2010 IEEE/IFIP International Conference on Dependable Systems & Networks (DSN)

AutomaDeD: Automata-Based Debugging for Dissimilar Parallel Tasks *f

Greg Bronevetsky?®, Ignacio Laguna?, Saurabh Bagchi?,
Bronis R. de Supinski®, Dong H. Ahn®, Martin Schulz®

*Purdue University

$Lawrence Livermore National Laboratory

{ilaguna, saurabh }@purdue.edu {bronevetsky, bronis, ahnl, schulzm}@lInl.gov

Abstract

Today’s largest systems have over 100,000 cores, with
million-core systems expected over the next few years. This
growing scale makes debugging the applications that run
on them a daunting challenge. Few debugging tools per-
form well at this scale and most provide an overload of
information about the entire job. Developers need tools
that quickly direct them to the root cause of the problem.
This paper presents AutomaDeD, a tool that identifies which
tasks of a large-scale application first manifest a bug at a
specific code region and specific program execution point.
AutomaDeD statistically models the application’s control-
flow and timing behavior, grouping tasks and identifying
deviations from normal execution, which significantly re-
duces debugging effort. In addition to a case study in which
AutomaDeD locates a bug that occurred during develop-
ment of MVAPICH, we evaluate AutomaDeD on a range of
bugs injected into the NAS parallel benchmarks. Our re-
sults demonstrate that AutomaDeD detects the time period
when a bug first manifested with 90% accuracy for stalls
and hangs and 70% accuracy for interference faults. It
identifies the subset of processes first affected by the fault
with 80% accuracy and 70% accuracy, respectively and the
code region where the fault first manifested with 90% and
50% accuracy, respectively.

1 Introduction

The number of cores used in large scale systems will ex-
ceed million cores in the near future [6], increasing the chal-
lenge of developing correct, high performance applications.
When an application fails or returns incorrect results, the
developer must identify the offending MPI task and then
the portion of the code in that task that caused the error.
Most traditional parallel debugging tools [15] scale poorly
to large task counts and overwhelm developers with infor-
mation. We develop a detection tool that identifies the of-

*The first two authors have contributed equally to this paper.

This work was partially performed under the auspices of the U.S. De-
partment of Energy by Lawrence Livermore National Laboratory under
Contract DE-AC52-07NA27344. (LLNL-CONF-426270). The work of
the Purdue authors was partially supported by the National Science Foun-
dation under grant CSR-0916337.

U.S. Government work not protected by U.S. copyright.

fending task and, to a customizable granularity, the relevant
portion of code within the task.

We present AutomaDeD, a tool set that achieves this goal
of focusing debugging efforts to improve developer effi-
ciency. It performs runtime monitoring of a parallel appli-
cation to build a statistical model of the application’s typical
timing and control flow behavior. The typical use case for
AutomaDeD is that a user suspects a run of an application
is erroneous and would like to get some guidance to what
parts of the application code to focus on for debugging. Au-
tomaDeD achieves this by identifying the period in time, the
task(s), and the error site, the region of code, where a fault
first manifests itself. Thus, AutomaDeD provides the basis
for eventual root cause diagnosis including identification of
the exact erroneous line of source code.

This paper makes technical contributions in two broad
areas. First, we describe a model to characterize the be-
havior of parallel applications. Second, we present meth-
ods that compare the behavior of tasks in a parallel appli-
cation in time and in space to identify the error site. Au-
tomaDeD models the the control flow and timing behavior
of application tasks as Semi-Markov Models (SMMs) and
detects faults that affect these behaviors. SMM states repre-
sent regions of application code and edges represent execu-
tion progress from one region to another. SMMs capture the
probability of transitioning from one region to another and
the distribution of times spent in each region. We delimit
code regions by MPI calls and use MPI calls (along with
call stack information) and the computation interleaved be-
tween them as two different kinds of states in SMMs.

Given an erroneous execution of the application, Au-
tomaDeD examines how each task’s SMM changes over
time and relates to the SMMs of other tasks. First, Au-
tomaDeD detects which time period in the execution of the
application is likely erroneous. AutomaDeD then clusters
task SMMs of that period and performs cluster isolation,
which uses a novel similarity measure to identify the task(s)
suffering from the fault. Finally, transition isolation detects
the transitions that were affected by the fault more strongly
or earlier than others, thus identifying the code region where
the fault is first manifested. AutomaDeD focuses the devel-

231 DSN 2010: Bronevetsky et al.



2010 IEEE/IFIP International Conference on Dependable Systems & Networks (DSN)

oper on the tasks, time period and code region most likely
to have a bug, enabling traditional debuggers such as gdb
and TotalView [15] to work at previously infeasible scales.
AutomaDeD helps developers diagnose a key range of
faults that affect large-scale MPI applications, including

e Interference from system daemons or mis-scheduled
application processes,

e Communication errors that lead to hangs or deadlocks,
e Resource exhaustion in the application or the system,

e Execution of rare, and thus poorly-tested, code paths
with unusual time requirements, and

e Unusual code scenarios that alter an algorithm’s nu-
merical convergence.

Many of these faults manifest significantly after execution
of the faulty code and we need tools like AutomaDeD to
focus on the faulty time period, task and code region.

Our evaluation injects synthetic errors into six applica-
tions from the NAS Parallel Benchmark (NPB) suite [4] at
random times and tasks. The include delays, hangs in appli-
cation tasks, interference due to execution of an extra CPU-
or memory-intensive thread on an application compute node
and message drops and duplication. AutomaDeD correctly
identifies the time period that is likely erroneous in 90% of
our trials for delays, hangs and message faults and in 70%
of our trials for interference faults. Given the correct time
period, AutomaDeD’s cluster isolation achieves over 80%
accuracy for delays and hangs, 40% for message faults and
70% for interference faults. Given the correct cluster, it iso-
lates the injected transition with 90% accuracy for delays
and hangs and 50% accuracy for interference faults.

