, such as 
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eigenvectors resulting from PCA, and      are sets of model 

parameters.   To combine the correlations between the shape 
and texture variations, a third PCA is applied using the 
following concatenated vector,  

     b = (
     
  

)  = (
    

 (    ̅)

  
 (    ̅)

)    (1)                          

where    is a diagonal scaling matrix derived from the value 
range of the eigenvalues of the shape and texture 
eigenspaces.    This yields the final combined linear model 

      , where    (   
     

 )
 
,    is the vector of 

appearance parameters controlling both the shape and texture. 
AAM is trained to update model and pose with first order 
Taylor approximation [7].  After the AAM model has been 
trained, we choose the first sample image as the pivot image 
for atlas based image searching in the AAM search step.   
One additional adaptive step is to check the number of 
principal parameters of AAM PCA model after training.  If 
the number is less than 2, we discard the group since the 
single parameter always introduces a twist contour in the 
fitting step.   We add a conservative check to reduce 
segmentation errors.     

The atlas based AAM fitting is also 2D based as shown in 
Figure 2.  

 

Figure 2.  Atlas based AAM fitting 

For the new image, a texture similarity measure (NMI) for 
each 2D slice is performed with all the smaller groups inside 
the AAM atlas.   Normalized mutual information (NMI) is 
used to compute the image similarity between each 2D slice 
and the pivot sample image of the AAM model group.  When 
the closest texture sample image is found, the corresponding 
AAM model is invoked, and AAM model fitting is applied to 
generate the prostate contour.   AAM model searching is 
unstable due to the local minima, and sometimes can result in 
a twisted contour.  To overcome this drawback, we apply a 
shape based similarity measure [6] to filter out those contours 
and replace them with consecutive neighboring contours.    

    The AAM search is an optimization problem in which the 
algorithm minimizes the difference between a target image 
      ( ) and one synthesized image       ( ) by the 

appearance model.  The search for the model parameter   is 
guided by using the knowledge about how the difference 
images correlate with the parameter displacements, which is 
obtained from training.  For each search step, the current 
image difference between the model texture   ( ) and the 
sampled image   ( ) is defined as, 

         ( )      ( )      ( )                    (2)   

To locate the best match between model and image, the 

search procedure minimizes sum of square error, 
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Building the derivative of (3) with   set to zero gives,  
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   is the Pseudo inverse. Iterative refinement method is used 

to optimize the search [8].  During the search, each iteration 

updates the model parameter                    , with 

pose parameters   (scale, translate, rotate).  Evaluate the 

current error,           |     |
 .  Perturb   to produce  

     ( )          .  Set          to      , and continue the 

next iteration. If no improvement can be found, the 

algorithm converges and          is the best estimate for the 

model parameters.   

B. Atlas based SVM Segmentation 

     Atlas based AAM segmentation results depend on how 
many images and VOIs are trained, and the number of pose 
configurations (rotation, translation, scale) applied during 
AAM model searching.  In some cases the resulting contour 
looks promising.  In most of the cases, the resulting contour 
still segments the prostate in coarser levels.   To improve the 
AAM segmentation result, we apply the atlas SVM machine 
learning based algorithm to refine the prostate boundary.  
Figure 3 shows the flowchart of the proposed training 
method pipeline.  To create the atlas based SVM model, we 
randomly select 20 images as the trained images, which 
represent the clear prostate boundary. We extract 2D slices 
from each 3D image, and apply the supervised SVM training 
to each 2D slice.   A coherence enhanced diffusion (CED) 
filter removes the speckle noise in the 2D image before 
training.   To build the SVM model, we establish two stages 
training.  First, we individually train the non-prostate 
regions, which are the colored regions shown in Figure 3.  
We utilize MIPAV [15] semi-manual contouring tool to 
manually segment all the non-prostate regions for the 20 
images.     

 

Figure 3.  Atlas based SVM models training 

The training phases collect texture priors of non-prostate 
regions and classify pixels for different sub-regions around 
the prostate by using the Hurst index [9] and Haralick [10] 
features.   For each sub-region, a pixel is labeled by 1 or -1 
to represent the class membership belonging to the VOI 
drawn region or not.   Then, the sub-regions are trained 
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independently of each other to form a group of locally 
trained SVM models.  Next, we train the prostate boundary.   
We extract the Hurst index and Haralick features on the 
points along the boundary line for a single class, and train 
the boundary SVM model.   Non-prostate SVM modeled 
sub-regions, boundary SVM model, and 2D slice itself form 
a single unit of 2D slice based SVM trained model.   The 2D 
slice is the pivot sample image, which will be used for 
searching texture images in the classification step.   We 
decompose all the 20 images into 2D slices, and manually 
train the SVM model for each 2D slice.  All the trained SVM 
models combine together to build the atlas based SVM 
model committee.    

