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Abstract— This paper investigates impact of noise and signal
averaging on patient control in anesthesia applications in wireless
connected systems. Such systems involve communication channels
which introduce noises due to quantization, channel noises, and
have limited communication bandwidth resources. Usually signal
averaging can be used effectively in reducing noise effects when
remote monitoring and diagnosis are involved. However, when
feedback is intended, we show that signal averaging will lose
its utility substantially. To explain this phenomenon, we analyze
stability margins under signal averaging and derive some optimal
strategies for selecting windows size. A typical case of anesthesia
depth control problems is used in this development.

I. INTRODUCTION

This paper investigates impact of communication channels
and signal averaging on patient control in anesthesia applica-
tions in networked control system settings such as wireless
connected systems, sensor networks, local area networks, or
tele-medicine over a wide area network. When signals of a
patient’s vital signs must be transmitted through a commu-
nication channel, they will be subject to quantization and
transmission errors, hence reducing the accuracy of signals
for monitoring, diagnosis, and control.

To reduce the noise effect and improve the accuracy of
estimated symbols, an averaging window is usually applied
[1], [2]. It can be used effectively when remote monitoring and
diagnosis are involved. However, signal averaging introduces
dynamic delays. When feedback control is intended, such
delays will have detrimental effects on closed-loop systems,
even destabilizing the system. Consequently, signal averaging
encounters a fundamental performance limitation in feedback
systems. To explain this phenomenon, we analyze stability
margins under signal averaging and derive some optimal strate-
gies for selecting window sizes. A typical case of anesthesia
depth control problems is used in this development.

The paper is organized as follows. Section II discusses
patient modeling and feedback control in anesthesia appli-
cations. Signal averaging and its effectiveness on open-loop
and closed-loop applications are demonstrated in Section III.
The idea of using fast sampling is also discussed in this
section. Theoretical foundation of our performance analysis is
presented in Section IV. Our findings are applied to anesthesia

control problems in Section V. Finally, Section VI summarizes
some issues that are related but not resolved in this paper.

II. PATIENT MODELS AND FEEDBACK CONTROL

A. Patient Models

For the purpose of predicting anesthesia patient responses to
input drugs to perform control, predictive diagnosis, etc., much
effort has been done to establish a reliable patient model that
relates the drug or procedure inputs to the outcomes [3], [4],
[6], [14]. Due to significant deviations in physical conditions,
ages, metabolism, pre-existing medical conditions, and surgi-
cal procedures, patient dynamics demonstrate nonlinearity and
large variations in their responses to drug infusion. So, it is
necessary to establish a model in real-time and in individual
patients. A basic information-oriented model structure for
patient responses to drug infusion was introduced in [10]–[12].

Clinical data were collected to establish the patient model.
One of these data sets is used in this paper. The anesthesia
process lasted about 76 minutes, starting from the initial drug
administration and continuing until last dose of administration.
The patient’s anesthesia depth is measured by a BIS (Bi-
Spectrum) monitor [5], [9]. The monitor provides continuously
an index in the range of [0, 100] such that the lower the index
value, the deeper the anesthesia state. Propofol, a common
anesthesia drug, was used in both titration and bolus which is
adminstrated by an infusion pump. Fentanyl, a drug which is
usually used to speed up the procedure of loss of consciousness
for a patient, was injected in small bolus amount three times,
two at the initial surgical preparation and one near incision.
The patient was given bolus injection twice to induce anes-
thesia, first at t = 3 minute with 20 mg and then at t = 5
minute with 20 mg. They are shown in Figure 1 as 10000
μg/sec for two seconds, to be consistent with the titration units.
The surgical procedures were manually recorded. Three major
types of stimulation were identified: (1) During the initial drug
administration (the first 6 minutes), due to set-up stimulation
and patient nervousness. (2) Incision at t = 45 minute for
about 5 minutes duration. (3) Closing near the end of the
surgery at t = 60 minute. Analysis shows that the impact of
Fentanyl on the BIS values is minimal. As a result, it is treated
as a disturbance and not explicitly modeled in this example.
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The drug infusion was controlled manually by an experienced
anesthesiologist. The trajectories of titration (in μg/sec) and
bolus injection (converted to μg/sec) during the entire surgical
procedure were recorded, which are shown together with the
corresponding BIS values in Figure 1(a).

