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Abstract 
An experiment was conducted to quantify the 

effects of changing dynamics on a subject’s ability to 
track a signal in order to eventually model a pilot 
adapting to changing aircraft dynamics.  The data 
will be used to identify primary aircraft dynamics 
variables that influence changes in pilot’s response 
and produce a simplified pilot model that 
incorporates this relationship.  Each run incorporated 
a different set of second-order aircraft dynamics 
representing short period transfer function pitch 
attitude response: damping ratio, frequency, gain, 
zero location, and time delay.  The subject’s ability to 
conduct the tracking task was the greatest source of 
root mean square error tracking variability.  As for 
the aircraft dynamics, the factors that affected the 
subjects’ ability to conduct the tracking were the time 
delay, frequency, and zero location.  In addition to 
creating a simplified pilot model, the results of the 
experiment can be utilized in an advisory capacity.  A 
situation awareness/prediction aid based on the pilot 
behavior and aircraft dynamics may help tailor pilot’s 
inputs more quickly so that PIO or an upset condition 
can be avoided. 

Introduction 
Significant research has been conducted to 

model or identify the pilot, as a way to quantify 
handling qualities or to better understand the 
behavior of a human pilot in controlling a vehicle 
[1-7]. Our research is investigating new analytical 
methods to model the pilot’s changing behavior over 
short time periods in response to changing aircraft 
dynamics. 

A model that captures the pilot’s adaptability to 
changing aircraft dynamics without a priori 
knowledge of these changes is the long-term 
objective of this research.  Availability of such an 
analytical model would have impact in a number of 
different areas; among these are decision aids for the 
pilot, function allocation between the pilot and 
automation especially during changes in effective 
dynamics, and potential requirements for adaptive 

control law design.  The research presented here 
builds on past work to provide tools to analyze and 
solve this type of modeling problem. 

Method 
An experiment was conducted to quantify the 

effects of changing dynamics on a subject’s ability to 
track a signal in order to eventually model a pilot 
adapting to changing aircraft dynamics.  This paper 
documents the development of a database that will be 
used for this work.  The experiment evaluated 
primary aircraft dynamics variables that influence 
changes in pilot’s response and produce a simplified 
pilot model that incorporates this relationship. 

The experiment, conducted to identify the pilot-
dynamic variable relationship, required each subject 
to track as closely as possible a pitch attitude signal.  
The input for the tracking task was designed to 
contain a variety of frequencies in the frequency 
range associated with human pilot inputs, namely 0.1 
to 10 rad/sec.  Each run incorporated a different set of 
second-order aircraft dynamics representing short 
period transfer function pitch attitude response.  This 
response was then displayed to the pilot as the 
aircraft response. 

Independent Variables 
The following independent variables were 

controlled during each data run. 

Pitch Dynamics 
This experiment looked at short period 

dynamics, which affect flying qualities the most.  
Therefore, longitudinal dynamics were controlled 
while lateral/directional and thrust values were held 
constant at a heading of 40 deg and a speed of 300 
kts.  The altitude at the beginning of each data run 
was 10,000 ft.  The aircraft short-period pitch attitude 
transfer function was: 
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where � is pitch attitude and � is pilot stick.  The 
damping ratio ( 	 ) was 0.4, 0.7, or 1.  The short 
period frequency (� ) was 0.5 Hz, 1 Hz, or 1.5 Hz.  
Gain ( K ) was 1, 2, or 3.  Zero location ( L� ) was 
0.5, 1, or 1.5.  Lastly, time delay �  was 0 ms, 75 ms, 
or 150 ms.   

Tracking Signal 
The maneuver was designed as a 30 sec 

longitudinal tracking task.  The tracking command 
input contained a range of frequencies and 
amplitudes to excite an appropriate dynamic range. 