    To construct the SVM based classifiers, we utilize 
different kernel functions to train the non-prostate sub-
regions and prostate boundary.  SVM is a supervised 
classifier based on statistical learning theory as proposed by 
Vapnik [11].  Due to the large pixel based feature space size, 
we employed the two-class (binary) SVM classifier with 
linear discriminate function to the non-prostate sub-regions. 
LibLinear [12] is used to speed up the performance.    Given 
the training set,    {(     ) (     )      (     )}    
    are independent feature vector of dimensionality   and 
     {    }

  are class labels for the binary classifier.  We 
use linear kernel as the discriminate function,  

                        (     )     
                                (6) 

A detailed description of SVMs can be found in [11].   

      Traditional SVM prostate classifier specifies the region 
inside the prostate as +1, and region outside as -1.   This 
approach is always error prone due to the high variability of 
the internal prostate anatomy structure.   The non-prostate 
regions have low texture variation.  Thus, we train the non-
prostate regions with an intention to achieve robust 
classification of non-prostate regions with linear SVM.  

       For the prostate boundary training, we utilize the one-
class classifier with non-linear Radial Basis (RBF) kernel 
function, 

       (     )     (  ‖      ‖
 
)                (7) 

where   is the kernel parameter and ‖      ‖ is the 

dissimilarity measure.   The function returns    in a small 
region that captures the boundary training data points and  
   elsewhere.  LibSVM [13] is used to train the boundary 
data.  RBF kernel is a slow classifier.  In the general case, 
2D slice based prostate segmentation can take up more than 
20 minutes to execute one non-linear based classification.  In 
our case, we only train the prostate boundary points with 
smaller feature space size, significantly enhancing the RBF 
classification speed.  

     Atlas based SVM classification is demonstrated in Figure 
4.  With a new 3D prostate image, the segmentation pipeline 
propagates to each 2D slice.   The algorithm applies the 
CED filter to remove the noise, and uses NMI to search the 
pivot sample images inside the SVM model atlas.  When the 
closest image is found, the algorithm extracts features and 
invokes the corresponding SVM models to do classification.  
Binary mask images for the non-prostate region and prostate 

boundary are generated as the classification results, as 
shown in Figure 5.  

 

Figure 4.  Atlas based SVM classification 

AAM segmentation generates the coarser level contour in 
the 2D image.   We use the contour as the initialization VOI, 
and copy it to non-prostate region and prostate boundary 
binary mask images.   A narrow band algorithm searches the 
finer prostate boundary from the three images. Figure 5 
shows the flowchart of the tracing pipeline.    

 

Figure 5. Narrow band tracing 

     The dynamic algorithm sequentially searches the initial 

VOI boundary points.   For each boundary point, it traces the 

points within the narrow band region along the polar 

coordinate system α angle expansion line.  The green lines in 

Figure 5 illustrate the searching path.  From the tested 2D 

slice and the two binary mask images, the algorithm looks 

for the point that satisfies the following criterion as the ideal 

prostate boundary point: 1) the point has a high gradient 

magnitude change in the original 2D slice; 2) the point 

stands close to the binary masked boundary; 3) the point 

does not belong to the non-prostate region mask image.  In 

some cases, not all the three conditions can be satisfied, and 

we use the current AAM segmented boundary point as the 

resulting search point.  B-Spline interpolation applies to all 

the found ideal points to generate the final smooth prostate 

boundary.  

III. EXPERIMENT AND RESULTS 

The proposed fully automatic segmentation method is 
evaluated with 100 prostate 3D axial MR images as the base 
training set, and 40 new 3D axial MR images as the testing 
set. All the datasets were collected from different patients, 
and provided by National Cancer Institute, Molecular 
Imaging Branch.   The MR images are obtained from a 3.0 T 
whole-body MRI system (Achieva, Philips Healthcare).  T2-
weighted MR images of the entire prostate were obtained in 
axial planes at the scan resolution of 0.2734x0.2734x3.0 
mm

3
; field of view 140 mm; image slice dimension 512x512.    