The data from the first 30 minutes are used to determine
model parameters and function forms. For estimating the
parameters in the patient block, the data in the interval where
the bolus and stimulation impact is minimal (between t = 10
to t = 30 minutes) are used. The patient model parameters
was identified through Least-Squares estimation method [7].

Under a sampling interval T = 1 second, which is the
standard data transfer interval for the BIS monitor, the com-
bined linear dynamics was estimated. The patient model with
propofal infusion rate as the input and BIS measurement as
the output was identified as

P (z) =
A(z)
B(z)

(1)

,with sampling interval T = 1 second. Where,

A(z) = 0.01872z2 − 0.08813z + 0.09016,

B(z) = z5−1.159z4+0.7501z3−0.5989z2+0.2984z−0.2678.

The actual BIS response is then compared to the model re-
sponse over the entire surgical procedure. Comparison results
are demonstrated in Figure 1(b). The model output represents
the patient response very well. In particular, the model captures
the key trends and magnitudes of the BIS variations in the
surgical procedure. This indicates that the model structure
contains sufficient freedom in representing the main features
of the patient response.

B. Feedback Control

Usually to eliminate steady-state error in tracking control,
an integrator is inserted into the system

C(z) =
1

z − 1
.

A stabilizing feedback controller is designed for the patient
model (1) by using a full-order observer and pole placement
design

F (z) =
N(z)
D(z)

, where

N(z) = 1.234z5 + 0.6298z4 − 3.644z3 + 3.67z2

− 1.981z + 0.2479
,

D(z) = z6 − 2.341z5 + 2.284z4 − 0.7252z3

− 0.4057z2 + 0.5714z − 0.08343

These result in a combined system

G(z) = F (z)C(z)P (z). (2)
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Fig. 3. Effects of signal averaging on open-loop systems

III. SIGNAL AVERAGING AND CONTROL PERFORMANCE

A. Signal averaging

An exponential averaging window with decaying weighting
of rate 0 < α < 1 is

hk = (1 − α)
k∑

i=−∞
αk−ixi (3)

whose transfer function is

Fα(z) =
(1 − α)z
z − α

. (4)

B. Open-Loop Systems

When signal averaging is applied to reduce noise effects,
the resulting open-loop system can be represented by the block
diagram in Figure 2(a).

Figure 3 illustrates impact of filtering on open loop systems.
It is apparent that the longer the averaging window, the less
the noise effect on the signal. On the other hand, filtering
introduces a dynamic delay which has important implication
on closed-loop applications.

C. Closed-Loop Systems

The closed-loop system with an averaging filter is shown in
Figure 2(b).

The close-loop system equations are:

yk = Gek, ek = rk − Fα(yk + dk) (5)

then,
yk = Hrrk + Hαdk (6)

where,

Hr =
G

1 + FαG
, Hα =

−FαG

1 + FαG
(7)

Figure 4 illustrates impact of filtering on closed loop sys-
tems. When filtering window is long, the filter can destabilize
the closed-loop system.
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(a) Actual patient responses
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Fig. 1. Actual patient responses and patient model responses
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Fig. 2. Signal filtering in open-loop and close-loop systems
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Fig. 4. Effects of signal averaging on closed-loop systems

D. Re-Sampling

The patient model (1) can be well approximated by a
continuous-time system, P (s) = e−5s 0.93

73s+1 , which consists
of a pure time delay and a first-order dynamics, sampled with
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Fig. 5. Step responses of the original system and the simplified system

sampling interval T = 1 second. The step responses of the
original system (1) and the simplified system P (s) are shown
in Figure 5.

This approximation allows us to use smaller sampling
intervals to re-sample the output of the system. The benefits of
re-sampling will become clear after some theoretical analysis
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in the next section.