The rest of the paper is organized as follows. Section 2
presents our overall approach, while Section 3 looks at the
details of our application behavior modeling methodology.
We describe the analysis performed by AutomaDeD in Sec-
tion 4 and present our experimental evaluation in Section 5.

2 Approach

Offline [ User: (Phases Annotation )

i Application :
i[Task1 ITaskz] e [Taskn ]
)

. v
Online PNM Plirofiler

:'[SMMJSMMZ] - [smmy)’

Offline
Abnormal Tasks
Characteristic Transitions

Figure 1. Design of AutomaDeD

y
Abnormal Phases ]

U.S. Government work not protected by U.S. copyright.

As Figure 1 shows, AutomaDeD consists of both on-
line and off-line mechanisms. An on-line mechanism gath-
ers data about executions into an SMM database. Au-
tomaDeD’s off-line mechanisms then use this data to derive
a deeper understanding of the application behavior, particu-
larly when bugs are manifested.

2.1 Semi-Markov Models

We model the control flow and timing properties of ap-
plication tasks to debug common anomalies. We track con-
trol flow as a sequence of application states, defined as MPI
calls (including their arguments and call stack) or the com-
putation interleaved between them, and maintain the time
spent in each state. Given the expense of maintaining full
traces, we model task behavior as a Semi-Markov Model
(SMM), a finite automaton of task states and transitions
where the task spends a random amount of time in each state
and randomly selects its next transition with no dependence
on its history.

1.0,Fy, 10.Faa
—> —
0.4,Fo

Figure 2. Example of a Semi-Markov Model

Figure 2 shows a sample SMM with edges labeled by the
probability of transitioning from one state to another and the
probability distribution of the time spent in the source state
before the transition is taken. In the above SMM, tasks in
state Ss transition to state S 40% of the time and to So
the other 60%, with the times that precede the transitions
sampled from distributions F3 ; and F3 o, respectively. We
compute the SMM states, transitions and probability distri-
butions from program traces captured on-line by a P"MPI-
based wrapper library [13] that intercepts all calls to MPI
functions. We use the observed normalized frequency of
each transition as its transition probability. Section 3.1 ex-
plains how we derive time distributions.

2.2 Overview of Analysis

The SMM abstraction couples the dynamic execution of
an application with distinct code regions. Thus, given an ex-
ecution identified by the developer as erroneous, we focus
the developer’s attention on the tasks and regions of code
that are behaving abnormally. Figure 3 shows the stages
of this process. First, we divide the application’s execution
into a series of time periods called phases. Applications
typically behave according to a repetitive pattern for periods
of time and then their behavior changes, to a different repet-
itive pattern or some random pattern. We call each cycle of a
repetitive pattern a “phase”. Thus, across the phases within
each repetitive pattern, we expect the application behavior
to be statistically identical. AutomaDeD then computes an
SMM for each task within each phase and then clusters the
SMMs for each phase. This clustering partitions tasks based

232 DSN 2010: Bronevetsky et al.



2010 IEEE/IFIP International Conference on Dependable Systems & Networks (DSN)

on natural differences between them (e.g. master-worker
applications have two natural partitions) or it may identify
behavioral differences due to a bug. AutomaDeD compares
task SMMs or task clusterings from different phases to de-
termine the phase during which a bug is first manifested. It
can also compare SMMs or their clusterings to those from
prior executions. Since AutomaDeD is focused on complex,
intermittent bugs, most prior executions will be correct and
our experiments (Section 5) shows that AutomaDeD’s ac-
curacy shows little degradation if a bug manifests itself in
10% of executions. If no sample runs are available, Au-
tomaDeD calibrates its detection algorithms based on the
first phase, which works well for our target bugs, which are
rare and manifest themselves after a few iterations of the
main processing loop.

Parallel Tasks Clusters

. Abnormal
. Task(s) I Characteristic
: : Transition
[_f> [_f> [I> (Erroneous
region
| of the code)
Filtering 1 Filtering 2 Filtering 3

Figure 3. Problem-size reduction with AutomaDeD

Once AutomaDeD identifies a faulty phase, it proceeds
to identify the task cluster or individual task where the bug
is first manifested. AutomaDeD compares SMMs or clus-
ters across phases to identify the SMM or cluster that has
changed the most from the normal behavior. AutomaDeD
again uses SMMs or clusters from prior, mostly correct
executions or earlier phases of the same execution. Au-
tomaDeD also compares the individual state transitions in
the faulty phase to find the first unusual transition or the
most unusual transition, which may identify the error man-
ifestation site.

Thus, AutomaDeD iteratively focuses the developer’s
debugging efforts. It first identifies the faulty execution
phase, then the faulty task or group of tasks and finally it lo-
cates the error site. The granularity of this identification is a
state in the SMM. Thus, AutomaDeD does not identify the
root cause of the error and cannot identify the manifestation
to a very fine granularity, such as line of code. However,
it does significantly reduce the amount of information that
must be considered when performing a root cause analysis.

-~ - -—— PES
S:n?:)alles l:"\'{\‘ '\' \‘:O‘ 0:’ " o:l
Time Values
Histogram Line Connectors
Bucket p < >¢"' \“\\\Gaussian Tail
Counts _ vy \-.\‘S

Time Values
Figure 4. Example of histogram construction

U.S. Government work not protected by U.S. copyright.

3 SMM Mechanisms
3.1 Creating Time Distributions

We consider two methods for deriving the time proba-
bility distributions that explain the time spent by a task in
the SMM states. In one, we assume that the time values
follow a Gaussian distribution. In the other, we compute a
histogram of ranges of the observed time values, instead of
assuming a particular distribution.

