

U.S. Government work not protected by U.S. copyright
 5D1-1

BENEFITS OF A UNIFIED LASRS++ SIMULATION FOR NAS-WIDE AND
HIGH-FIDELITY MODELING

Patricia Glaab and Michael Madden, NASA Langley Research Center, Hampton, VA

Abstract

 The LaSRS++ high-fidelity vehicle
simulation was extended in 2012 to support a NAS-
wide simulation mode. Since the initial proof-of-
concept, the LaSRS++ NAS-wide simulation is
maturing into a research-ready tool. A primary
benefit of this new capability is the consolidation of
the two modeling paradigms under a single
framework to save cost, facilitate iterative concept
testing between the two tools, and to promote
communication and model sharing between user
communities at Langley. Specific benefits of each
type of modeling are discussed along with the
expected benefits of the unified framework.

Current capability details of the LaSRS++ NAS-
wide simulations are provided, including the
visualization tool, live data interface, trajectory
generators, terminal routing for arrivals and
departures, maneuvering, re-routing, navigation,
winds, and turbulence. The plan for future
development is also described.

Acronyms
ADRS Aeronautical Datalink and Radar

Simulation
ARINC Aeronautical Radio Incorporated
ASAB Aeronautics Systems Analysis

Branch
ASTOR Aircraft Simulation for Traffic

Operations Research
ATM Air Traffic Management
ATOL Air Traffic Operations Lab
ATOS Airspace and Traffic Operations

System
CMF Cockpit Motion Facility
CSAOB Crew Systems and Aircraft

Operations Branch
DOF Degrees of Freedom
FAA Federal Aviation Administration
FMS Flight Management System

HITL Human in the Loop
JNI Java Native Interface
JSC Johnson Space Center
KTG Kinematic Trajectory Generator
LaRC Langley Research Center
LaSRS++ Langley Standard Real-time

Simulation in C++
MACS Multi-Aircraft Control System
MAVERIC Marshall Aerospace Vehicle

Representation in C
MSFC Marshall Space Flight Center
NAS National Airspace System
SDAB Simulation Development &

Analysis Branch
SID Standard Instrument Descent
SMART NAS Shadow Mode Assessment using

Realistic Technologies in the NAS
STAR Standard Terminal Arrival Route
VM Virtual Machine

Background
In 2012, the Langley Standard Real-time

Simulation in C++ (LaSRS++) was extended to allow
the framework to support systems-level simulation of
the National Airspace System (NAS), also called
NAS-wide simulation. The LaSRS++ high-fidelity
vehicle simulation actively supports studies involving
commercial transport and military aircraft, launch
vehicles, and spacecraft. Simulations are hosted as
fast-time on the desktop, with humans-in-the-loop
(HITL) in research cockpits, and in flight tests using
Langley Research Center (LaRC) aircraft. The
simulation architecture was already designed to
support varying research missions on varied
platforms. With the addition of the NAS-wide
modeling capability, this range of research was
extended to include systems-level analysis of the
airspace, primarily in support of the Next Generation
Air Transportation System, or NextGen.

 5D1-2

The initial implementation of the LaSRS++
NAS-wide model was performed as a proof-of-
concept to verify that the LaSRS++ high-fidelity C++
program was able to handle the very large number of
objects and fast processing speed required to support
NAS-wide modeling. After successful proof-of-
concept testing, work progressed to evolve the
LaSRS++ NAS-wide simulation with models needed
to support systems-level airspace research.

Creation of a single software framework to
support Langley technology concepts offers
significant potential cost benefits. This cost savings
will result from the use of an existing in-house
LaSRS++ software support team that can be tasked
on an as-needed basis. Although some models and
techniques are unique to the new NAS-wide
paradigm, the shared style and architecture of the
LaSRS++ NAS-wide and high-fidelity vehicle
framework allows software developers to transition
quickly to the NAS-wide paradigm. Another
important benefit is the greater potential for
communication, model sharing, and mission testing
that is facilitated by allowing different research
groups to operate in a single, unified environment.

A similar set of goals was envisioned in 1997
when the LaSRS++ simulation framework was
extended to support the simulation-to-flight mission
for the LaRC 757 aircraft. This capability resulted in
an estimated savings of $17M in the first 10 years of
use [1]. Once the LaSRS++ NAS-wide simulation is
ready for research, it is expected to save more money
per year than the total cost of its development.