The longitudinal tracking task was designed to 
contain a variety of discrete frequencies in the 
frequency range associated with human pilot inputs, 
namely 0.1 to 10 rad/sec.  The input design method is 
described in detail by Klein and Morelli [8, 9].  The 
result was the equivalent of a frequency sweep input, 
but used many sinusoidal components with discrete 
frequencies applied simultaneously, instead of a 
single sinusoid with frequency increasing 
monotonically in time. 

Figure 1 shows an example tracking task.  The 
sum-of-sines task was generated as: 

 
� �1,2,...,

2  ( ) sink k
k M

k tu t A
T
� �

�

� �� �� �
� �

�  (2) 

where u(t) is the pitch attitude tracking command 
(deg), the discrete frequencies 2 k T�  were chosen 
to span the frequency range of 0.1 to 10 rad/sec, the 
phase angles ( k� ) were random, and the amplitudes 
( kA ) were chosen to customize the power spectrum 
of the multi-sine input.  In this application, the phase 
angles were chosen at random to emulate a random 
sinusoidal input.  The frequency indices (k) were 
chosen at irregular intervals, which also helps to 
emulate a random sinusoidal input. 

 

 
Figure 1. Longitudinal Input Signal 

Subjects 
Four pilots participated as subjects.  The average 

age was 50 (standard deviation of 3.6) years old.  The 
average years flying was 20.5±12 and the average 
number of flight hours was 3312±4483 hrs.  Subject 
2 had the least number of flight hours (<600 hrs) and 
years flying (�� ��� ���	�
�� ���� 
���� �������� ��������
had just about 1000 flight hours and approximately 
15 years of flying experience.  Subject 4 had the most 
number of flight hours (>10,000 hrs) and the most 
years flying (> 30 years) while the next nearest 
subject had just under 2000 flight hours. 

Dependent Variables 
During each of the 35 data runs, subjects tracked 

the pitch command input signal as closely as possible 
for 30 sec.  After each run, subjects then completed a 
Cooper-Harper (CH) rating scale. 

RMS Error 
Root Mean Square (RMS) error was calculated 

by taking the current pitch attitude of the aircraft and 
subtracting the desired pitch attitude of the aircraft.  
This was calculated in deg. 
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CH Rating 
At the end of each data run, subjects gave a modified 
CH rating [10, 11].  An electronic format of the CH 
rating process was used which enforced the structure 
of the CH logic decision path, starting at the bottom 
(“Is it controllable?”) format (Figure 2), and 
progressing accordingly until a final rating is given 
[12].  The pitch attitude command signal (u) drove 
the flight director symbol on the Attitude Direction 

Indicator (ADI) shown in Figure 3.  Zero tracking 
error  was  defined  by  the  airplane  symbol  nudged 
under the flight director (Figure 3).  Desired 
performance was defined as being within 2.5 degrees, 
which was half the width of the airplane symbol 
wings, of the flight director (Figure 4).  Adequate 
performance was defined as being within 5 degrees 
of the flight director which was the width of the 
airplane symbol wings (Figure 5). 

 
Figure 2. Cooper-Harper Controllability Scale Format 
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Figure 3. CH Optimal Rating Performance 
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Figure 4. CH Desired Rating Performance 
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Figure 5. CH Adequate Rating Performance 

Procedure 
After arrival, subjects were briefed on the 

experiment, task, and displays using still pictures. 

Next, subjects were introduced to the simulator 
using a 20-minute familiarization run.  The 
familiarization run had a 5 min periodic longitudinal 
tracking signal similar to the data runs.  For both the 
familiarization run and for the data runs, the flight 
director had an amplitude of no more than ±5 
degrees.  During the familiarization run, the subject 
was also able to free fly the simulation.  The pitch 
attitude response transfer function (see Eq. 1) had the 
baseline characteristics of: � = 0.4, �= 0.5 Hz, � = 0 
ms, L� = 1.5, and K = 3.  Subjects were allowed to fly 
the familiarization run until they were comfortable 
with the simulation dynamics. 

