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Abstract 

      The LaSRS++ high-fidelity vehicle 
simulation was extended in 2012 to support a NAS-
wide simulation mode. Since the initial proof-of-
concept, the LaSRS++ NAS-wide simulation is 
maturing into a research-ready tool. A primary 
benefit of this new capability is the consolidation of 
the two modeling paradigms under a single 
framework to save cost, facilitate iterative concept 
testing between the two tools, and to promote 
communication and model sharing between user 
communities at Langley. Specific benefits of each 
type of modeling are discussed along with the 
expected benefits of the unified framework. 

Current capability details of the LaSRS++ NAS-
wide simulations are provided, including the 
visualization tool, live data interface, trajectory 
generators, terminal routing for arrivals and 
departures, maneuvering, re-routing, navigation, 
winds, and turbulence. The plan for future 
development is also described. 

Acronyms 
ADRS Aeronautical Datalink and Radar 

Simulation 
ARINC Aeronautical Radio Incorporated 
ASAB Aeronautics Systems Analysis 

Branch 
ASTOR Aircraft Simulation for Traffic 

Operations Research 
ATM Air Traffic Management 
ATOL Air Traffic Operations Lab 
ATOS Airspace and Traffic Operations 

System 
CMF Cockpit Motion Facility 
CSAOB Crew Systems and Aircraft 

Operations Branch 
DOF Degrees of Freedom 
FAA Federal Aviation Administration 
FMS Flight Management System 

HITL Human in the Loop 
JNI Java Native Interface 
JSC Johnson Space Center 
KTG Kinematic Trajectory Generator 
LaRC Langley Research Center 
LaSRS++ Langley Standard Real-time 

Simulation in C++ 
MACS Multi-Aircraft Control System 
MAVERIC Marshall Aerospace Vehicle 

Representation in C 
MSFC Marshall Space Flight Center 
NAS National Airspace System 
SDAB Simulation Development & 

Analysis Branch  
SID Standard Instrument Descent 
SMART NAS Shadow Mode Assessment using 

Realistic Technologies in the NAS 
STAR Standard Terminal Arrival Route 
VM Virtual Machine 

Background 
In 2012, the Langley Standard Real-time 

Simulation in C++ (LaSRS++) was extended to allow 
the framework to support systems-level simulation of 
the National Airspace System (NAS), also called 
NAS-wide simulation. The LaSRS++ high-fidelity 
vehicle simulation actively supports studies involving 
commercial transport and military aircraft, launch 
vehicles, and spacecraft. Simulations are hosted as 
fast-time on the desktop, with humans-in-the-loop 
(HITL) in research cockpits, and in flight tests using 
Langley Research Center (LaRC) aircraft. The 
simulation architecture was already designed to 
support varying research missions on varied 
platforms. With the addition of the NAS-wide 
modeling capability, this range of research was 
extended to include systems-level analysis of the 
airspace, primarily in support of the Next Generation 
Air Transportation System, or NextGen. 
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The initial implementation of the LaSRS++ 
NAS-wide model was performed as a proof-of-
concept to verify that the LaSRS++ high-fidelity C++ 
program was able to handle the very large number of 
objects and fast processing speed required to support 
NAS-wide modeling. After successful proof-of-
concept testing, work progressed to evolve the 
LaSRS++ NAS-wide simulation with models needed 
to support systems-level airspace research.  

Creation of a single software framework to 
support Langley technology concepts offers 
significant potential cost benefits. This cost savings 
will result from the use of an existing in-house 
LaSRS++ software support team that can be tasked 
on an as-needed basis. Although some models and 
techniques are unique to the new NAS-wide 
paradigm, the shared style and architecture of the 
LaSRS++ NAS-wide and high-fidelity vehicle 
framework allows software developers to transition 
quickly to the NAS-wide paradigm. Another 
important benefit is the greater potential for 
communication, model sharing, and mission testing 
that is facilitated by allowing different research 
groups to operate in a single, unified environment.  