The Aeronautics Systems Analysis Branch
(ASAB) is providing the expertise for the initial
NAS-wide model development. Models hosted in
other NAS-wide simulation programs cannot be
ported directly to LaSRS++ because of the
differences in language and calling structure.
Therefore, the Langley Simulation Development and
Analysis Branch (SDAB) is providing expertise to
stage the models in the LaSRS++ architecture. The
successes achieved to date are a result of this
collaboration.

Benefits of High-Fidelity Simulation
High-fidelity vehicle simulations are critical to

determining the feasibility and acceptability of new
technologies to pilots and controllers who must use
them. This is facilitated early in the design by human

testing through HITL simulation. This style of
simulation attempts to present as accurate a depiction
of reality as possible to the pilot subject flying the
mission for research and evaluation. The simulation
scenario is staged from the point of view of the
primary aircraft being modeled, also called the
“ownship”. These simulations are used to evaluate
display concepts, pilot workload, handling qualities,
and vehicle response. They can also help determine
exactly how a concept technology can be staged in
consideration of existing hardware systems on an
aircraft, which is a key factor in assessing the cost of
adoption of the technology to operators.

Benefits of NAS-Wide Simulation
NAS-wide simulation modeling studies became

prevalent in the early 2000’s, enabled by increasing
compute speed and modern software languages.
Unlike high-fidelity vehicle simulations which focus
on the details of the ownship, NAS-wide simulations
focus on the overall picture. Details of how aircraft
characteristics are achieved are not as important as
succinctly capturing the behavior of the vehicle so it
can be tested in the larger flow. These simulations
were developed to support cost and benefit
assessment of the impact of individual technology
concepts deployed at a NAS-wide scope.
Improvements that seem minor for a single vehicle
can demonstrate substantial system-wide benefit if
applied to a large number of flights. Conversely, a
seemingly substantial benefit that can only be
realized by a few flights or in a limited region may
not justify the infrastructure cost of adoption.

A substantial benefit of NAS-wide simulations
is the allowance for emergent behavior in the
resulting flow dynamics. Emergence is a process
whereby larger patterns and regularities arise through
interactions of smaller or simpler entities. In a NAS-
wide simulation, these emergent behaviors can reveal
flow characteristics that are difficult or impossible to
predict when the individual model is considered
separately or at a limited scale. These unpredicted
consequences can be the “Achilles heel” of
technology products making their way into larger
NAS testing for the first time. A NAS-wide
simulation can uncover many of these issues early in
the development process, often remedied with minor
changes if realized early enough.

 5D1-3

NAS-wide simulations must run their full
scenario in a very short amount of time to be useful,
preferably in minutes rather than hours. To model
this many aircraft concurrently and interactively on a
single computer (often a laptop), they use aircraft
models that are at lower detail level than their high-
fidelity vehicle simulation counterparts. Dynamic
actors in NAS-wide simulations are often based on
parameterized models, and the output metrics relate
to systemic properties (like total delay, average
throughput, and overall fuel reduction). The NAS-
wide aircraft can also contain action and response
algorithms to portray pilot behavior. This allows each
of the tens of thousands of flights to be an intelligent
actor in the scenario in a repeatable fashion and
without the need for support hardware (like pseudo-
pilot stations).

Unified Vehicle and NAS-Wide
Simulation Approach

The adoption of promising new NextGen
technologies into real-world use will require
substantial changes to the existing Air Traffic
Management (ATM) infrastructure by the FAA and
industry stakeholders. The costs associated with these
changes must be justified by the NAS-wide benefit
and vetted for user acceptability. Technology concept
development using an iterative approach with both
high-fidelity and NAS-wide modeling can quantify
these benefits more completely and demonstrate
acceptability, resulting in a product that is
commercially viable earlier.

At the same time that NAS ATM stakeholders
demand more from the research community, budgets
provide less. Efforts to integrate labs or to re-host
products into new test beds can be tedious and
expensive endeavors when done on a project-by-
project basis. This type of integrated capability is
only cost effective if it can be shared by many
projects and can provide continued return on
investment over time. No one project can absorb this
cost within their allocated time and budget. Once
available, however, many projects can benefit.

