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Abstract – This paper presents a cascaded H-bridge inverter 
topology for the application of secondary-use batteries as 
grid-connected energy storage. The proposed control strategy 
allows a degree of control over individual battery currents 
while the total system follows an arbitrary current command. 
This enables the aggregation and optimal use of battery packs 
with different capacities and states of health, overcoming a 
significant drawback of existing implementations. 

I. INTRODUCTION 

The ever-increasing demand for energy and the 
resulting strain on electric power infrastructure has created 
a market for novel, cost-effective energy management 
technology. Building new power stations and transmission 
lines is one way to meet the demand, but these are very 
expensive solutions, and must be designed for peak 
demand. Introducing storage into the network can allow 
more efficient use of existing transmission and generation 
equipment. Widespread adoption would allow power 
plants to run at peak efficiency while storage charges or 
discharges to meet the load requirement. Transmission 
lines would need only to carry the average power, rather 
than being capable of carrying the peak power and going 
under-utilized at other times. The result is better return on 
investment for the generation, transmission, and 
distribution operators, as well as a business opportunity for 
the storage operator [1]. 

Chemical batteries are a promising option for grid-
connected storage – they offer high energy density, 
scalability, and a stiff voltage (as compared to PV cells or 
supercapacitors, for example). However, batteries suffer 
from several drawbacks: the initial cost is high, round-trip 
efficiency may be poor, capacity degrades with time and 
cycling, and they are sensitive to temperature. 

The increasing prevalence of electric vehicles offers 
an interesting opportunity for overcoming one of the most 
significant barriers—cost. The traction application is an 
extremely demanding one, and batteries which have spent 
their useful life in that application may still be suitable for 
a less demanding one. Reference [2] defines end-of-life for 
traction batteries to be the point at which the capacity has 
fallen to 80% of nominal. At this point, the ability of the 
batteries to supply large bursts of current is substantially 
degraded, but they are still typically suitable for bulk 
energy storage at low current levels. Rather than recycling 
these batteries, the remaining capacity can be put to use as 
grid-connected energy storage, providing both economic 
and environmental benefits. 

Multilevel converters have been considered in the past 

for high power, high-voltage applications where the 
available power electronics device limitations do not allow 
for single-stage topologies to be utilized. In [3, 4] authors 
apply the cascade H-bridge topology to three-phase energy 
storage systems. The papers present an approach where the 
neutral current is used to provide unequal currents from 
each of the batteries. In [5, 6] authors present a method to 
achieve voltage balancing for a single phase cascaded 
bridge. The control approach relies on the slower voltage 
loop to balance the currents, while the fast current loop 
ensures that the load is supplied. This approach is not 
conducive to be applied to battery energy storage systems, 
since the voltage of the battery does not change 
dramatically with load or state of charge (unlike the PV 
cells or supercapacitors in [5, 6]). 

This paper proposes a control strategy that uses a 
proportional-resonant controller to satisfy the commanded 
current. The controller generates a “master” duty cycle for 
the inverter, which may then be scaled independently for 
each bridge. The proposed control method allows for 
unequal currents to be supplied by each battery, in 
accordance with the battery capacity and state of charge. 
The proposed approach enables optimal utilization of the 
available capacity of the battery.  

II. CASCADED INVERTER TOPOLOGY 

The system presented is a single phase, four-stage 
cascade H-bridge inverter which interfaces the batteries 
directly with the grid—there is no intermediate DC link. 
This topology was chosen for modularity, to minimize 
stress on individual components, and to allow use of 
polyphase PWM techniques. A detailed comparison of the 
two topologies is beyond the scope of this work. 