Assuming Gaussian distribution has several advantages.
First, we can easily calculate the two parameters of a
Gaussian distribution, mean and standard deviation, given
enough sample points. Second, it is a well-known distribu-
tion with a rich theory. However, this distribution is not
appropriate for state transitions that have multi-modal or
asymmetric behavior. The former can occur when differ-
ent code within a compute region is executed at different
times and the latter occurs when a state’s time is consistent
except for spikes due to system or network interference.

Histograms fit the observed data more closely. The basic
approach divides the observed data points into a number of
equal-sized buckets. Each bucket’s probability is the frac-
tion of data points within it. Since timing data may have
outliers orders of magnitude above the median, equal-sized
buckets can aggregate most data points into a single bucket,
providing poor resolution. We therefore used variable-sized
buckets via an online clustering algorithm, which Figure 4
shows. We assign each new data point to its own bucket. If
the resulting number of buckets rises above a threshold, we
merge the two buckets with the closest means. We convert
this hisogram into a continuous probability by linearly con-
necting adjoining bucket counts and modeling the regions
beyond the smallest and largest buckets using the lower and
upper halves of Gaussian distributions, which represent the
probability of observing new extreme values.

The basic tradeoff between these distributions is that
Gaussians are computationally cheaper and more con-
strained while histograms are more expensive but very flex-
ible. Evaluating both options measures the tradeoffs of this
design parameter and illuminates the potential of other sta-
tistical models such as mixed-Gaussian distributions and
Kernel Density Methods [14].

3.2 Comparing Task SMMs

AutomaDeD detects faulty phases and tasks and clus-
ters tasks by comparing SMMs to each other. We define
an SMM distance metric that is the sum of the differences
in control flow (transition probabilities) and timing behavior
(transition time distributions) of two SMMs.

Given SMMs A and B, let S4 and Sp be their sets of
states, and T’y and T’ be their sets of transitions. Also
let d; be the transition probability distribution for state
s € S;, and let d ; be the time probability distribution for

233 DSN 2010: Bronevetsky et al.



2010 IEEE/IFIP International Conference on Dependable Systems & Networks (DSN)

transition ¢ € T;. The difference between A and B is:

. 1
Dif f(A,B) =Y _ D(dsa.ds,p) + — > D(ds.a.d1.p)
sES teT

where S = S4 U Sp, T =T4UTpg, D(d, 4,d, B) is the
difference between a pair of probability distributions d,. 4
and d, g, where r is a state or transition. v is a function
defined in Section 3.3 that weighs differences on transitions
with consistent timing behavior above those with poor in-
formation content. We define the metric D(d, 4, d, ) as:

Lo(dy a,dyp)x ifr € Aandr € B
Oé(dr_’A, dr,B)
10 otherwise

D(dr,A7 dr,B) =

Lo(dy a,d, ) is the Ly norm between the probability dis-

J2o ldra(G) = dr g (4)[2dj. The
integral is over the space of possible events (state transitions
or transition times).The parameter « gives greater weight to
differences in time distribution with distant means, pq and
1ar. For time distributions it is equal to

tributions, defined as \/

td, o — ta, 5|
(Hdy.a + Hd, 5)/2
and o = 1 for state transition distributions.

In most cases D(d, a,d, ) is below 10 for transitions
and states r that appear in both A and B. As such, if r
appears in one but not the other, D(d, 4, d, ) was set to
10 to highlight these differences in application control flow.

a(dr,Aa dr,B) =1+

3.3 Normalized SMM Comparison

Different SMM transitions have very different timing
properties, with a variety of means, standard deviations and
distribution shapes. Differences between SMMs on a tran-
sition that has consistent timing and a tightly focused dis-
tribution can be very informative. In contrast, if the tran-
sition is noisy, the differences are most likely due to sys-
tem interference. AutomaDeD focuses on the critical dif-
ferences between two SMMs by looking at the “normal”
difference between the SSMs of a sample set and weighting
D(dy a,d; ) accordingly. Thus, given a transition ¢ and
a set M of sample SMMs, we define the weighting factor
v(dy, a,de, g, M) as the root-mean-square of D on this tran-
sition among the members of M:

>oaBem Az D(dia,dip)?
|pairs(t, M)

V(dt,A,dt,BaM) =

where |pairs(t, M)| is the number of SMM pairs in M that
both have transition ¢. In the absence of sample runs, v for
a given transition in a given phase of the faulty run is com-
puted by summing over SMMs in the run’s other phases.

U.S. Government work not protected by U.S. copyright.

This weighting scheme overcomes a commonly ob-
served effect where certain transitions have multi-modal
timing characteristics—very consistent timing behavior
within each mode and sudden shifts to a different mode ei-
ther within a given run or across multiple runs. This may
be caused, for example, by a given set of instructions taking
very different times depending on the state of the cache. For
such behavior, the value of v will be high, weighing down
the difference metric D.

3.4 Clustering Tasks’ Models

AutomaDeD detects behavioral clusters by using Hierar-
chical Agglomerative Clustering (HAC) [9] on the SMMs
of all application tasks. HAC initially sets each task to be
in its own cluster. During each iteration, HAC merges the
two most similar clusters into a single cluster, so that it has
one fewer clusters after that iteration. Cluster difference is
defined as the smallest difference between any member of
one cluster to any member of the other cluster. These steps
are repeated until the minimum difference between any pair
of clusters is above a given threshold (i.e., no two clusters
are similar enough to merge).