A similar set of goals was envisioned in 1997 
when the LaSRS++ simulation framework was 
extended to support the simulation-to-flight mission 
for the LaRC 757 aircraft. This capability resulted in 
an estimated savings of $17M in the first 10 years of 
use [1]. Once the LaSRS++ NAS-wide simulation is 
ready for research, it is expected to save more money 
per year than the total cost of its development. 

The Aeronautics Systems Analysis Branch 
(ASAB) is providing the expertise for the initial 
NAS-wide model development. Models hosted in 
other NAS-wide simulation programs cannot be 
ported directly to LaSRS++ because of the 
differences in language and calling structure. 
Therefore, the Langley Simulation Development and 
Analysis Branch (SDAB) is providing expertise to 
stage the models in the LaSRS++ architecture. The 
successes achieved to date are a result of this 
collaboration.  

Benefits of High-Fidelity Simulation 
High-fidelity vehicle simulations are critical to 

determining the feasibility and acceptability of new 
technologies to pilots and controllers who must use 
them. This is facilitated early in the design by human 

testing through HITL simulation. This style of 
simulation attempts to present as accurate a depiction 
of reality as possible to the pilot subject flying the 
mission for research and evaluation. The simulation 
scenario is staged from the point of view of the 
primary aircraft being modeled, also called the 
“ownship”. These simulations are used to evaluate 
display concepts, pilot workload, handling qualities, 
and vehicle response. They can also help determine 
exactly how a concept technology can be staged in 
consideration of existing hardware systems on an 
aircraft, which is a key factor in assessing the cost of 
adoption of the technology to operators.  

Benefits of NAS-Wide Simulation 
NAS-wide simulation modeling studies became 

prevalent in the early 2000’s, enabled by increasing 
compute speed and modern software languages. 
Unlike high-fidelity vehicle simulations which focus 
on the details of the ownship, NAS-wide simulations 
focus on the overall picture. Details of how aircraft 
characteristics are achieved are not as important as 
succinctly capturing the behavior of the vehicle so it 
can be tested in the larger flow. These simulations 
were developed to support cost and benefit 
assessment of the impact of individual technology 
concepts deployed at a NAS-wide scope. 
Improvements that seem minor for a single vehicle 
can demonstrate substantial system-wide benefit if 
applied to a large number of flights. Conversely, a 
seemingly substantial benefit that can only be 
realized by a few flights or in a limited region may 
not justify the infrastructure cost of adoption. 

A substantial benefit of NAS-wide simulations 
is the allowance for emergent behavior in the 
resulting flow dynamics. Emergence is a process 
whereby larger patterns and regularities arise through 
interactions of smaller or simpler entities. In a NAS-
wide simulation, these emergent behaviors can reveal 
flow characteristics that are difficult or impossible to 
predict when the individual model is considered 
separately or at a limited scale. These unpredicted 
consequences can be the “Achilles heel” of 
technology products making their way into larger 
NAS testing for the first time. A NAS-wide 
simulation can uncover many of these issues early in 
the development process, often remedied with minor 
changes if realized early enough.  
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NAS-wide simulations must run their full 
scenario in a very short amount of time to be useful, 
preferably in minutes rather than hours. To model 
this many aircraft concurrently and interactively on a 
single computer (often a laptop), they use aircraft 
models that are at lower detail level than their high-
fidelity vehicle simulation counterparts. Dynamic 
actors in NAS-wide simulations are often based on 
parameterized models, and the output metrics relate 
to systemic properties (like total delay, average 
throughput, and overall fuel reduction). The NAS-
wide aircraft can also contain action and response 
algorithms to portray pilot behavior. This allows each 
of the tens of thousands of flights to be an intelligent 
actor in the scenario in a repeatable fashion and 
without the need for support hardware (like pseudo-
pilot stations).  

Unified Vehicle and NAS-Wide 
Simulation Approach 

The adoption of promising new NextGen 
technologies into real-world use will require 
substantial changes to the existing Air Traffic 
Management (ATM) infrastructure by the FAA and 
industry stakeholders. The costs associated with these 
changes must be justified by the NAS-wide benefit 
and vetted for user acceptability. Technology concept 
development using an iterative approach with both 
high-fidelity and NAS-wide modeling can quantify 
these benefits more completely and demonstrate 
acceptability, resulting in a product that is 
commercially viable earlier.  