This same philosophy is a driver for NASA’s
current investment in the Shadow Mode Assessment
using Realistic Technologies for the National
Airspace System (SMART NAS) initiative. SMART
NAS is a simulation framework that is expected to
accelerate the transformation of the NAS by

providing a platform for more comprehensive testing
of integrated airspace concepts. [2] NASA is
investing in the design and development of the
SMART NAS capability up front, expecting that the
return on investment will be exponentially greater
than the cost of development.

Impediments to a Unified Simulation
An impediment to iterative testing in both a

high-fidelity and a system-level environment is the
unique tool sets used by each group. Research
simulations, regardless of their style, are supported
by complex executives and architectures.
Transitioning models from one environment to
another is much more complicated than simply
relocating the software and supplying inputs and
outputs. Architectural constraints often require
changes to the software to allow it to operate properly
within a different calling scheme and using a
different set of available state variables.

Differing software language conventions for
real-time versus NAS-wide simulations also impede
iterative concept testing. Most NAS-wide simulations
are in Java. Simulations which require hard-deadline
real-time operation (which includes the LaRC HITL
simulators) cannot use Java because of the garbage-
collection process, which is used by the Java Virtual
Machine (VM) to clean up unused memory. Though
the user can tune the way Java runs the garbage
collection and can set recommended limits on its
duration and frequency [3], it cannot be turned off
entirely.1

For a system without real-time operational
constraints, the Java garbage-collector is a valuable
service that eliminates the tedium of tight memory
management. However, the process is inherently non-
deterministic in duration. This prevents the level of
control required for the tightly managed real-time
frame. Simulations that must support hard-deadline
real-time operation are written in languages that
allow the programmer to control all system calls and
memory allocation. Legacy real-time simulations
were often written in FORTRAN. Modern
frameworks often use some derivative of C. For
example, the Johnson Space Center (JSC) “Trick”
simulation is written in C--, Marshall Space Flight

1 Disabling the garbage collection was removed after Java 1.1,
although the syntax was supported until Java 1.4.

 5D1-4

Center’s (MSFC) Marshall Aerospace Vehicle
Representation in C (MAVERIC) simulation is in C
and C++ [4], and LaSRS++ is written in C++. Java
and C-based language developers also use different
coding styles, which contributes significantly to the

difficulty in transitioning between existing real-time
and NAS-wide paradigms.

Table 1 captures some of the differences in
vehicle versus NAS-wide simulation frameworks.

Table 1. Characteristic Differences Between Vehicle and NAS-Wide Simulations

Trait Vehicle Simulation NAS-Wide Simulation
Language Usually a version of C or FORTRAN Usually Java
Programming
considerations

Memory allocation and system calls must be
completed before or after the real-time run. System
calls are non-deterministic in length and often
cause frame overruns (a simulated second takes
more than a second of wall clock time). Frame
overruns cause a buildup of error between
simulation states and internally computed states of
avionics and simulator hardware, such as a control
loader or Flight Management System (FMS).

Overall time to execute the run is
prioritized, rather than
consistency in timing between
individual frames. Techniques
like distribution of operations
and event-driven computations
are frequently employed to
increase overall run speed.

Clock Can support real-time or fast-time Usually only fast-time
Length of run Simulated runs span minutes, seldom more than a

few hours.
Simulated runs can span several
days (in fast-time)

Viewpoint From the ownship (vehicle being simulated) Bird’s eye view (no ownship)
Vehicle Lifespan Simulated vehicle (ownship) is active for entire

duration of run
Flights enter and exit the
simulated day[s] at designated
departure and landing times

Metrics Typically relate to the ownship (aircraft state data,
environmental states, Cooper-Harper scales for
pilot workload, pilot controls movement)

Typically relate to system
characteristics (averages/ totals
of measured states of all flights)

Traffic
intelligence

Traffic (non-ownship) movement is usually
predetermined (e.g., based on a previously
recorded path) or is assisted by pilot actions with a
simplified cockpit (a pseudo-pilot station).

Traffic aircraft have artificial
intelligence to respond to
simulated situations through a
“pilot” model. All flights can be
intelligent actors.