After the subject was comfortable with the 
sidestick and the task, each subject completed 35 data 
runs.  During each data run, straight and level flight 
was established for 2 sec before the tracking task 
initiated.  After the 30 sec tracking task, straight and 
level flight was reestablished for 2 sec.  Therefore, 
each run lasted a total of 34 sec.  At the end of the 
runs, subjects gave a CH rating. 

The simulation was implemented in 
Matlab/Simulink® 2009b.  The simulator setup is 
shown in Figure 6 and the general simulation 
diagram is shown in Figure 7. 

 
Figure 6. Simulator Setup 

 

 
Figure 7. Block Diagram of the Simulation 

 

Results 
Analyses were done using SPSS™ v16.  

Significance was set at a p-value ������� 

Subject Effects on RMS Error 
Individual subjects tracking variability had the 
greatest effect on RMS error (F(3,201)=11.418, 
p��������  These data are shown in Figure 8 as the 
mean RMS error for each subject collapsed across all 
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aircraft dynamics variations with deviation bars, 
indicating 1 unit of computed standard error (SE) 
from the mean.  A closer look at the data indicated 
that the subject with the larger RMS error had less 
flight hours (Subject 2 flight hours < 600) as 
compared to the other subjects who had more flight 
hours and a smaller RMS error. 
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Figure 8. RMS Error by Subject 

Aircraft Dynamic Effects on RMS Error 
Tables 1 and 2 detail how the aircraft dynamics 

affected the RMS error.  As seen in Table 1, all 
individual aircraft dynamics significantly affected the 
RMS error.  The most significant effects were the 
time delay, frequency, and zero location as indicated 
����2 (Table 1). 

Time Delay Effects on RMS Error 
For the 150 ms time delay, subjects’ RMS error 

was significantly larger than for the 0 and 75 ms time 
delay (Figure 9).  This increase in RMS error was 
also reflected by the subjects’ CH rating.  As can be 
seen in Figure 10, as the time delay increased, the 
vehicle moved towards more Level 2 and 3 handling 
qualities. 

Table 1. Effects of Dynamics on RMS Error 

Aircraft Dynamic F(1,207) p �2 
Gain [K] 9.64 ����� 0.023 
Zero Location [L�] 26.12 ����� 0.063 
Damping Ratio [�] 6.95 ����� 0.017 
�	����
���!�" 58.20 ����� 0.141 
Time Delay [�] 14.99 ����� 0.036 

Table 2. RMS Error by Aircraft Dynamics 

Aircraft Dynamic Mean RMS 
Error (deg) SE 

Gain [K] 1 1.86 0.04 
2 1.75 0.05 
3 2.40 0.17 

Zero 
Location 
[L�] 

0.5 1.74 0.35 
1.0 1.75 0.38 
1.5 2.28 1.21 

Damping 
Ratio [�] 

0.4 2.19 0.12 
0.7 1.70 0.05 
1.0 1.90 0.05 

Frequency 
#$%��!�" 

0.5 2.46 1.22 
1.0 1.70 0.32 
1.5 1.64 0.24 

Time 
Delay 
(ms) [�] 

0 1.85 0.05 
75 1.70 0.05 

150 2.28 0.13 
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Figure 9. RMS Error by Time Delay 
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Figure 10. CH Rating Count by Time Delay 

Frequency Effects on RMS Error 
The RMS error for the frequency increased as 

the speed of the system response decreased down to 
0.5 Hz (Figure 11) which was different from the 1.0 
and 1.5 Hz frequencies.  As with the time delay, 
subjects’ CH ratings also indicated this increase in 
RMS error (Figure 12).  The handling qualities 
shifted to Level 2 and 3 as the frequency decreased. 
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Figure 11. RMS Error by Frequency 
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Figure 12. CH Rating Count by Frequency 