HAC requires a threshold that defines the normal differ-
ence of similar tasks. AutomaDeD chooses this threshold
by having the developer provide the number of clusters that
accurately describe the application’s expected behavior. For
example, a relaxation algorithm with non-periodic bound-
aries operating on an 2-dimensional grid is best described
by a 9 clusters (one for the interior, and one for each side
and each corner region). However, it should have a single
cluster if the boundaries are periodic. AutomaDeD applies
HAC on SMMs of a set of training phases (assumed to have
few bugs), identifying the average threshold that produces
the desired number of clusters. We use this threshold for
subsequent clustering. If sample runs of the application are
provided, AutomaDeD trains on phases in these runs. Oth-
erwise, it trains on the given run’s first phase, which we as-
sumed is fault-free. The resulting clustering organizes tasks
into behavioral groups that reflect the effect of the bug on
the application’s behavior.

4 Error Detection Procedure

We describe the procedure that a user employs to isolate
a bug using AutomaDeD. Figure 1 shows the complete se-
quence of steps. On-line steps occur when the program ex-
ecutes, while off-line steps occur after execution. The next
sections describe each step.

4.1 Phases and Epochs

AutomaDeD models the behavior of discrete regions
of application execution that the developer identifies via
source code markers. The term phase denotes a region of

234 DSN 2010: Bronevetsky et al.



2010 IEEE/IFIP International Conference on Dependable Systems & Networks (DSN)

execution, such as a time step, that repeats multiple times.
Phases are grouped into sets, where all phases in a set
are assumed to behave similarly to each other. For exam-
ple, adaptive mesh refinement applications periodically re-
partition their work and meshes. Thus, individual iterations
may be identified as phases while iterations between adja-
cent re-partitionings may be grouped into a set. Developers
annotate phases and sets in their code by adding calls to
MPI_Pcontrol, a special function call that is intercepted
by our wrapper library.

4.2 Faulty Phase Detection

AutomaDeD detects the phase during which a fault was
first manifested using one of two algorithms, depending on
how it affects application behavior. The choice of which
technique to use is left to the user.

If the effects are temporary (e.g., temporary delay due to
unusual erroneous control flow), AutomaDeD searches for
the phase that differs from all other phases. If AutomaDeD
has a set of sample runs, it compares each phase to its coun-
terparts in those runs. It can either compare each task’s
SMM directly to its sample counterpart or it may compare
each phase’s clustering to the clustering of its counterpart
phase. For the former, the difference between two phases is
defined as the squared sum of the differences between their
respective task SMMs. For the latter, we use the Mirkin dif-
ference metric [11], which is the fraction of task pairs that
are grouped differently in the two clusterings, (i.c., tasks
T, and T% are in the same cluster in one clustering and not
in the same cluster in the second, or vice-versa). Then for
each phase we compute a “deviation score”, which is the
sum of the squared distances from this phase in the faulty
run to the same phase in each sample run. We identify the
phase with the highest deviation score as faulty. If no sam-
ple runs are provided, AutomaDeD compares each phase to
all others within the faulty run using either of the above met-
rics to compute each phase’s deviation score. We identify
the phase that differs most from the others as faulty. When
sample runs are provided, v weighting terms are computed
from the SMMs of these runs. When they are not provided,
the v used for each phase’s comparisons is computed from
the other phases in the faulty run.

If the effects are permanent (e.g., a runaway thread that
interferes with the application), AutomaDeD identifies the
phase when application behavior shifted. If AutomaDeD
has sample runs, it computes deviation scores as above but
then uses k-Means Clustering [9] to divide the phases into
two clusters: those that are similar to the sample runs (low
deviation) and those that are different (high deviation). We
identify the earliest phase in the high deviation cluster as
faulty. Without sample runs, AutomaDeD identifies the pair
of adjacent phases that are most different according to the
SMM or clustering difference metrics. The later phase in

U.S. Government work not protected by U.S. copyright.

this pair is judged to be faulty.

4.3 Pinpointing Faulty Task(s) and Error
Sites Using SMM Analysis

AutomaDeD provides two complementary mechanisms
to identify the faulty task(s) and the error site. We describe
the first mechanism, which compares SMMs and cluster-
ings, here. We discuss the second, which is based on in-
dividual transitions, in Section 4.4. Successful identifica-
tion of the faulty cluster greatly simplifies determining the
root cause. Cluster isolation is particularly helpful when the
manifestation of a bug results in a cluster with a single task.

AutomaDeD clusters the tasks of the phase identified as
faulty and then computes the most unusual cluster by look-
ing at its deviation from the other clusters. The algorithm
is a direct extension of the deviation score algorithm used
for phase detection but focusing on individual clusters as
opposed to sets of clusters.

We detect the code region in which the fault was first
manifested by identifying the transition that most distin-
guishes the faulty cluster from the other clusters. Since
bugs can cause these behavioral differences, these char-
acteristic transitions (CTs) direct developers to the root
cause. For SMMs A and B, CT(A, B) = (t,x) where ¢
is transition that most contributes to the dissimilarity met-
ric Dif f(A, B) and x is the magnitude of this contribu-
tion. Given a cluster ¢ = {My, M, ..., M, }, we compute
the cluster’s CT by evaluating CT'(M;, M}) for each pair
(M; € ¢, M} ¢ c). The CT of c is then the transition that is
the CT of the most SMM pairs. If this selects more than one
transition, the CT is the transition with the largest average
x- Since this method does not always produce the correct
faulty transition as the top CT, AutomaDeD can also present
the top several choices to the developer for closer examina-
tion.

4.4 Detection Using Transition Analysis

Our SMM-based cluster and transition isolation methods
are too coarse if the effects of the bug propagate to the en-
tire application and will fail to identify the first task(s) and
transitions that the bug impacted. We can overcome this dif-
ficulty by observing individual state transitions, looking for
the first that takes an unusual amount of time compared to
the transition behavior seen in sample runs or earlier phases.