Unified LaSRS++ High-Fidelity and
NAS-Wide

 While the Langley airspace research
community can benefit from an iterative concept
development and test approach offered by both
vehicle and NAS-wide simulations, this was not a
cost-effective option in the past for reasons
mentioned in the previous section. The time and
effort required to re-host a software model from an
event-based Java calling scheme (as typical for NAS-
wide simulations) into a time-based C++ calling

scheme (for Langley real-time vehicle simulations) is
difficult to the point of being impractical, and so
rarely occurs.

This situation is being remedied for the Langley
research simulation community by the expansion of
the existing LaSRS++ vehicle simulation to support
NAS-wide modeling. This effort began in 2012 and
continued as a grass roots effort supported by one or
two developers at a time, but with considerable
progress in the two years since it was first proposed.

 5D1-5

Langley ATOS and ATOL Facility
The Langley Airspace and Traffic Operations

(ATOS) and Air Traffic Operations Lab (ATOL) are
development and test systems for new air traffic
management concepts and airborne technologies [5].
This lab allows pilots and controllers to assess the
usability, feasibility, and acceptability of new flight
deck technologies (Figure 1).

Figure 1. Langley ATOS Monitoring System [6]

Within this lab are numerous “Aircraft
Simulation for Traffic Operations Research”
(ASTOR) stations, which can be configured to
support single or dual crew operations (Figure 2).
ATOL and ATOS are operated by the Crew Systems
and Aviation Operations Branch (CSAOB) at LaRC.
The lab can model hundreds of interactive
background aircraft to create realistic scenarios as
staging for the live pilot test subjects. Though the
software is maintained independently by CSAOB, the
systems have some commonality with the SDAB
HITL simulator lab run using LaSRS++. The ATOL
lab is also written in C++ and runs in either fast-time
or real-time. The lab can run independently, or in
joint simulations with the Cockpit Motion Facility
(CMF) simulators linked to ATOL for expanded test
missions. ATOL also has access to the LaSRS++
software repositories and configuration management
system, and reuses some of the aircraft models from
LaSRS++. Therefore, models that are developed
under the LaSRS++ framework for the NAS-wide
models will also be available to ATOL developers.
This may be particularly useful for sharing the
SMART NAS interfaces that will be created once that
system is available.

Figure 2. ATOL Displays and Controller

Stations [6]

LaRC LaSRS++ Framework
Extension of the LaSRS++ simulation to support

NAS-wide operation was simplified by the software
architecture, which was designed to provide
flexibility for varied operational scenarios and was
extended several times in its lifespan to that end [7].
The simulation was originally adopted in 1995 for use
in the any of the simulator cockpits maintained by
SDAB, including Langley’s Cockpit Motion Facility
(CMF), or with fast-time operation on the desktop. In
1998, the mission for LaSRS++ was extended to
additionally provide the research system for the
Langley 757 aircraft, and eventually for all Langley
aircraft running flight test software. In 2005 and
2008, Mars and Moon environment models were
added, respectively, to support the space science
research.

In 2011, LaSRS++ was extended to add a
distributed simulation capability for traffic modeling.
This allows LaSRS++ vehicles to send and receive

 5D1-6

situational data required to model ADSB antenna
communication using traffic states supplied by
ASTOR models of the LaRC ATOS. It also provides
a one-way gateway to Ames' Aeronautical Datalink
and Radar Simulation (ADRS) which allows
LaSRS++ vehicle simulations to use the Ames' Multi-
Aircraft Control System (MACS) as an ATC station.
For the NAS-wide model, a new simulation entity
was created to manage the life cycle of NAS traffic
objects within the local simulation. This
“TrafficFlowManager” component builds models into
the simulation as simple aircraft that have type-
specific parameter-based trajectories, pilot decision-
making, and which can respond to airspace
management requests. TrafficFlowManager also
controls the lifecycles of the airspace management
components, which provide scheduling and routing
directives to initiate and adjust the flow of traffic.

Figure 3 presents the high-level class
architecture of the three model styles within
LaSRS++. Any of the three model types can run
independently or together in a simulation scenario. In
this diagram, the ATOS is the supplier of ADSB
information, but this data can alternately come from
the Ames MACS system or from playback data from
a previous run.