Zero Location Effects on RMS Error 
Lastly, RMS error increased with a zero location 
further into the left half plane (Figure 13).  Once 
again, this increase in RMS error manifests itself in 
the subjects’ CH ratings.  As the zero location moves 
farther into the left-half plane, the subjects’ CH rating 
spread increases towards Level 2 and 3 handling 
qualities (Figure 14).  Furthermore, this increase in 
RMS error was even more pronounced with a zero 
location further into the left half plane for lower 
frequencies (Figure 15) as would be expected by the 
control    anticipation    parameter   (CAP)  which   is 

proportional to 
2

L�

�
 [13, 14].  In fact, the interaction 

between the zero location and frequency was 
significant (F(1,207)=10.001, p������� 

&� � 2 was 
0.0242. 
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Figure 13. RMS Error by Zero Location 
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Figure 14. CH Rating Count by Zero Location 

 
Figure 15. RMS Error by Frequency and Zero 

Aircraft-Pilot Coupling 
When the system response was slower than the 
subject desired by either an increasing time delay or 
decreasing the frequency, especially with a 
corresponding zero location increase, the RMS error 
increased.  In fact, some subjects mentioned that 
certain runs were “PIO prone” (Table 3).  These runs 
had a frequency of 0.5 Hz with the zero location 
farther into the left half plane or a large time delay. 

Table 3. PIO Comments 

Time 
Delay 

(ms) [�] 

Frequency 
(������	 

Zero 
Location 

[L
] 

Count of 
Subjects 

Mentioning 
“PIO Prone” 

0 0.5 1.0 1 
0 0.5 1.5 2 

150 0.5 0.5 4 
150 0.5 1.5 6 

 

Moreover, subjects’ CH ratings became more 
diverse towards higher CH ratings as more subjects 
mentioned “PIO Prone” (Figure 16). 
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Figure 16. CH Rating Count for PIO Conditions 

Pilot Modeling Considerations 

Using System Identification to Determine Hess 
Simplified Pursuit Model Gain Parameters 

The Hess simplified pursuit pilot model includes 
two gains, Kp and Kr and a fixed neuromuscular 
model to represent a pilot’s response to a vehicle [15, 
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16].  Kr is the gain that results in a minimum damping 
ratio of 0.15 and Kp is the gain that provides the 
desired open-loop crossover frequency consistent 
with the classical McRuer cross-over model [6, 7].  
The pilot-vehicle model is shown in Figure 17 where 
the vehicle is represent by Equation 1 and Gnm, the 
neuromuscular model, is  

 
Figure 17. Hess Simplified Pursuit Model 

 
2

2 2

10
2(0.707)10 10nmG

s s
�

� �
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For the purposes of this experiment, input C is 
commanded pitch attitude u, the output M is aircraft 
pitch attitude � and �� is pitch rate q.  The above 
model does not include a time delay.  For this 
analysis, the time delay was incorporated into the 
Hess simplified pursuit model with a sixth order Padé 
approximation.   

System identification techniques were used to 
calculate these gains [9] from the recorded data runs. 
The Kp and Kr gains vary slightly by pilot and are 
dependent on the scenarios which had varying system 
dynamics ( ( , , , , )f K L� 	 � � ) (Figures 18 and 19).  
The dependency on the subject may be due to 
learning affects or piloting styles.  
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Figure 18. Effects of Scenario and Subject on Kp 

Scenario (System Dynamics)

0 5 10 15 20 25 30

K
r

0

20

40

60

80

100

120

Subject 1

Subject 4
Subject 3
Subject 2

 
Figure 19. Effects of Scenario and Subject on Kr 

Furthermore, within a given subject and constant 
system dynamics, the calculated Kp and Kr values 
using system identification techniques varied by run 
(Table 4).  The values typically settled around an 
average but there were some outliers.  Therefore, the 
need for real-time system identification is apparent 
especially if the aircraft dynamics change. 