If the faulty effects are temporary, AutomaDeD com-
putes the typical behavior of each SMM transition as a prob-
ability distribution (Gaussian or Histogram) of its observed
times in the sample runs or first phase, after discarding the
top and bottom 1% of the times. AutomaDeD uses these
distributions to compute the probability of observing the
time preceding each transition of the faulty phase. We then
use k-Means clustering to separate low probability transi-
tions from normal transitions, using the log of the probabil-

235 DSN 2010: Bronevetsky et al.



2010 IEEE/IFIP International Conference on Dependable Systems & Networks (DSN)

Waitall

Cluster 1: Tasks

0,1,3,5,7,8)
Tsend-DOUBLE

aseer
Trecv DOUBLE Buggy
v
e Computation
Cluster 3: , , . e
Tasks {2,4}

Figure 5. Output format of AutomaDeD after the debug-
ging process is completed.

ity to improve sensitivity to low values. We select the earli-
est low probability transition as the CT, which also identifies
the faulty task. AutomaDeD can also present later low prob-
ability transitions on other tasks in case the initial choice
is incorrect (typically, AutomaDeD mis-identifies the task
because a transition that starts earlier is not necessarily af-
fected by the fault earlier).

If the faulty effects are permanent, AutomaDeD looks
for a sudden change from one type of application behav-
ior to another. Specifically, it scans each transition ¢ in
each task SMM M to locate the largest increase in 6 =
stdDev(t) = 7, where stdDew(t) is the standard deviation
in the observed times preceding ¢. When sample runs are
provided, 7 = %, where v is the noise weighting factor dis-
cussed in Section 3.3. Otherwise, 7 = stdDew(t), which is
another way to reduce the algorithm’s sensitivity to outliers.

6 measures the variation of the transition, which in-
creases significantly when its behavior changes, as its prior
behavior does not predict its new behavior well. Au-
tomaDeD selects the transition that provides the best bal-
ance between occurring before other transitions and having
a high 6. This is done by comparing transitions ¢ and '
using to the following relation:

iftis < t{‘,s

b [0k (Lt —t) >0
(ttsae) - (tts’e) { lftgs < tts

Tl O+t —t,) >0

where t;5 and ¢, are the timestamps of ¢ and ¢’. Thus, we
consider ¢ a better choice (ordered larger) than ¢’ if either it
has an earlier timestamp and 6 is larger than ¢’ after being
adjusted by a factor that proportionally compensates for the
difference in their timestamps or it has a later timestamp
and @ is larger despite 6’ being inflated by the same factor.

4.5 Visualization of Results

AutomaDeD presents the cluster and transition isolation
results through the clustered SMMs of the faulty phase, fo-
cusing on the faulty cluster and the CT. Figure 5 shows an

U.S. Government work not protected by U.S. copyright.

example of the output for a 9 task NAS benchmark BT when
a 10 second delay was injected into task 6 before execution
of the selected MPI_Isend (we show only a portion of the
SMM). Bold edges indicate the CTs; the clusters appear as
their labels. The cluster associated with the edge (Compu-
tation, Isend-DOUBLE) corresponds to the faulty cluster.

5 Experimental Evaluation
5.1 Fault Injection Types

We empirically evaluate the effectiveness of Au-
tomaDeD by injecting synthetic faults into six applications
in the NAS Parallel Benchmark suite: BT, CG, FT, MG,
LU and SP [4]. We omitted EP because it performs almost
no MPI communication and IS because it uses MPI in only
a few locations in the code, making MPI-based state de-
marcation inappropriate. Our fault injector, built on top of
PV MPI, dynamically injects a wide array of software faults
at random MPI calls during MPI application runs. It sup-
ports three main classes of faults:

e Local livelock/deadlock or transient stall; emulated via

a finite loop of 1, 5 or 10 seconds (FIN_LOOP) or an
infinite loop (INF_LOOP)

e MPI message loss and duplication; emulated by drop-
ping (DROP_MESG) or repeating (REP_MESG) a single
MPI message,

e Extra CPU- or Memory-intensive thread; emulated by
starting up a thread with a perpetual-increment loop
(CPU_THR) or a loop that randomly reads from/writes
to a 1GB region of memory (MEM_THR), that interfere
with the remainder of the application’s execution.

Our experiments ran each benchmark with input size A
and 16 tasks on four-socket, quad-core nodes (the Hera clus-
ter at LLNL), with 2.3Ghz Opteron processors and 32GB
RAM per node. We injected each fault type into a random
task and MPI operation type (e.g., blocking and nonblock-
ing sends and receives, all-to-alls). In each run we injected
a single fault into a random instance of the target operation
type on a random task, ensuring that over the entire exper-
iment, there were at least 10 injection runs for each each
task, MPI operation type and fault type combination, for a
total of approximately 2,000 injection experiments per ap-
plication. The execution of each application was partitioned
into approximately 5 phases; the exact number depended on
the application’s original iteration count.

5.2 Results of Debugging Faults

We evaluate the accuracy of AutomaDeD in identifying:

e The phase with the injected fault (faulty phase);

e The cluster that contains the task with the injected fault
(cluster isolation);

e The error site of the injected fault (transition isolation).

236 DSN 2010: Bronevetsky et al.



2010 IEEE/IFIP International Conference on Dependable Systems & Networks (DSN)

We evaluate AutomaDeD with and without sample runs.
Using sample runs corresponds to when the developer can
execute an application multiple times to establish its nor-
mal behavior before analyzing a given faulty run. We eval-
uate two types of sample runs. For each application A
the NoFault (A) set consists of 20 runs with no injected
faults, which is the ideal set. The Faultl0(A, F) set
includes NoFault (A) as well as 2 additional runs of A
in which fault F was injected, modeling the more common
case where application runs are affected by an infrequent
non-deterministic bug that affects a certain fraction of runs
(in this case ~10%). Our experiments without sample runs,
denoted NoSample, omit any runs in which faults were
injected during the first phase to ensure a more informa-
tive evaluation. We also omit such runs when analyzing
CPU_THR and MEM _THR faults, regardless of whether or not
sample runs are provided, since they provide no information
about the application’s behavior before the fault.