The center of the prostate is the focal point for MRI scan.  
The experimental results are evaluated by comparing the 
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automatic segmentation with the expert manual 
segmentation.   The expert manual segmentation is made by 
trained researchers and verified by a radiologist.   These 
VOIs are considered as the ground truth of the evaluation.  

    The atlas based SVM model is built by randomly selecting 
20 images from the training set as described in section B.   
The atlas based AAM model is built from the 100 MR 
images as described in section A.    Leave-one-out cross 
validation is applied to the testing set to evaluate the 
segmentation performance.  Basically, we pull out one image 
from the 40 images, train the rest images with the AAM 
model, and merge them with the base AAM model as a 
committee.   Then, the fully automatic segmentation pipeline 
that combines the atlas based AAM+SVM model (method B) 
generates the prostate VOI contour from the new image.  One 
additional test we do is to apply the atlas based AAM 
(method A) model alone to generate the contour. The 
experimental results are evaluated based on the previous 
work [14], for example, true positive (TP), false negative 
(FN), false positive (FP), and the VOIs volume.  We also use 
the Dice Coefficient.  Table 1 illustrates the average volume 
percent difference and average VOI overlapped region for 
both models: AAM standalone model and AAM+SVM 
guided model.  Evaluation compares the automated and the 
manual segmentation results with the expert segmentation as 
the ground truth.   The proposed method achieves 90% 
average segmentation accuracy for the TP overlapped region, 
and the average Dice similarity is 87%.  The FP shows a 
relative high percent difference, which mostly comes from 
the over-interpolated slices near apex and base.  The 
AAM+SVM combined model improves the TP accuracy 
10% more than the AAM standalone model.   Volume 
difference is measured with the whole segmented VOIs 
volume without trimming VOI contours at apex and base.  
Figure 6 demonstrates the visual segmentation results.  The 
red contours present the automatic AAM+SVM model; the 
green contours present the manual segmentation.      

       

 TP FN FP Dice V-Diff 

AAM 
(method A) 

82.85% 13.61% 16.45% 86.60% -2.37% 

AAM+SVM 
(method B) 

91.2% 8.78% 19.25% 87.58% 8.38% 

Table 1.  Segmentation performance 

 

 

Figure 6.   AAM+SVM model segmentation results 

    The traditional AAM standalone model requires large 
amount of images and VOIs to accurately capture shape 
variations [4].  Also, to train the AAM model with a large 
texture and shape variation dataset can be prone to errors.  
The smaller number of eigenvalues in the AAM PCA model 
suffers from the local minima in the AAM model searching 
step. We propose the atlas based AAM training with a 
smaller group to ensure that relatively similar images and 
VOI shapes can be trained with a higher number of 
eigenvalues in the PCA model.   The exhaustive searching 
algorithm generates large amount of groups to capture the 
shape and texture variations.  With contour fixing at the end 
of fitting, the atlas based AAM model can significantly 
reduce the segmentation errors.  The atlas based SVM model 
utilizes the non-prostate regions and prostate boundary 
classifiers to ensure more stable prostate classification.   To 
combine the two, AAM generates the initial coarser VOI 
contour.  Then, SVM stretches the initial contour toward the 
correct prostate boundary location with the narrow band 
tracing algorithm.   With the limited 100 MRI prostate 
images given as the training set, our proposed method yields 
promising segmentation results.   Our method relies heavily 
on AAM to initialize the contour.  When the initial contour is 
far from the narrow band reaching ranges, the proposed 
method fails.  The proposed models (AAM, AAM+SVM) are 
all implemented in Java under MIPAV [15] software, which 
is open source and can be obtained from 
http://mipav.cit.nih.gov. 

IV. CONCLUSION 

A novel atlas based method for automatic MRI prostate 

segmentation was presented in the paper.  We combine the 

AAM and SVM model with an atlas based approach to 

tolerate errors from either model alone, and still generate 

relatively accurate segmentation results.  The proposed 

method utilizes adaptive atlas based AAM model that reduce 

the AAM segmentation errors. The atlas based SVM non-

prostate regions and prostate boundary classifier ensures 

more reliable classification around the prostate. The 

segmentation results were fine-tuned with the combination 

of atlas based AAM and SVM model with a dynamic narrow 

band tracing algorithm. While the prostate segmentation is 

improved with better TP, FN and Dice coefficient, further 

work is required to improve the FP and volume difference. 
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