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Abstract— Information processing in nonlinear systems can
sometimes be enhanced by the presence of stochastic fluctu-
ations, or noise. Although the electrical properties of neurons
and synapses are known to be influenced by intrinsic stochastic
variability, it remains an open question as to whether living
systems exploit this noise during neuronal information process-
ing. This is despite various forms of noise-enhanced processing,
such as classical stochastic resonance, having been observed in
mathematical models of neural systems and in data acquired
experimentally. We recently argued that advancing our under-
standing of the potential roles of random noise in assisting
neuronal information processing will require specific focus on a
concrete hypothesis about the computational roles of a specific
neural system that can then be tested experimentally using
signals and metrics relevant to the hypothesis. In this invited
symposium paper, we argue why most existing approaches to
studying stochastic resonance based on classical definitions and
methods are highly limited in their applicability, since they
impose an implied computational hypothesis that may have little
relevance for real neurobiological systems.

I. INTRODUCTION AND BACKGROUND

Intrinsic stochastic noise is ubiquitous in biological sys-

tems, and in particular manifests in numerous ways in brains

and nervous systems, at all scales from molecules to neurons

to networks to whole brain [1], [2]. Examples include proba-

bilistic release of synaptic neurotransmitter, and fluctuations

in neuronal membrane potentials due to stochastic opening

and closing of ion channels.

As reviewed in [3], there are many ways in which a

specific neural system has been observed to better achieve

a putative computational goal in the presence of random

fluctuations originating from stochastic biologically relevant

noise, than in their absence. Although this defies intuition, it

is its interaction with nonlinearities that enables noise to have

beneficial effects—sometimes noise can diminish detrimental

properties of nonlinearities [4].

We proposed in [3] that whenever noise is observed to

have a positive effect on neuronal information processing

‘stochastic facilitation’ can be said to be observed. Although

such effects have been observed empirically, there has not

yet been any confirmation that intrinsic noise is actually

exploited in-vivo, since the noise has usually been artificially
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introduced rather than intrinsic [5], [4]. Confirming in-vivo

stochastic facilitation may require experimentally changing

the properties of biologically relevant noise and measuring

the resulting changes in the efficacy of the computation, and

achieving this is clearly challenging.

We also proposed in [3] a framework consisting of six

sequential steps that future experimental and computational

neuroscience approaches might follow in order to aid in

identifying new and interesting forms of stochastic facil-

itation. This framework makes explicit the importance of

commencing such studies with a concrete computational

hypothesis that is relevant to a specific neural system. It

also emphasises the need to make biologically appropriate

choices with regard to stimulation of the system, and to use

analysis methods relevant to the computational hypothesis.

We proposed this framework because many studies of the

potential benefits of stochastic noise in neural systems focus

solely on stochastic resonance, and its classical definition [6].

Such an approach, however, predetermines potentially inap-

propriate choices for stimulation and analysis, because it im-

poses a restrictive computational hypothesis that is unlikely

to be functionally relevant in most neural systems. We argue

that to better assess whether stochastic facilitation occurs in a

neural system, a biologically appropriate computational role

of the system should be identified or proposed as a first step,

along with a biologically relevant indicator of performance.

In order to elucidate these arguments, in the following

section we discuss classical stochastic resonance, and con-

trast it with our proposed framework for studying stochastic

facilitation generally. Next in Section III we state explicitly

how signal-to-noise ratio is defined in classical stochastic

resonance, in order that in Section IV we can discuss why

this metric imposes an implied computational hypothesis,

and argue that its relevance for real neurobiological systems

is questionable.

II. CLASSICAL STOCHASTIC RESONANCE VS

STOCHASTIC FACILITATION

A. Definition of classical stochastic resonance

In classical stochastic resonance [6], a periodic signal

arrives as an input to a non-linear dynamical system. This

signal is assumed to be ‘weak’ and/or ‘sub threshold’ such

that the system provides an output from which detection of

the periodic signal is difficult when noise is absent. Classical

stochastic resonance is observed when noise is present and

it enables the input signal to be detected statistically, in a

better way than when noise is absent. In classical stochastic

resonance, the quality of detection is measured by an output
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signal-to-noise ratio (SNR) calculated using the spectral

content (power spectral density (PSD)) of the response.

Typically, the SNR exhibits a single peak as the power of

the noise is varied. Figure 1a illustrates these points.

This classical definition mandates the form of the in-

put signal and the performance metric. Together these two

essential features are highly restrictive, both in terms of

the relevance of the signal (most biological signals are

not strictly periodic, even though many are rhythmic), and

the metric, as signal-to-noise ratio has many problematic

features, which we discuss in depth below.

B. Six steps for studying stochastic facilitation

Nonclassical variants of stochastic resonance have dis-

carded the requirements of periodic signals and SNR (see [4]

for a review), and weak subthreshold signals have been

shown to be unnecessary for a simple network of neurons [7],

[8]. Also, in these studies metrics other than SNR are used.