The experimental system interfaces with the utility at 
the lowest distribution level: 120V. It is fed from four 26V 
Lithium battery modules and is designed for a maximum 
power output of 2kW. In order to prevent uncontrolled 
rectification, the total available DC voltage must remain 
greater than the peak AC voltage at all times, so a 
transformer will be required to interface with the grid. A 3 
kVA transformer with 2.5:1 turns ratio (48V output with 
center tap) was chosen for this purpose. Fig. 1 gives a top-
level schematic for the system. The voltage source Vg 
represents the grid voltage via transformer. 
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Fig. 5. Control Performance: Real-to-Reactive 

Power Step (Id*, Iq* = 100A) 
 
An inverter voltage in phase with the grid will drive 

purely reactive power according to 
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An inverter voltage chosen such that gi vv −  is 
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according to 
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Averaged over each switching cycle, the inverter 
voltage can be expressed as a “master” duty cycle 
multiplied by the sum of the DC voltages, 

 
 ( ) Re{ } ( )i i nv t v d t V= = ∑  (7) 
A set of gains [ ]4321 kkkkk =  are introduced to 

scale the duty to each bridge such that 
 
 ( ) ( )n nd t k d t=  (8) 
In order not to disturb the total control loop gain, k 

must be normalized such that mean(k) = 1. The DC-side 
current of each bridge is given by 

 
 ( ) ( ) ( )n n Li t d t i t=  (9) 
The output current iL is assumed to be as commanded, 

a valid assumption provided that the controller is in steady 
state and at least one duty is not saturated. Rearranging 
Eqs. (1,7,8) and substituting in Eq. (9) yields 
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Thus the DC-side current scales linearly with relative 
gain, provided that the control does not drive one or more 
duty cycles outside the range [-1,1]. This is confirmed in 
simulation even for a substantial spread of DC source 
voltages. Fig. 6 shows simulated DC-side currents for 
gains [0.4 0.8 1.2 1.6] applied to (ideal) sources of [20 80 
30 40] volts. 

The gains may be either static or time-varying, 
depending on the goals of system-level control and the 
need to respond to changing battery and load conditions. 
Fig. 7 shows simulated battery currents as gains are 
reassigned from [0.4 0.8 1.2 1.6] to [1.2 0.4 1.6 0.8]. 

 

 
Fig. 6. Simulated Unequal DC Currents 

 
Fig. 7. Simulated DC Currents During Gain  
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IV. EXPERIMENTAL RESULTS 

Real-time control is implemented using Opal-RT RT-
LAB software, MATLAB Simulink with Opal-RT 
blockset, and a specialized PC with analog and digital I/O 
hardware. The four H-bridges and related feedback sensor 
circuits were designed and constructed in-house. 

During development, experiments were performed 
with a 24V grid connection, using half of the center-tapped 
transformer.  We utilize 24V Li-ion battery packs provided 
for this project by the National Renewable Energy Lab in 
Golden CO.   Grid-connected four-quadrant current control 
and unequal current sharing functions are proven using just 
two bridges; scaling to four or more bridges is simple. Fig. 
8 shows this experimental system. 

The oscilloscope captures in Figs. 9-12 demonstrate 
basic closed-loop functionality in grid-connected 
operation. The upper trace is grid voltage (via 
transformer); the lower one is inductor current. Command 
current magnitude was 5A in each case, and all four 
quadrants of the d-q plane were tested.  

 

 
Fig. 8. System Configuration 
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V. CONCLUSION 

Community Energy Storage offers several potential 
benefits for electric utility operators, the electric vehicle 
market, and the environment. Storage of this type can 
provide economic opportunities as well as more reliable 
electric service. Using electric vehicle batteries in 
particular could lead to reduced EV cost, and deferral of 
recycling has environmental benefits. 

Simulation results show that independent control of 
battery currents is possible without a high degree of 
controller complexity, and without disturbing overall 
system performance. This is a critical function that enables 
the combination of dissimilar batteries. The relative 
fraction of current supplied by each battery can be changed 
in real-time in response to changing conditions. 

Experimental results at this time confirm all basic 
functions of the hardware system. Grid-connected four 
quadrant P-Q control has been demonstrated up to about 
50VA, and independent control of DC source currents 
verified. Scaling to higher voltage and power levels is a 
simple matter of adding more H-bridges to the series. 
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