Table 4. Repetition Effects on Kp and Kr 

Repetition 
(K=2, L�=1, 

�=0.7, �=1 Hz, 
�=75 ms) 

Calculated Kp 
Using System 
Identification 

Calculated Kr 
Using System 
Identification 

1 0.55 9.20 
2 0.51 6.80 
3 0.77 8.06 
4 0.87 6.46 
5 0.89 5.95 
6 1.11 7.59 
7 0.68 6.56 
8 0.89 8.86 
9 0.85 7.61 

10 0.78 5.99 
11 1.05 7.34 
12 0.66 8.43 

13 (outlier) 0.06 35.69 
Average±StDev 
(for Repetitions 

1-12) 
0.80±0.18 7.40±1.09 

 

Lastly, the Hess simplified pursuit model was 
shown to generally emulate the recorded pilot 
behavior when using the Kp and Kr values calculated 
using system identification (Figure 20 where K=2, 
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L�=1, �=0.7, �=1 Hz, �=75 ms).  However, the Hess 
model does not reproduce the higher frequency 
responses very well. 

 
Figure 20. Model vs. Subject Tracking 

As  expected,  these   results   indicate  that   the 
model changes in pilot control behavior due to the 
values of Kp and Kr vary with the aircraft dynamics.  
The dependence of the pilot model on aircraft 
dynamics prompts consideration of other techniques 
that could sudden changes in aircraft dynamics in 
real-time.  The technique considered has been 
successful in dealing with the changes in aircraft 
dynamics from the flight control perspective.  The 
ultimate goal is to develop an algorithm that would 
capture pilot behavior changes due to aircraft 
dynamic changes without a priori knowledge of how 
these dynamic changes occur.  The approach outlined 
herein is only an initial step. 

Estimating Pilot Response with a Simple 
Gradient Descent Estimator 

A number of different pilot models with a 
specific structure have been proposed in literature [4-
7, 16]; however, all of these depend on a priori 
knowledge of aircraft dynamic changes to alter the 
pilot behavior model.  The proposed approach is to 
assume the pilot can be represented by a system in 
the linear parameterization form: 
 � �( ) ( ) ( )Ty t x t t��  ! �  (4) 

where ( ) , ( )m ny t x t� �¡ ¡  are the system output and 
input signals, the (N ×m) – matrix Nxm � ¡  contains 
the unknown parameters to be estimated, 

( ( )) Nx t! � ¡  (called the “regressor”) represents the 

N – dimensional vector of chosen basis functions, and 
( ) mt� � ¡  denotes the non-parametric uncertainties 

in the system (such as noise, modeling errors, etc.).  
Note that in the equation above both ( )y t  and 
� �( )x t!  are known quantities.  This implies that (4) 

is simply a system of linear equations in terms of the 
unknown   which at time t is estimated by� ˆ ( )t .  
Then based on the latter, one can predict the 
value of the system output: 

 ˆˆ( ) ( ( ))Ty t x t�  !  (5) 

where ˆ( )y t  is called the predicted output at time t.   

Consider a simple gradient estimator to update 
the predictor output ˆ( )y t .  The basic idea in the 
gradient-based estimation is to update the estimated 
parameters ˆ ( )t �in such a way that the prediction 
error ˆ( ) ( )ye y t y t� 
  is reduced.  The online 
implementation of the Gradient Estimator is of the 
form: 

��(�) = ��	
�(�)
��(�) � �(�))                          (6) 

where 0T" � " #  is a symmetric positive definite 
matrix called the estimation gain [17].  

For pilot model identification, ( )x t  is the pitch 
attitude commanded by the flight director while ( )y t  
is the aircraft pitch attitude response to the pilot stick 
command as the pilot attempts to follow the flight 
director.  The update law for the estimates of the 
unknown parameters (6) is a function of the tracking 
error and a regressor chosen a priori.  The only 
assumption about the structure of the pilot model 
made in this formulation is that it can be represented 
as linear parameterization.   