IV. ANALYSIS OF STABILITY AND PERFORMANCE

A. Feedback Robustness against Signal Averaging

Definition 1: The stability margin against exponential aver-
aging, abbreviated as α-margin and denoted by αmax(G), is
the largest 0 ≤ α ≤ 1 such that for all 0 ≤ α < αmax(G),
the close-loop system (6) is stable and the system is unstable
if α > αmax(G). If the close-loop system is stable for all α,
we denote αmax(G) = 1.

B. Discrete and Continuous Time Averaging

For an discrete time exponential averaging window:

hk = (1−α)
k∑

i=−∞
αk−ixi = θ+(1−α)

k∑
i=−∞

αk−idi = θ+εk.

If di is i.i.d. with Edi = 0 and Ed2
i = σ2, then

Eε2
k =

1 − α

1 + α
σ2.

Consequently, using hk as an estimate of θ can reduce errors
by 1−α

1+α .
An continuous time exponential filter:

F (s) =
1

λs + 1
(8)

whose impulse response is

f(t) =
1
λ

e−t/λ, t ≥ 0. (9)

Now,

y(t) =
∫ t

−∞ f(t − τ)x(τ)dτ = 1
λ

∫ t

−∞ e−(t−τ)/λx(τ)dτ

For small T , y(t) is approximated by

yk= y(kT ) =
1
λ

∫ t

−∞
e−(t−τ)/λx(τ)dτ

≈ T

λ

k∑
i=−∞

(e−T/λ)k−ixi

=
T

λ(1 − α)
(1 − α)

k∑
i=−∞

αk−ixi

≈ (1 − α)
k∑

i=−∞
αk−ixi (10)

Where, α = e−T/λ.

C. Stability Margin against Exponential Averaging

Theorem 1: If the exponential stability margin in the
continuous-time domain is λmax, then

lim
T→0

T

− ln αmax
= λmax.

Proof: This follows from the relationship

α = e−T/λ.
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Fig. 6. Using bode plots to obtain the gain margin.

Definition 2: The stability margin against exponential aver-
aging for the continuous-time closed-loop system, abbreviated
as continuous exponential A-margin and denoted by λmax(G),
is the smallest λ > 0 under which the closed-loop system
becomes unstable. If the closed-loop system remains stable
for all λ > 0, we denote λmax(G) = ∞.

Suppose G(s) = n(s)/d(s) where n(s) and d(s) are
polynomial functions of s. Consider the characteristic equation
of the closed-loop system

1 + Fλ(s)G(s) = 1 +
1

λs + 1
n(s)
d(s)

= 0

or
λsd(s) + d(s) + n(s) = 0 (11)

which leads to

1 + λ
sd(s)

d(s) + n(s)
= 0 (12)

Theorem 2: The exponential A-margin λmax(G) of G(s)
is the gain margin of

H(s) =
sd(s)

d(s) + n(s)
. (13)

Example 1: Suppose G(s) = (s + 2)/(s − 1). Then,

H(s) =
sd(s)

d(s) + n(s)
=

s2 − s

2s + 1
.

The gain margin can be obtained by using the Matlab function
“margin” (which gives λmax = 2) or by plotting the bode plot
as shown in Figure 6 which gives λmax = 6.02 dB = 2.

D. Performance Analysis

The continuous time close-loop system equation is:

y =
G

1 + FλG
r +

FλG

1 + FλG
d (14)

Here, we denote

Hλ =
−FλG

1 + FλG
(15)

If d is a white noise, noise attenuation aims to reduce the H2

norm of
η = inf

0<λ<λmax

‖Hλ‖2 . (16)

106



By minizing the H2 norm of Hλ respecting to λ, the optimal
window size within the A-margin can be obtained. From the
relationship α = e−T/λ, when λ is optimized, increasing
sampling rate will result in a larger optimal α for discrete
time system.

E. Fast Sampling for Disturbance Attenuation

The continuous-time system Hλ with impulse response
hλ(t) is stable. For small T ,

‖Hλ‖2
2 =

∫ ∞

0

h2
λ(t)dt ≈ T

∞∑
k=0

h2
λ(kT ).