At the same time that NAS ATM stakeholders 
demand more from the research community, budgets 
provide less. Efforts to integrate labs or to re-host 
products into new test beds can be tedious and 
expensive endeavors when done on a project-by-
project basis. This type of integrated capability is 
only cost effective if it can be shared by many 
projects and can provide continued return on 
investment over time. No one project can absorb this 
cost within their allocated time and budget. Once 
available, however, many projects can benefit. 

This same philosophy is a driver for NASA’s 
current investment in the Shadow Mode Assessment 
using Realistic Technologies for the National 
Airspace System (SMART NAS) initiative. SMART 
NAS is a simulation framework that is expected to 
accelerate the transformation of the NAS by 

providing a platform for more comprehensive testing 
of integrated airspace concepts. [2] NASA is 
investing in the design and development of the 
SMART NAS capability up front, expecting that the 
return on investment will be exponentially greater 
than the cost of development.  

Impediments to a Unified Simulation 
An impediment to iterative testing in both a 

high-fidelity and a system-level environment is the 
unique tool sets used by each group. Research 
simulations, regardless of their style, are supported 
by complex executives and architectures. 
Transitioning models from one environment to 
another is much more complicated than simply 
relocating the software and supplying inputs and 
outputs. Architectural constraints often require 
changes to the software to allow it to operate properly 
within a different calling scheme and using a 
different set of available state variables.  

Differing software language conventions for 
real-time versus NAS-wide simulations also impede 
iterative concept testing. Most NAS-wide simulations 
are in Java. Simulations which require hard-deadline 
real-time operation (which includes the LaRC HITL 
simulators) cannot use Java because of the garbage-
collection process, which is used by the Java Virtual 
Machine (VM) to clean up unused memory. Though 
the user can tune the way Java runs the garbage 
collection and can set recommended limits on its 
duration and frequency [3], it cannot be turned off 
entirely.1  

For a system without real-time operational 
constraints, the Java garbage-collector is a valuable 
service that eliminates the tedium of tight memory 
management. However, the process is inherently non-
deterministic in duration. This prevents the level of 
control required for the tightly managed real-time 
frame. Simulations that must support hard-deadline 
real-time operation are written in languages that 
allow the programmer to control all system calls and 
memory allocation. Legacy real-time simulations 
were often written in FORTRAN. Modern 
frameworks often use some derivative of C. For 
example, the Johnson Space Center (JSC) “Trick” 
simulation is written in C--, Marshall Space Flight 

                                                      
1 Disabling the garbage collection was removed after Java 1.1, 
although the syntax was supported until Java 1.4. 
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Center’s (MSFC) Marshall Aerospace Vehicle 
Representation in C (MAVERIC) simulation is in C 
and C++ [4], and LaSRS++ is written in C++. Java 
and C-based language developers also use different 
coding styles, which contributes significantly to the 

difficulty in transitioning between existing real-time 
and NAS-wide paradigms. 

Table 1 captures some of the differences in 
vehicle versus NAS-wide simulation frameworks. 

 

Table 1. Characteristic Differences Between Vehicle and NAS-Wide Simulations 

Trait Vehicle Simulation NAS-Wide Simulation 
Language Usually a version of C or FORTRAN Usually Java 
Programming 
considerations 

Memory allocation and system calls must be 
completed before or after the real-time run. System 
calls are non-deterministic in length and often 
cause frame overruns (a simulated second takes 
more than a second of wall clock time). Frame 
overruns cause a buildup of error between 
simulation states and internally computed states of 
avionics and simulator hardware, such as a control 
loader or Flight Management System (FMS). 

Overall time to execute the run is 
prioritized, rather than 
consistency in timing between 
individual frames. Techniques 
like distribution of operations 
and event-driven computations 
are frequently employed to 
increase overall run speed. 