This makes it clear that interesting facilitative effects of

noise can occur that are in many ways dissimilar to classical

stochastic resonance. Even so, many papers have appeared

in the neuroscience literature recently that take note only

of classical stochastic resonance. We aimed to emphasise

how restrictive this is, and put forward the following six

step framework as a way to better elucidate whether intrinsic

stochastic noise in neural systems may be exploited during

neuronal information processing (see Figure 1b):

1) State a hypothesis re the positive role of stochastic

biological noise in facilitating signal processing or a

computational task of a specified neural system.

2) Specify a neural preparation or mathematical or com-

putational model that can be stimulated by inputs rel-

evant to the hypothesis and produce output responses

that can be measured.

3) Choose hypothesis-relevant input signals (if necessary

for the hypothesis) and noise that can be generated

and introduced into, or deleted from, the experimental

material or model.

4) Acquire relevant output data after introducing the cho-

sen input signals and noise into the experimental rig

or simulation of the model,

5) Process the output data into a form relevant for assess-

ing the computational hypothesis

6) Assess the hypothesis that noise has a positive role,

based on the processed data.

Classical stochastic resonance does not follow these steps

in this sequence, because the signal in Step 2, and the per-

formance metric in Step 6 are mandated and a computational

hypothesis follows only by implication.

In the remainder of this paper we explore the consequences

of the computational hypothesis implied in classical stochas-

tic resonance, and argue that unless a model is put forward by

which a neurobiological system actually uses the output of

the studied system in the manner implied by the processing

needed in Step 5, observing classical SR does not mean it is

relevant a real neural system.

III. SIGNAL-NOISE-RATIO IN CLASSICAL

STOCHASTIC RESONANCE

Any definition of signal-to-noise ratio (SNR) requires

definitions of signal power and noise power. Demonstration

of classical stochastic resonance requires calculation of the

output SNR from the nonlinear system under consideration,

i.e. we need to define an output signal, and output noise.

The input signal must be a single frequency sine-wave

signal with frequency f0 Hz. Since all input power is located

at a single frequency, the output signal power is defined as

the output power spectral density (PSD) at f0 Hz, and we

denote this as S(f0).
The putative utility of measuring output SNR for a single

frequency input signal, is to use it to decide whether that

frequency is present in the input. It is the values of the output

PSD at frequencies in the vicinity of the signal frequency, as

measured with the signal present, that determines this [6].

The average value of the PSD near the signal frequency, but

exclusive of PSD at that frequency, is known as the noise

floor, and we denote this as N(f0). Using these definitions,

SNR can (after conversion to decibels) be written as

SNR = 10 log
10

(

S(f0)

N(f0)

)

. (1)

In practice, the quantities S(f0) and N(f0) are estimated

from discrete time sampled data generated by simulations or

recorded from experiments. Standard algorithms, such as the

periodogram or Welch methods, which make use of the Fast

Fourier Transform (FFT) algorithm with N frequency bins,

can be used to obtain estimates for the PSD of the output.

After obtaining such estimates, the signal power at the output

is typically ‘smeared’ across several frequency bins, and a

good estimate of S(f0) involves summing the PSD estimate

over several bins centred on f0. Similarly, a good estimate

of N(f0) requires averaging the PSD across a range of bins

either side of the bins used to estimate S(f0).
If the system being studied is a neuron model, often

it is only the action potential times that are of interest

when calculating the SNR in studies of classical stochastic

resonance. In this case, a point process may be created from

the times at which action potentials occur. The PSD is then

estimated after low pass filtering this point process, and

ensemble averaging over many trials enables more accurate

PSD estimates.

IV. WHY SIGNAL-NOISE-RATIO IS

PROBLEMATIC FOR REAL NEURAL SYSTEMS

We argue that there are two main problems in studying

classical stochastic resonance in neural systems:

1) Rather than first stating a hypothesis regarding a com-

putational role as in the six-step approach we advocate,

the choice of SNR as a metric applied to neural systems

imposes an implied hypothesis, and this hypothesis

lacks plausibility.

2) Assessing performance using SNR is only suggestive

of potential stochastic facilitation, and it could be that

the actual system does not produce a response where
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Fig. 1. Comparison of classical stochastic resonance with our six step framework for studying stochastic facilitation. Figure first published in Nature 
Reviews Neuroscience 12, pp. 415-426 (July 2011), doi:l0.1038/nrn3061 [3], Nature Publishing Group, a division of McMillan Publishers Limited 

the potential benefits of noise have any consequences 
relative to the absence of noise, or relative to sub­
optimal noise. 

We now illustrate these points by describing a typical 
scenario, which is to begin by choosing a model of a 
single spiking neuron (step (2) in our framework), and then 
choosing signals (step 3) with the following properties: 

• a periodic single frequency sine wave as an input signal; 
• additive white noise, that randomly perturbs the sine 

wave; 
• the periodic signal has an amplitude such that if the 

noise is absent, the neuron model does not produce 
action potentials; 

• the range of possible noise levels is such that action 
potentials are induced to occur that otherwise would 
not have, given the signal amplitude. 