SMART NAS Shared Development
The timing of this effort will allow both the

vehicle and NAS-wide LaSRS++ research
communities to share interface tools to SMART NAS
as they are added to the framework. The new
SMART NAS interface system will have the benefit
of two distinctly different operational paradigms
contributing to the design from the outset. LaSRS++

is expected to be one of the early-adopters of
SMART NAS technologies. By developing an
interface to serve both the NAS-wide and HITL
simulators from the outset, overall cost of
transitioning to SMART NAS will also be minimized.

Current Status of LaSRS++ NAS-Wide
The majority of the simulation architectural and

infrastructure changes needed to support NAS-wide
simulation in LaSRS++ were completed during the
feasibility study in late 2012 and early 2013. Once the
NAS-wide framework changes were completed,
models running within it were extended and matured
to begin to provide functionality to ready them for
research.

Progress Monitor Visualization Tool
Emphasis was put on early development of a

visualization monitor. One of the lessons shared by
other NAS-wide development teams was the need to
have visualization of trajectories available as soon as
possible. Without a visualization tool, verification
and validation relies on inspection of data values
which is error-prone. Problems that are obvious with
a visualization display running can go undetected for
years without one. Therefore, a display called the
Progress Monitor was created early in the
development process. This display uses a birds-eye
viewpoint that can be zoomed, slewed, or rotated.
When the Progress Monitor runs, it artificially slows
down the simulation speed to force the traffic to
move slowly enough to be captured for display.
When run speed is critical and the monitor is not
needed, the user can run the simulation without it.

 5D1-7

Figure 3. LaSRS++ Class Architecture for NAS-Wide, External Traffic, and High-Fidelity Operation

 5D1-8

The Progress Monitor (Figure 4) is a good
example of software reuse (and associated cost
savings) possible by using a common framework. The
map background for the display was created to
support an earlier LaSRS++ real-time project and was
resurrected for the NAS-wide simulation. The
interface architecture between the simulation program
and the display program (which runs as a separate
process) is also reused and is standard for display
communication with LaSRS++ real-time simulator
projects. Since the new Progress Monitor display uses
LaSRS++ standard methods, this display can be
reused in the future for real-time projects and is
already being considered for cockpit display of
weather. The icons that show traffic were also reused
from an existing simulator cockpit navigation display.

Figure 4. LaSRS++ NAS-Wide Progress Monitor

A feature was recently added to this display to
allow a spacing disk to be optionally enabled around
any or all aircraft. The spacing disk radius and
thickness are sent as individual aircraft parameters
and are used to monitor loss of separation events for
testing or for demonstration.

Live Data Interface
 An interface was added to the simulation to

process live data using a web-based blended source
data service. Prior to the creation of this interface,
live data was never used for LaSRS++. The capability
was added as a feasibility test and to provide insight
into the benefits and challenges of using this type of
data in a simulation. FlightAware was selected
because their service provides data from a
compilation of sources through a single protocol. This
allows a user to easily experiment with different data
types through the same server. The LaSRS++ NAS-

wide simulation currently only takes advantage of
aircraft state data, which is used to locate traffic for
interactive modeling and for display on the Progress
Monitor (Figure 5). However, the API already exists
in the simulation to access weather data, flight plans,
and all other information offered by the service.

Figure 5. Live Traffic Portrayed in LaSRS++

NAS-Wide

Trajectory Generators
The term “trajectory generator” is used in a

different context by the flight vehicle modeling
community versus the NAS-wide modeling
community. In the vehicle modeling world, a
trajectory generator is the component of a flight
management system (FMS) which predicts a path
through space for the host aircraft to follow to
navigate efficiently along the 3-D route selected by
the pilot. In this case, the trajectory is not the state of
the aircraft, but rather the target state. In the NAS-
wide modeling community, a trajectory generator is
the component of the simulation that provides the
actual state for a modeled aircraft at all points along
its simulated path based on performance database
criteria. The trajectories are constructed from
estimated performance data for specific aircraft types.
The resulting paths are point-mass models with 3
degrees of freedom (3 DOF), as opposed to the 6
DOF trajectories of the high-fidelity aircraft models.
The lower fidelity state models are appropriate for the
systems-level studies that use them, and they run very
quickly. This allows the NAS-wide simulation to run
tens of thousands of aircraft on a single processor.