Clock Can support real-time or fast-time  Usually only fast-time 
Length of run Simulated runs span minutes, seldom more than a 

few hours. 
Simulated runs can span several 
days (in fast-time) 

Viewpoint From the ownship (vehicle being simulated)  Bird’s eye view (no ownship) 
Vehicle Lifespan Simulated vehicle (ownship) is active for entire 

duration of run 
Flights enter and exit the 
simulated day[s] at designated 
departure and landing times 

Metrics Typically relate to the ownship (aircraft state data, 
environmental states, Cooper-Harper scales for 
pilot workload, pilot controls movement) 

Typically relate to system 
characteristics (averages/ totals 
of measured states of all flights)  

Traffic 
intelligence 

Traffic (non-ownship) movement is usually 
predetermined (e.g., based on a previously 
recorded path) or is assisted by pilot actions with a 
simplified cockpit (a pseudo-pilot station).  

Traffic aircraft have artificial 
intelligence to respond to 
simulated situations through a 
“pilot” model. All flights can be 
intelligent actors.  

 

Unified LaSRS++ High-Fidelity and 
NAS-Wide  

      While the Langley airspace research 
community can benefit from an iterative concept 
development and test approach offered by both 
vehicle and NAS-wide simulations, this was not a 
cost-effective option in the past for reasons 
mentioned in the previous section. The time and 
effort required to re-host a software model from an 
event-based Java calling scheme (as typical for NAS-
wide simulations) into a time-based C++ calling 

scheme (for Langley real-time vehicle simulations) is 
difficult to the point of being impractical, and so 
rarely occurs.  

This situation is being remedied for the Langley 
research simulation community by the expansion of 
the existing LaSRS++ vehicle simulation to support 
NAS-wide modeling. This effort began in 2012 and 
continued as a grass roots effort supported by one or 
two developers at a time, but with considerable 
progress in the two years since it was first proposed. 
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Langley ATOS and ATOL Facility 
The Langley Airspace and Traffic Operations 

(ATOS) and Air Traffic Operations Lab (ATOL) are 
development and test systems for new air traffic 
management concepts and airborne technologies [5]. 
This lab allows pilots and controllers to assess the 
usability, feasibility, and acceptability of new flight 
deck technologies (Figure 1). 

 
Figure 1. Langley ATOS Monitoring System [6] 

Within this lab are numerous “Aircraft 
Simulation for Traffic Operations Research” 
(ASTOR) stations, which can be configured to 
support single or dual crew operations (Figure 2). 
ATOL and ATOS are operated by the Crew Systems 
and Aviation Operations Branch (CSAOB) at LaRC. 
The lab can model hundreds of interactive 
background aircraft to create realistic scenarios as 
staging for the live pilot test subjects. Though the 
software is maintained independently by CSAOB, the 
systems have some commonality with the SDAB 
HITL simulator lab run using LaSRS++. The ATOL 
lab is also written in C++ and runs in either fast-time 
or real-time. The lab can run independently, or in 
joint simulations with the Cockpit Motion Facility 
(CMF) simulators linked to ATOL for expanded test 
missions. ATOL also has access to the LaSRS++ 
software repositories and configuration management 
system, and reuses some of the aircraft models from 
LaSRS++. Therefore, models that are developed 
under the LaSRS++ framework for the NAS-wide 
models will also be available to ATOL developers. 
This may be particularly useful for sharing the 
SMART NAS interfaces that will be created once that 
system is available. 

 

 

 
Figure 2. ATOL Displays and Controller 

Stations [6] 

LaRC LaSRS++ Framework 
Extension of the LaSRS++ simulation to support 

NAS-wide operation was simplified by the software 
architecture, which was designed to provide 
flexibility for varied operational scenarios and was 
extended several times in its lifespan to that end [7]. 
The simulation was originally adopted in 1995 for use 
in the any of the simulator cockpits maintained by 
SDAB, including Langley’s Cockpit Motion Facility 
(CMF), or with fast-time operation on the desktop. In 
1998, the mission for LaSRS++ was extended to 
additionally provide the research system for the 
Langley 757 aircraft, and eventually for all Langley 
aircraft running flight test software. In 2005 and 
2008, Mars and Moon environment models were 
added, respectively, to support the space science 
research.  