5.2.1 Detection of the Faulty Phase

We begin by evaluating AutomaDeD’s ability to detect the
phase in which the fault was injected. If AutomaDeD does
not have sample runs, it identifies the phase that is most dif-
ferent from the others using either the cluster-based metric
or the individual task SMM-based metric. If it has sam-
ple runs, AutomaDeD use one of these metrics to determine
the phase that is most different from its sample run counter-
parts. Figure 6 shows the average accuracy of faulty phase
detection over all applications. In all graphs Y-axis shows
the fraction of runs where AutomaDeD identifies the phase,
cluster or transition relevant to the injected fault. The data
series correspond to using the two metrics with each sample
run configuration (NoFault, Fault10 and NoSample)
and the different distribution methods used for the transition
times (Gaussian and Histogram).

The SMM-based metric detects faulty phases more ac-
curately than the cluster-based one, with detection accu-
racy over 90% for most fault types. However, the cluster-
based metric is better for CPU_THR and MEM THR when
sample runs are available. Sample runs significantly im-
prove faulty phase detection accuracy, with NoFault and
Faultl0 exceeding NoSample by 20%-30% in gen-
eral and even more for CPU_THR and MEM_THR. Further,
NoFault and Fault10 sample runs provide similar ac-
curacy, showing that the impact of moderate noise on the
SMM representation and AutomaDeD’s analyses is small.
Finally, Histograms are consistently more accurate (by
several percent) than Gaussian probability distributions
for all faults except DROP MESG the REP MESG, due to
their lower sensitivity to outliers. The reason for the dif-
ference between the fault types is not currently understood.

Figure 7 shows the faulty phase detection accuracy
on a per-application basis, focusing on SMMs that use

U.S. Government work not protected by U.S. copyright.

M Fault10 - Gauss
I Fault10 - Histogram

B NoFault- Gauss
O NoFault - Hi: =]

[ NoSample - Gauss

Clustering Difference

100%
90%
80%
70%

’ R/ 37
& & g & &

Figure 6. Average faulty phase detection accuracy

Histogram and the Faultl0 training set. The data
shows that the difference between the SMM and cluster-
ing metrics is in their consistency across applications, with
the metric that performs more consistently for a given fault
showing better overall performance for that fault. Both met-
rics have high variation for CPU_THR and MEM_THR faults
and thus, lower accuracy.

[mer mce mFr B OMe Osp|

Clustering Difference, Fault10

]|
|

100% 1

Figure 7. Faulty phase accuracy per application

5.2.2 Cluster Isolation
Once AutomaDeD identifies the faulty phase, it can identify

the cluster that contains the task in which the bug was in-
jected. AutomaDeD again uses the SMM-based and cluster-
based metrics to perform cluster isolation. Alternatively, it
can identify the task with the first unusual transition given
the probability distribution on the transition. Our evalua-
tion measures the accuracy of AutomaDeD’s cluster isola-
tion separately from that of its faulty phase detection by al-

237 DSN 2010: Bronevetsky et al.



2010 IEEE/IFIP International Conference on Dependable Systems & Networks (DSN)

ways applying the techniques to the faulty phase, that is we
assume the phase detection was accurate.

Figure 8 shows the accuracy of AutomaDeD’s cluster
isolation on a per-application basis, focusing on SMMs that
use Histogram. Cluster isolation using the cluster-based
metric has poor accuracy for nearly all applications and
fault types. The other options produce significantly better
results. The abnormal transition method without sample
runs and the SMM-based metric with sample runs provide
the best accuracy for CPU_THR and MEM THR, with near
perfect results on half the applications. The abnormal tran-
sition method achieves high accuracy for the FIN LOOP
and INF_LOOP using sample runs.

The accuracy of cluster isolation varies widely across
the applications for the same fault type since the faults
can propagate themselves quickly from one task to another.
Thus, some task(s) other than the faulty task may exhibit
behavior the most divergent from its normal activity, which
can cause the cluster-based and SMM-based metrics to mis-
identify them as the source of the fault. While task behavior
does not confuse the abnormal transition method, it can per-
form poorly due to the relatively coarse granularity of SMM
transitions. As such, a fault may propagate from the mid-
dle of a transition with a later starting timestamp to one that
began earlier, causing the wrong transition to be identified
as the fault’s first manifestation. We could reduce this ef-
fect by breaking long states into smaller ones, which will
improve their precision.

Figure 9 shows the percentage of runs (using the
Faultl0 sample run configuration) in which the faulty
task cluster consists of only one task. This significantly
simplifies debugging since it focuses the developer on a
single task’s control and data flow. AutomaDeD fully
isolates the faulty task in more than 90% of the cases
for CPU_THR, MEM_THR, DROP_MESG and REP_MESG and
70% for FIN_LOOP and INF_LOOP. Gaussian distribu-
tions perform better than Histograms because they are
more sensitive to outliers, suggesting that both probability
distributions should be used in practice.

5.2.3 Transition Isolation
AutomaDeD uses two algorithms for transition isolation.
First, it compares the SMMs of the faulty cluster to those
of other clusters and selects the transitions most responsi-
ble for the differences. Alternatively, it selects the earliest
abnormal transition within the faulty cluster. Since our goal
is to focus debugging efforts, we consider how frequently
the faulty transition is the top choice or one of the top five
choices of these methods. Figure 10 shows the results, with
the clustering-based algorithm on the left and the transition-
based algorithm on the right.

The clustering-based algorithm consistently (> 90% of
the time) includes the faulty transition in its top five choices

U.S. Government work not protected by U.S. copyright.