Denoting sampled system and its pulse response as H̃λ and
h̃λ, we have h̃λk = Thλ(kT ) and

‖H̃λ‖2
2 = ‖g̃λk‖2

2 = T 2
∞∑

k=0

h2
λ(kT ) = T‖Hλ‖2

2

From

yk =
k∑

i=0

h̃λ(k−i)di

if dk is i.i.d., zero mean and variance σ2, then

σ2
k= Ey2

k =
k∑

i=0

k∑
j=0

h̃λ(k−i)Edidj h̃λ(k−j)

= σ2
k∑

i=0

h̃2
λ(k−i) ≤ σ2‖h̃λk‖2

2 = σ2T‖Hλ‖2
2 (17)

In fact,
σ2

max = sup
k

σ2
k ≈ σ2T‖Hλ‖2

2.

If ‖Hλ‖2
2 is optimized, then ‖Hλ‖2

2 = η as in (16). Conse-
quently, the noise reduction ratio can be expressed as

η̃ = Tη (18)

V. CONTROL WITH SIGNAL AVERAGING

We now apply above findings to anesthesia control systems.
The open-loop transfer function in (2) can be derived as

G(z) =
N(z)
D(z)

with

N(z) = 0.02311z7 − 0.09699z6 − 0.01243z5 + 0.4466z4

− 0.689z3 + 0.5101z2 − 0.2005z + 0.02235 (19)

and

D(z) = z12 − 4.5z11 + 9.248z10 − 11.48z9 + 9.576z8

− 5.684z7 + 2.528z6 − 0.7518z5 − 0.2721z4

+ 0.6608z3 − 0.507z2 + 0.2003z − 0.02234 (20)

The open loop system is unstable.
When an exponential weighted filter is inserted for signal

averaging, the closed-loop system’s stability concerns have al-
ready been depicted in Figure 4. The closed-loop system’s H2
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Fig. 7. Closed-loop system performance vs. filter decaying rates
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Fig. 8. Step response of the closed-loop system when the filter is optimally
selected, and sampling interval T = 1

norm, which defines the system’s ability in noise attenuation,
is shown in Figure 7.

The optimal filter decaying rate is αopt = 0.1300 with the
corresponding H2 norm 9.0872. The closed-loop system’s step
response is simulated when the filter is optimally selected and
shown in Figure 8.

To relate this to re-sampling, we note that the above model
is derived with the sampling interval T = 1 second. From the
relationship, αopt = e−T/λopt = e−1/λopt , we obtain λopt =
0.49. This leads to the optimal choice of decaying rate when
the sampling interval T is reduced from 1 as

α = e−T/λopt = e−T/0.49 = e−2.04T .

When re-sampling is performed with T � 1, the H2 norm of
the closed-loop system will be reduced to 9.0872 T as estab-
lished in (18). For reduced sampling intervals, improvements
of noise attenuation are illustrated in Figure 9.

VI. CONCLUSION

The impact of communication channels on feedback control
in anesthesia applications in wireless based systems was inves-
tigated in this paper. The exponential window with decaying
weighting of rate α, 0 < α < 1 is used to carry out our
analysis. Our results show that the length of averaging window
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Fig. 9. The closed-loop system performance for reduced sampling intervals

has obvious negative impact on the performance of the close-
loop systems. When the averaging window size is larger than
some value, which is defined as the stability margin, close-
loop systems will become unstable. In this paper, we derived
some optimal strategies for choosing the window size of the
close-loop systems. Our analysis shows that although the noise
deduction performance of continuous time close-loop system
with optimal averaging filter can not be improved, it can be
achieved for a sampled system by increasing the sampling rate.
Some simulations results of the feedback control with signal
averaging are given to demonstrate our conclusions.

Our analysis is conducted on the basis of linear systems.
Actually, anesthesia patient models show much nonlinearity.
Our future works will consider the analysis of nonlinear
systems.
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