The LaSRS++ vehicle simulation already
contained many high-fidelity performance models
and can model FMS trajectories, but the type of
trajectory generators needed by the NAS-wide
framework had to be added. Three trajectory types
are currently available. A nodal model was created

 5D1-9

during the initial development to exercise the
framework features (like data logging, file
processing, and timing features). A second option
called the Kinematic Trajectory Generator (KTG) [8]
from Intelligent Automation, Inc. (IAI) was added
which uses aircraft-specific performance
characteristics and provides an integrated path. The
KTG trajectory is also used in ACES, and provided a
common thread between the two simulations that was
useful for comparison testing during the proof-of-
concept phase. The downside of this version of KTG
for the LaSRS++ simulation is that it is written in
Java, requiring it to be interfaced to LaSRS++
through the Java Native Interface (JNI).
Communication between the C++ host and the Java
KTG code through the JNI is very difficult to debug
and impeded the progress of route modification
modeling between LaSRS++ and KTG.

Two solutions were initiated to remove the Java
code from the LaSRS++ NAS-wide model. One is the
replacement of the Java KTG with a new version now
available from IAI that is entirely in C++. This work
is scheduled for completion by the end of 2014. The
second solution is a new in-house C++ trajectory that
is an evolution of the original nodal model and
provides an integrated path using aircraft-specific
performance data. The in-house C++ trajectory was
completed in spring of 2014. The KTG trajectory is
more mature and provides a richer set of features and
higher fidelity, but the integrated C++ trajectory is
also a useful model for many applications. The in-
house C++ trajectory has the additional benefit of
accessibility of the source code, since the C++
version of KTG will only be available as a linked
executable library.

Arrival and Departure Routes
The ability for traffic to use Standard Instrument

Departures (SIDs) or Standard Terminal Arrival
Routes (STARs) is available for LaSRS++ NAS-
wide. At startup, the program reads a text file that
uses the same format as the FAA’s 56 Day NASR
“stardp.txt” data file. This file is available via the web
from the FAA for US government use through
subscription.

The 56-Day NASR STAR and SID routes file
commonly contains multiple versions of routes, in
which case the first version is used by the simulation.
This file contains the superset of all route options, but

does not determine which subset is used for any given
simulation run. A separate initialization file contains
the list of airports that will use arrival and departure
routes, and which routes are active at startup. Only
active routes are used by simulated traffic. Airports
not specifically designated for SID/STAR arrivals
default to a nodal terminal airspace model for run
speed efficiency.

Navigation Database
The NAS-wide simulation reuses the Navigation

Database system already available in LaSRS++ to
determine the location of arrival and departure
airports, named waypoints in arrival and departure
routes, and runway parameters. This data resides in
an ARINC2 424-formatted text file for the continental
US which can be used as-is or tailored for research
use. This navigation database information is used by
the NAS-wide simulation to determine the airport
centers for the default terminal airspace regions and
for the locations of the runway thresholds at each
airport.

Maneuvering and Rerouting
After the initial path for a flight is created, the

flight may have to alter its path to avoid a conflict or
to change its arrival time to interim waypoints or to
the arrival runway. A maneuver can be added to the
current route to issue a short-term divergence from
the original path. Once the purpose of the maneuver
is accomplished, the flight reacquires the original
route as soon as possible. With rerouting, the latitude
and longitude points that contribute to the aircraft’s
route are changed permanently and the flight is not
expected to reacquire the original route. This might
be done, for example, to avoid a large weather
system.

The KTG trajectory generator option within the
NAS-wide simulation supports maneuvering with a
user-friendly interface to request changes. The
simulation currently only uses the path stretch and the
speed change maneuvers to alter aircraft paths, but
options are also available for altitude and course
changes, and for combinations of several of these
options linked in tandem. Maneuvering is not yet

2 Aeronautical Radio, Incorporated (ARINC) maintains
formatting standards for communication protocols for the
aeronautics industry, including the 424 standard which pertains to
navigation databases.

 5D1-10

available for the C++ trajectory, but is a planned
future feature. Rerouting is available for either
trajectory and is handled by modifying the reference
points for a flight’s path and requesting a new
trajectory prediction.