[mBT mcG mFT mLu omG Osp|

Clustering Difference, Fault10

aairen
nlm i T 7
il il 1l ]

°7
6

& & & > o o R
@fb & ‘? & i & }S’(’ w"oq \fﬂ § i «)’CP
IR SO SN

SMM Difference, Fault10

100%

100%

80% I _
60% I
40% =
20% ‘I‘ 1
0%

F LSS S S S S
£

& &

Abnormal Transition NoSample

100%

& & &£ & > o »

Figure 8. Cluster isolation accuracy per application

for FIN_LOOP and INF_LOOP. The transition-based algo-
rithm is less consistent across applications but when it suc-
ceeds, it usually does so with its first selection. Both meth-
ods exhibit low accuracy for DROP_MESG and REP_MESG
faults because the effects of these faults manifest long af-
ter the fault is injected. They also perform relatively poorly
with CPU_THR and MEM_THR because these faults cause a
larger number of milder behavioral changes, which resem-
ble ordinary outlier transitions.

& 1

& & K & b
JONNC &

Figure 9. Isolation of a singleton cluster

238 DSN 2010: Bronevetsky et al.



2010 IEEE/IFIP International Conference on Dependable Systems & Networks (DSN)

Clustering

Abnormal Transition WBT-top 1

100%

80%

60%

40%

20%

0%

&

N

100%

80%

60%

40%

20%

0%

WBT-top 5
WCG-top 1

OCG-top 5
WFT-top1
OFT-top 5
WLU-top 1
DL-top 5
OMG-top1
CMG-top5
WSP-top 1
COSP-top 5

Figure 10. Transition isolation accuracy per application

5.3 Case Study: MVAPICH Bug

We illustrate the utility of AutomaDeD via a case study
of applying it to a real bug in the MVAPICH-0.9.9 MPI im-
plementation [12]. The bug occurs in its MPI task launcher,
mpirun, which sometimes fails to clean up after an applica-
tion, leaving processes to run concurrently with subsequent
jobs. We modeled this bug by running a primary applica-
tion and injecting a run of a secondary application (runaway
tasks from prior job) to overlap the beginning of the pri-
mary’s run. In our evaluation we executed a 16- or 64-task
run of the BT benchmark as our primary application while
simultaneously executing a 16-task run of either LU, MG
or SP on the same set of nodes to model the runaway tasks.
These model the cases where runaway tasks interfere with
all or a subset of the primary application’s tasks.

We provided AutomaDeD with a set of five sample runs
of BT with no interference. Figure 11 presents the SMM-
based deviation score for each phase of the three runs where
BT ran concurrently with either LU, MG and SP (one set for
16-task and another for 64-task BT runs) as well as the av-
erage score for the five no-interference runs. The sets of
sample runs used to compute each no-interference run’s de-
viation scores excluded the run itself. The deviation scores
of all no-interference phases were consistently low. In con-
trast, the scores of the initial phases of the three interfer-
ence runs show high deviation scores, identifying the exact
region of time when the shorter runs of LU, MG and SP
overlapped with the execution of BT. Further, AutomaDeD
clearly shows that the interference run of MG in one 16-task
experiment began after the first phase of BT, since the devi-
ation score starts at the baseline level, rises for three phases
and then drops to the baseline.

AutomaDeD significantly aids debugging. First, it
clearly identifies the performance anomaly, which might not
have been noticed for a long time or blamed on extraneous
factors such as the choice of input. Second, AutomaDeD
determines when the interference occurs, which facilitates
detection of the interference tasks from system logs or other
methods. This ability to know when and where to use other
tools is a significant strength of AutomaDeD because it al-
lows developers to keep from being overloaded by these
tools’ data volume. As such, this fault can be easily dif-

U.S. Government work not protected by U.S. copyright.

239

16-task BT

=—=AVG
No-Interference

== Concurrent SP
ConcurrentLU

/,‘\ ~=Concurrent MG

1E+5

1E+4

1E+3

1E+2

SMM Deviation Score

1E+1

1E+0

10
Phase

64-task BT

1E+5

1E+4

1E+3

1E+2 o

SMM Deviation Score

1E+1

1E+0

1 2 3 4 5 6 7 8 9
Phase

10

Figure 11. Phase deviation scores of MVAPICH bug use-
case

ferentiated from other potential problems such as high net-
work load because users can collect the task list and net-
work load logs during just the anomalous time period and
pinpoint the source of the anomaly (HPC nodes are typically
dedicated to one user at a time). Although AutomaDeD can
often identify the tasks most affected by the fault, it did not
isolate those tasks in this case since BT is tightly coupled,
which leads to the interference impacting all of BT’s tasks
even with 64-task runs.

6 Prior Work

Traditional debugging techniques, including sequential
debuggers such as gdb and “printf debugging,” require the
user to manually trace the origins of their coding errors.
Traditional parallel debuggers, such as TotalView [15] and
DDT [2] are similar but allow the users concurrent access
to multiple processes. They provide convenient interfaces
to the state of these processes but the process of identify-
ing errors remains manual. Overall, traditional debugging
techniques require a significant amount of user experience,
intuition and time, and thus are not practical for large, com-
plex parallel applications.

Differential debugging provides a semi-automated ap-

DSN 2010: Bronevetsky et al.



2010 IEEE/IFIP International Conference on Dependable Systems & Networks (DSN)

proach to the analysis and understanding of programming
errors by comparing executions dynamically [1, 16]. Recent
research has focused on developing statistical techniques to
pinpoint the root cause of correctness problems automati-
cally [3, 5, 7, 8]. While both approaches hold significant
promise, they require extensive runtime execution data of-
ten from multiple runs or extensions that guide the analy-
ses to the significant differences between the processes in
a single run. As a result, most techniques have not yet
been applied to large scale runs of parallel applications.
AutomaDeD complements these techniques by providing
mechanisms that relate the state across the individual pro-
cesses and group ones with similar behavior into task equiv-
alence classes.