In 2011, LaSRS++ was extended to add a 
distributed simulation capability for traffic modeling. 
This allows LaSRS++ vehicles to send and receive 
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situational data required to model ADSB antenna 
communication using traffic states supplied by 
ASTOR models of the LaRC ATOS. It also provides 
a one-way gateway to Ames' Aeronautical Datalink 
and Radar Simulation (ADRS) which allows 
LaSRS++ vehicle simulations to use the Ames' Multi-
Aircraft Control System (MACS) as an ATC station. 
For the NAS-wide model, a new simulation entity 
was created to manage the life cycle of NAS traffic 
objects within the local simulation. This 
“TrafficFlowManager” component builds models into 
the simulation as simple aircraft that have type-
specific parameter-based trajectories, pilot decision-
making, and which can respond to airspace 
management requests. TrafficFlowManager also 
controls the lifecycles of the airspace management 
components, which provide scheduling and routing 
directives to initiate and adjust the flow of traffic. 

Figure 3 presents the high-level class 
architecture of the three model styles within 
LaSRS++. Any of the three model types can run 
independently or together in a simulation scenario. In 
this diagram, the ATOS is the supplier of ADSB 
information, but this data can alternately come from 
the Ames MACS system or from playback data from 
a previous run. 

SMART NAS Shared Development 
The timing of this effort will allow both the 

vehicle and NAS-wide LaSRS++ research 
communities to share interface tools to SMART NAS 
as they are added to the framework. The new 
SMART NAS interface system will have the benefit 
of two distinctly different operational paradigms 
contributing to the design from the outset. LaSRS++ 

is expected to be one of the early-adopters of 
SMART NAS technologies. By developing an 
interface to serve both the NAS-wide and HITL 
simulators from the outset, overall cost of 
transitioning to SMART NAS will also be minimized. 

Current Status of LaSRS++ NAS-Wide 
The majority of the simulation architectural and 

infrastructure changes needed to support NAS-wide 
simulation in LaSRS++ were completed during the 
feasibility study in late 2012 and early 2013. Once the 
NAS-wide framework changes were completed, 
models running within it were extended and matured 
to begin to provide functionality to ready them for 
research.  

Progress Monitor Visualization Tool 
Emphasis was put on early development of a 

visualization monitor. One of the lessons shared by 
other NAS-wide development teams was the need to 
have visualization of trajectories available as soon as 
possible. Without a visualization tool, verification 
and validation relies on inspection of data values 
which is error-prone. Problems that are obvious with 
a visualization display running can go undetected for 
years without one. Therefore, a display called the 
Progress Monitor was created early in the 
development process. This display uses a birds-eye 
viewpoint that can be zoomed, slewed, or rotated. 
When the Progress Monitor runs, it artificially slows 
down the simulation speed to force the traffic to 
move slowly enough to be captured for display. 
When run speed is critical and the monitor is not 
needed, the user can run the simulation without it. 
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Figure 3. LaSRS++ Class Architecture for NAS-Wide, External Traffic, and High-Fidelity Operation 
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The Progress Monitor (Figure 4) is a good 
example of software reuse (and associated cost 
savings) possible by using a common framework. The 
map background for the display was created to 
support an earlier LaSRS++ real-time project and was 
resurrected for the NAS-wide simulation. The 
interface architecture between the simulation program 
and the display program (which runs as a separate 
process) is also reused and is standard for display 
communication with LaSRS++ real-time simulator 
projects. Since the new Progress Monitor display uses 
LaSRS++ standard methods, this display can be 
reused in the future for real-time projects and is 
already being considered for cockpit display of 
weather. The icons that show traffic were also reused 
from an existing simulator cockpit navigation display.  

 
Figure 4. LaSRS++ NAS-Wide Progress Monitor 

A feature was recently added to this display to 
allow a spacing disk to be optionally enabled around 
any or all aircraft. The spacing disk radius and 
thickness are sent as individual aircraft parameters 
and are used to monitor loss of separation events for 
testing or for demonstration.  