The elements in this example are a perfect choice for 
an essential requirement in classical stochastic resonance, 
namely that 

• performance as a function of noise intensity is measured 
by SNR, as in Equation (1 ), based on the output power 
spectral density of the stochastic process defined by 

action potential timings. 

Rather than first stating a hypothesis regarding a compu­
tational role, this choice of assumption that SNR should 
be used to measure performance (step (5)), reverses the 
conceptual sequence, and imposes an implied hypothesis 
(step (1)), that may be stated as follows. 

• The computational role of the neuron is to produce a 
sequence of action potentials when a sinusoidal input 
current at a specific frequency excites the cell, and to 
produce a statistically distinct pattern of action poten­
tials in the absence of the sinusoidal input current. 

If we assume that this computational role is correct, then 
it suggests that some neurobiological mechanisms must be 
available for extracting information from the patterns of 
action potentials that is closely related to that extracted by 
estimating SNR. 

Spectral based SNR can be used to determine the presence 
of a sinusoid, based on measured data, if there is spectral 
power at a single frequency that is clearly larger than the 
noise floor at other frequencies in the vicinity of that single 
frequency. The SNR is the ratio of the power of that peak, 
to the power of the noise floor. The larger the SNR, the 
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more likely it is that the peak is really due to a sinusoid,

and is not an artifact, and the more likely it is that the peak

will be apparent when the data used to estimate the power

spectral density are not ideal. So for our data processing

purposes, measuring SNR implies that we should carry out

the following:

• Estimate the PSD of the stochastic process consisting of

the action potential timings of the neuron. If the estimate

of the spectral power at a specified input frequency is

larger, by some specified amount, than the noise floor

at frequencies in the vicinity, then make the decision

that the input signal is present.

If we carry out this algorithm using standard simulation

methods, then it is simple to demonstrate that SNR will

vary with noise level, and under the stated conditions for

the model, the SNR will be largest for some optimal noise

level, i.e. stochastic resonance occurs. Whereas this might be

a good algorithm for achieving the computational goal, given

the mechanisms available when using a digital computer, we

propose two reasons why the information obtained may not

be accessible in a neurobiological system.

First, the stated algorithm relies on some assumptions.

PSD is a mathematical concept that is, by definition, an

average quantity whose production requires infinite time.

It can be estimated from data of finite duration, but long

recordings are required for accurate estimates—the more ac-

tion potentials, the more accurate the estimate. Furthermore,

it is necessary to assume that the process being measured

is stationary in time (e.g. the sine wave is either always

present or never present, during the whole recording, and the

noise statistics remain constant). It is not unusual to require

all conditions to remain stationary for periods of the order

of 10 seconds. The question of when is this an appropriate

neural time scale is not usually addressed, and the time scales

of dynamics involved in neuronal computation are generally

thought to be much less than 10 seconds.

Second, estimation of PSD usually relies on applying the

FFT algorithm to a sequence of stored samples of data,

as well as other complicated processing. Whether there

are neurobiological processes that can extract exactly the

same information that we can extract using the FFT is

unlikely, although mechanisms for related processing based

on somewhat different SNR metrics may be possible (see

below).

V. DISCUSSION

In summary, the choice of algorithm implied by the

choice of SNR as a performance measure, as mandated by

classical stochastic resonance, is potentially at odds with the

mechanisms that are likely available to the neural systems

that respond to the results of the hypothetical computation

implied by use of SNR. Although our computer based data

processing that tells us the SNR, and therefore the potential

for stochastic facilitation as the noise varies, it does not

necessarily follow that the processing that takes place in the

real neural system enables enhanced detection of periodic

signals as the noise varies.

Another way of putting it is that even though SNR does in

a way measure the encoding capabilities of the neuron that

receives the input signal and noise, a more relevant metric

for stochastic facilitation would be one that additionally

measures how well a second neural system can extract or

decode the response of the first system.

On the other hand, demonstration of a large SNR at a

range of biologically plausible levels of noise does not falsify

the stated hypotheses, and perhaps does lend some support

to them. We argue, however, that it is not sufficient to

fully assess the hypotheses. The above scenario also ignores

several other points: why should the input frequency be

known in advance, and why not compare the power spectral

density with and without the signal?

So, what is an alternative algorithm? We could hypothesise

that the neuron being considered has an axon that allows

propagation of action potentials to a synaptic junction with

another neuron, and consider the following algorithm.

• Exploit a cell that produces a pattern of action potentials

when a sinusoidal signal at a certain frequency is present

at its input, and a different pattern otherwise. The first

pattern causes the downstream neuron to fire action

potentials at a near constant rate. The second pattern

causes no firing in the downstream neuron.

Perhaps it is feasible that the synapse and the second

neuron provide neural mechanisms that can achieve this

algorithm, given that there are various ways in which spectral

filtering can occur in the responses of neurons [9], [10], [11].

Whether it is or isn’t feasible, however, the point is that

consideration of the neuronal mechanisms for carrying out

an algorithm should be a necessary component of hypotheses

regarding stochastic resonance in neural systems.
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