We share similar goals to those of the work by Mirgorod-
skiy et al. [10], namely, locating the causes of anomalies in
parallel programs. Their model looks at the traces of func-
tion calls and exits and uses a distance metric to identify
the trace that is most different from other traces. Subse-
quently, they identify the function that most contributes to
the suspect score for the outlier trace in order to pinpoint
the likely source of the problem. Despite these similarities,
their work addresses a subset of the anomalies that we do in
AutomaDeD since they assume all processes have identical
behavior and they do not consider timing anomalies.

7 Conclusion

Large-scale application debugging is very challenging
because of the vast amount of information developers must
consider to identify a bug’s root cause. AutomaDeD fo-
cuses debugging efforts on the time period, tasks and code
region where the bug is first manifested. Thus, it signif-
icantly improves developer debugging productivity by re-
ducing the amount of information that must be considered
even as the application is scaled to large task counts. This
paper describes the fundamental approach and design of
AutomaDeD and establishes it as a valuable addition to
the developer’s toolkit. Our results demonstrate that Au-
tomaDeD is very accurate for key debugging tasks. In par-
ticular, it correctly identifies the faulty phase in 90% of our
trials for delays, hangs and message faults and in 70% of
our trials for interference faults. Given the faulty phase,
AutomaDeD’s accurately identifies a small task set (often
a single task) in which the bug occurred for over 80% of
delays and hangs, over 40% for message faults and over
70% for interference faults. Given the faulty cluster, Au-
tomaDeD identifies the error site with 90% accuracy for de-
lays and hangs and 50% accuracy for interference faults.
While the product of all these detection rates can be low, in
reality developers are likely to have one or more pieces of
information about the fault’s origin from external tools, al-
lowing AutomaDeD to provide more accuracy when given
more information.

U.S. Government work not protected by U.S. copyright.

While this paper demonstrates the utility of our ap-
proach, a key component of our ongoing work is to make
these ideas work at large scale. This includes developing
more efficient algorithms for our basic mechanisms such
as histograms and SMM comparisons, as well as scalable
methods to cluster SMMs on-line across millions of tasks.
While this work will leverage the algorithms presented here,
it will involve the development on novel statistical model-
ing techniques that can scale to millions of tasks. Another
important area will be extending AutomaDeD to model a
richer space of behaviors, including analyzing behavioral
metrics other than control flow and time as well as mod-
eling more complex applications. This work will enable
AutomaDeD to become a valuable debugging tool for de-
velopers of large scale applications that will make them sig-
nificantly more productive even as their applications scale
to ever more tasks.

References

ABRAMSON, D., FOSTER, 1., MICHALAKES, J., AND SocCIC, R.
Relative Debugging: A New Methodology for Debugging Scientific
Applications. Communications of the ACM 39, 11 (1996), 69-77.

[2] ALLINEA SOFTWARE. Allinea DDT the Distributed Debugging
Tool.

[3] ANDRZEJEWSKI, D., MULHERN, A., LIBLIT, B., AND ZHU, X.
Statistical Debugging Using Latent Topic Models. In /8th European
Conference on Machine Learning (Sept. 17-212007), S. Matwin and
D. Mladenic, Eds.

[4] BAILEY, D., BARTON, J., LASINSKI, T., AND SIMON, H. The NAS
Parallel Benchmarks. RNR-91-002, NASA Ames Research Center,
Aug. 1991.

[5] CHILIMBI, T., LIBLIT, B., MEHRA, K., NORI, A., AND VASWANI,
K. HOLMES: Effective Statistical Debugging via Efficient Path Pro-
filing. In 3Ist International Conference on Software Engineering
(ICSE) (May 2009).

[6] FELDMAN, M. Lawrence Livermore Prepares for 20 Petaflop Blue
Gene/Q. In HPCwire (Feb. 2009).

[71 GAoO, Q., QIN, F., AND PANDA, D. K. DMTracker: Finding Bugs
in Large-Scale Parallel Programs by Detecting Anomaly in Data
Movements. In ACM/IEEE Supercomputing Conference (SC) (2007),
ACM, pp. 1-12.

[8] HANGAL, S., AND LAM, M. S. Tracking Down Software Bugs
Using Automatic Anomaly Detection. In ICSE ’02: Proceedings of
the 24th International Conference on Sof tware Engineering (2002),
ACM, pp. 291-301.

[9] JAIN, A. K., MURTY, M. N., AND FLYNN, P. J. Data Clustering:
A Review. ACM Computing Surveys 31,3 (1999), 264-323.
MIRGORODSKIY, A., MARUYAMA, N., AND MILLER, B. Problem
Diagnosis in Large-Scale Computing Environments. In ACM/IEEE
Supercomputing Conference (SC) (2006), pp. 11-23.

MIRKIN, B. G. Mathematical Classification and Clustering. Kluwer
Academic Press, 1996.

[12] MVAPICH PROJECT. MVAPICH Discussion  List.
http://mail.cse.ohio-state.edu/pipermail/
mvapich-discuss/2007-July/000932.html.

SCHULZ, M., AND DE SUPINSKI, B. R. PVMPI Tools: A Whole
Lot Greater Than the Sum of Their Parts. In ACM/IEEE Supercom-
puting Conference (SC) (2007), ACM, pp. 1-10.

[14] SILVERMAN, B. W. Density Estimation for Statistics and Data Anal-
ysis. Chapman & Hall, 1986.

TOTALVIEW TECHNOLOGIES. TotalView Debugger. http://
www.totalviewtech.com/productsTV.htm.

[16] WATSON, G., AND ABRAMSON, D. Relative Debugging for Data-
Parallel Programs: A ZPL Case Study. IEEE Concurrency 8, 4
(2000), 42-52.

[

—

[10

[l

[1

—

[13

[t}

[15

=

240 DSN 2010: Bronevetsky et al.