Live Data Interface 
     An interface was added to the simulation to 

process live data using a web-based blended source 
data service. Prior to the creation of this interface, 
live data was never used for LaSRS++. The capability 
was added as a feasibility test and to provide insight 
into the benefits and challenges of using this type of 
data in a simulation. FlightAware was selected 
because their service provides data from a 
compilation of sources through a single protocol. This 
allows a user to easily experiment with different data 
types through the same server. The LaSRS++ NAS-

wide simulation currently only takes advantage of 
aircraft state data, which is used to locate traffic for 
interactive modeling and for display on the Progress 
Monitor (Figure 5). However, the API already exists 
in the simulation to access weather data, flight plans, 
and all other information offered by the service. 

 
Figure 5. Live Traffic Portrayed in LaSRS++ 

NAS-Wide 

Trajectory Generators 
The term “trajectory generator” is used in a 

different context by the flight vehicle modeling 
community versus the NAS-wide modeling 
community. In the vehicle modeling world, a 
trajectory generator is the component of a flight 
management system (FMS) which predicts a path 
through space for the host aircraft to follow to 
navigate efficiently along the 3-D route selected by 
the pilot. In this case, the trajectory is not the state of 
the aircraft, but rather the target state. In the NAS-
wide modeling community, a trajectory generator is 
the component of the simulation that provides the 
actual state for a modeled aircraft at all points along 
its simulated path based on performance database 
criteria. The trajectories are constructed from 
estimated performance data for specific aircraft types. 
The resulting paths are point-mass models with 3 
degrees of freedom (3 DOF), as opposed to the 6 
DOF trajectories of the high-fidelity aircraft models. 
The lower fidelity state models are appropriate for the 
systems-level studies that use them, and they run very 
quickly. This allows the NAS-wide simulation to run 
tens of thousands of aircraft on a single processor. 

The LaSRS++ vehicle simulation already 
contained many high-fidelity performance models 
and can model FMS trajectories, but the type of 
trajectory generators needed by the NAS-wide 
framework had to be added. Three trajectory types 
are currently available. A nodal model was created 
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during the initial development to exercise the 
framework features (like data logging, file 
processing, and timing features). A second option 
called the Kinematic Trajectory Generator (KTG) [8] 
from Intelligent Automation, Inc. (IAI) was added 
which uses aircraft-specific performance 
characteristics and provides an integrated path. The 
KTG trajectory is also used in ACES, and provided a 
common thread between the two simulations that was 
useful for comparison testing during the proof-of-
concept phase. The downside of this version of KTG 
for the LaSRS++ simulation is that it is written in 
Java, requiring it to be interfaced to LaSRS++ 
through the Java Native Interface (JNI). 
Communication between the C++ host and the Java 
KTG code through the JNI is very difficult to debug 
and impeded the progress of route modification 
modeling between LaSRS++ and KTG.  

Two solutions were initiated to remove the Java 
code from the LaSRS++ NAS-wide model. One is the 
replacement of the Java KTG with a new version now 
available from IAI that is entirely in C++. This work 
is scheduled for completion by the end of 2014. The 
second solution is a new in-house C++ trajectory that 
is an evolution of the original nodal model and 
provides an integrated path using aircraft-specific 
performance data. The in-house C++ trajectory was 
completed in spring of 2014. The KTG trajectory is 
more mature and provides a richer set of features and 
higher fidelity, but the integrated C++ trajectory is 
also a useful model for many applications. The in-
house C++ trajectory has the additional benefit of 
accessibility of the source code, since the C++ 
version of KTG will only be available as a linked 
executable library. 

Arrival and Departure Routes 
The ability for traffic to use Standard Instrument 

Departures (SIDs) or Standard Terminal Arrival 
Routes (STARs) is available for LaSRS++ NAS-
wide. At startup, the program reads a text file that 
uses the same format as the FAA’s 56 Day NASR 
“stardp.txt” data file. This file is available via the web 
from the FAA for US government use through 
subscription.  

The 56-Day NASR STAR and SID routes file 
commonly contains multiple versions of routes, in 
which case the first version is used by the simulation. 
This file contains the superset of all route options, but 

does not determine which subset is used for any given 
simulation run. A separate initialization file contains 
the list of airports that will use arrival and departure 
routes, and which routes are active at startup. Only 
active routes are used by simulated traffic. Airports 
not specifically designated for SID/STAR arrivals 
default to a nodal terminal airspace model for run 
speed efficiency. 