Wind and Turbulence
The NAS-wide simulation makes use of the

existing wind and turbulence models from LaSRS++.
A variety of models are available, including constant
and 4-D location wind models and several options for
wind turbulence and wind shears. Numerous other
environmental models are available in LaSRS++ that
are frequently used by the vehicle simulations but are
not yet used in the NAS-wide simulation. These
include cloud layers, fog, and sun rise and set timing
which could be useful in the future for localized
visibility constraints on spacing, for example, while
the wind information could be useful in assessments
of noise impact in the vicinity of airports.

Future Development
Additional functionality is in progress, with

optional new capabilities envisioned for farther term
development. The near-term features center on arrival
and departure scheduling models. Though aircraft can
already follow SID or STAR routes, there is no
system monitoring or advising them for specific
waypoint crossings or runway threshold touchdown
times to target safe separation. The addition of a
system to provide this is a near-term research need.
Properly implementing such a scheduler will rely on
an expanded maneuvering and rerouting capability,
which is also targeted for near-term development.

As discussed in the Trajectory Generator
section, a new version of the KTG trajectory
generator is currently being interfaced to the NAS-
wide simulation. This trajectory will be available as a
fourth option and will allow the more mature KTG
features and fidelity to be used in the simulation
without Java. As part of the addition of KTG in C++,
the trajectory generator manager is being reworked to
allow any trajectory generator to be added to the
simulation in the future as a plug-in.

A long term goal is to allow the LaSRS++ HITL
simulator cockpits to use the NAS-wide aircraft as
intelligent traffic models. Use of this type of
intelligent traffic model in the current HITL
simulations requires connection to and support of the

ATOL lab. Once the NAS-wide models are integrated
to the real-time simulation, intelligent high-volume
traffic will also be available in LaSRS++-only
operations and also with fast-time vehicle simulations
on the desktop.

Adding this capability will require some minor
changes to the vehicle simulation executive to create
and manage the NAS-wide flights. Once integrated,
this will also allow the HITL simulations to run in
scenarios that use actual live traffic in progress. The
implementation of this set of features is conditional
on funding and need from the research clients that
will use that service.

References
[1] Madden, M., and Glaab, P., “The Langley
Standard Real-time Simulation in C++; 2005
Software of the Year Presentation”, NASA IV&V
Facility, Fairmont WV, June 22, 2005.

[2] SMART NAS NNA13446416L, Attachment A:
Statement of Work, Nov 2, 2012,
http://prod.nais.nasa.gov/eps/eps_data/154428-
DRAFT-001-001.docx.

[3] Oracle, “Tuning Garbage Collection with the 5.0
Java Virtual Machine”, Sun Microsystems,
http://www.oracle.com/technetwork/java/gc-tuning-5-
138395.html.

[4] NASA, “Marshall Aerospace Vehicle
Representation in C (MAVERIC-II) Computer
Program”, Tom Knight, June 12, 2014,
http://techtran.msfc.nasa.gov/software-catalog/MFS-
31989-1-MAVERIC-II.php.

[5] NASA, “NextGen Takes Flight with Air Traffic
Operations Lab Upgrades”, Denise Lineberry, July
22, 2013, http://www.nasa.gov/larc/nextgen-takes-
flight-with-air-traffic-operations-lab-upgrades/.

[6] Lewis, T., “Airspace and Traffic Operations
Simulation (ATOS) and the Air Traffic Operations
Laboratory (ATOL)”, Crew Systems and Aviation
Operations Peer Review, Feb 29, 2012, NASA,
Hampton, VA.

[7] Madden, M., “Architecting a Simulation
Framework for Model Rehosting”, AIAA 2004-4924,
AIAA Modeling and Simulation Technologies
Conference, Providence, RI, Aug. 2004.

 5D1-11

[8] Zhang, Y., Satapathy, G., Manikonda, V., and
Nigam, N., “KTG: A Fast-time Kinematic Trajectory
Generator for Modeling and Simulation of ATM
Automation Concepts and NAS-Wide System Level
Analysis”, AIAA 2010-8365, AIAA Modeling and

Simulation Technologies Conference, Toronto,
Canada, Aug. 2010.

33rd Digital Avionics Systems Conference
October 5-9, 2014