A sample result for the predicted pilot output 
using the gradient estimator is given in Figure 21.  As 
can be seen in Figure 21, this initial estimate 
(ThetaHat_Pilot) follows the pilot’s response 
(Theta_Pilot) fairly well.  Furthermore, this method 
does appear to pick up more of the pilot’s high 
frequency responses. 
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Figure 21. Pilot and Estimator Pitch Response 

 

The parameters of the gradient estimator appear to 
remain fairly constant from subject to subject with 
the same pitch dynamics (Figure 22).  However, 
when the pitch dynamics change within a subject, the 
current combination of the basis functions � �( )x t! , 
which are held constant across all subjects and all 
dynamics,  and   the   gradient   estimator   parameter 
update law (6) do not do a good job of covering the 
range of dynamics.  (Figure 23). 

 

 
Figure 22. Pitch Response for Different Subjects 

It is clear from Figures 21 and 22 that while the 
predictor is doing an adequate job in predicting the 
pilot during some time intervals, i.e., the predictor 
matches the actual pilot response, but it does a poor 
job in others.  One issue is the estimation 
methodology as given by the update law (6).  The 
simple gradient descent estimator was used as a proof 
of concept.  Current research is looking at a variety of 
different approaches to find ones most suitable to 
predicting the pilot in this general model form. 
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Figure 23. Pitch Response for Different Dynamics 

In this more general model formulation the basis 
functions vector � �( )x t!  is expected to cover the 
range of dynamics and differences among the pilots; 
the unknown parameter ˆ ( )t  changes in a prescribed 
manner to accommodate the differences between the 
dynamics and pilots based on a specific update law 
(6).  This is different from a fixed structure model 
where parameters would change with the dynamics, 
e.g. the Hess model, but would have to be updated 
manually not based on a specific update expression.   

However, it is possible the estimator’s 
parameters ˆ ( )t  may need to be tuned to the current 
dynamics which may be estimated using real-time 
system identification techniques [18].  Current 
research is determining if this is necessary and 

feasible.  If this is feasible, then pilot model would be 
build on the basis of actual aircraft dynamics.  In this 
case, other pilot model structures [4-7, 16] might also 
be suitable for real-time pilot behavior prediction. 

Conclusions 
An experiment was conducted to quantify the 

effects of changing dynamics on a subject’s ability to 
track a signal in order to eventually model an 
adapting pilot to changing aircraft dynamics.  The 
research presented here attempts to identify primary 
aircraft dynamics variables that influence changes in 
pilot’s response and produce a simplified pilot model 
that incorporates this relationship.  Each run 
incorporated a different set of second-order aircraft 
dynamics representing short period transfer function 
pitch attitude response: damping ratio, frequency, 
gain, zero location, and time delay. 

In the aircraft dynamics, the factors that affected 
the subjects’ ability to track the longitudinal signal 
the most were the time delay, frequency, and zero 
location.  Besides the subjects’ RMS error, subjects’ 
CH ratings also showed this effect.  Furthermore, this 
increase in RMS error was even more pronounced 
when looking at the control anticipation parameter 
and when considering subjects’ comments regarding 
pilot-aircraft coupling. 

The Hess simplified pilot model using gains 
obtained from system identification techniques shows 
promise in predicting pilots’ control behavior but 
further refinement on the method is needed.  Under 
current consideration is a more general form of the 
pilot dynamics model borrowed from flight control 
application dealing with changing aircraft dynamics.  
Several estimation techniques are being explored to 
find most suitable approach to predicting the pilot 
without a priori knowledge of changed aircraft 
dynamics. 

In addition to creating a simplified pilot model 
to serve as a short-term control action behavioral 
predictor, the results of the experiment may be 
utilized in an advisory capacity.  Thus, if the aircraft 
dynamics change such that the system becomes more 
sluggish and unpredictable to the pilot, an increase in 
RMS error can be predicted.  If a system does in fact 
encounter these factors (established through real-time 
parameter identification), advisory information that 
would aid the pilot in adjusting his piloting approach 
and changing his expectations of aircraft response 
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can now be provided reliably by the system.  A pilot 
will eventually notice these changes while flying the 
aircraft but a situation awareness/prediction aid based 
on the pilot behavior and aircraft dynamics may help 
tailor pilot’s inputs more quickly so that PIO or an 
upset condition can be avoided.  
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