Navigation Database 
The NAS-wide simulation reuses the Navigation 

Database system already available in LaSRS++ to 
determine the location of arrival and departure 
airports, named waypoints in arrival and departure 
routes, and runway parameters. This data resides in 
an ARINC2 424-formatted text file for the continental 
US which can be used as-is or tailored for research 
use. This navigation database information is used by 
the NAS-wide simulation to determine the airport 
centers for the default terminal airspace regions and 
for the locations of the runway thresholds at each 
airport.  

Maneuvering and Rerouting 
After the initial path for a flight is created, the 

flight may have to alter its path to avoid a conflict or 
to change its arrival time to interim waypoints or to 
the arrival runway. A maneuver can be added to the 
current route to issue a short-term divergence from 
the original path. Once the purpose of the maneuver 
is accomplished, the flight reacquires the original 
route as soon as possible. With rerouting, the latitude 
and longitude points that contribute to the aircraft’s 
route are changed permanently and the flight is not 
expected to reacquire the original route. This might 
be done, for example, to avoid a large weather 
system.  

The KTG trajectory generator option within the 
NAS-wide simulation supports maneuvering with a 
user-friendly interface to request changes. The 
simulation currently only uses the path stretch and the 
speed change maneuvers to alter aircraft paths, but 
options are also available for altitude and course 
changes, and for combinations of several of these 
options linked in tandem. Maneuvering is not yet 

                                                      
2 Aeronautical Radio, Incorporated (ARINC) maintains 
formatting standards for communication protocols for the 
aeronautics industry, including the 424 standard which pertains to 
navigation databases. 
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available for the C++ trajectory, but is a planned 
future feature. Rerouting is available for either 
trajectory and is handled by modifying the reference 
points for a flight’s path and requesting a new 
trajectory prediction.  

Wind and Turbulence  
The NAS-wide simulation makes use of the 

existing wind and turbulence models from LaSRS++. 
A variety of models are available, including constant 
and 4-D location wind models and several options for 
wind turbulence and wind shears. Numerous other 
environmental models are available in LaSRS++ that 
are frequently used by the vehicle simulations but are 
not yet used in the NAS-wide simulation. These 
include cloud layers, fog, and sun rise and set timing 
which could be useful in the future for localized 
visibility constraints on spacing, for example, while 
the wind information could be useful in assessments 
of noise impact in the vicinity of airports. 

Future Development 
Additional functionality is in progress, with 

optional new capabilities envisioned for farther term 
development. The near-term features center on arrival 
and departure scheduling models. Though aircraft can 
already follow SID or STAR routes, there is no 
system monitoring or advising them for specific 
waypoint crossings or runway threshold touchdown 
times to target safe separation. The addition of a 
system to provide this is a near-term research need. 
Properly implementing such a scheduler will rely on 
an expanded maneuvering and rerouting capability, 
which is also targeted for near-term development.  

As discussed in the Trajectory Generator 
section, a new version of the KTG trajectory 
generator is currently being interfaced to the NAS-
wide simulation. This trajectory will be available as a 
fourth option and will allow the more mature KTG 
features and fidelity to be used in the simulation 
without Java. As part of the addition of KTG in C++, 
the trajectory generator manager is being reworked to 
allow any trajectory generator to be added to the 
simulation in the future as a plug-in.  

A long term goal is to allow the LaSRS++ HITL 
simulator cockpits to use the NAS-wide aircraft as 
intelligent traffic models. Use of this type of 
intelligent traffic model in the current HITL 
simulations requires connection to and support of the 

ATOL lab. Once the NAS-wide models are integrated 
to the real-time simulation, intelligent high-volume 
traffic will also be available in LaSRS++-only 
operations and also with fast-time vehicle simulations 
on the desktop. 

Adding this capability will require some minor 
changes to the vehicle simulation executive to create 
and manage the NAS-wide flights. Once integrated, 
this will also allow the HITL simulations to run in 
scenarios that use actual live traffic in progress. The 
implementation of this set of features is conditional 
on funding and need from the research clients that 
will use that service. 
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