
Artifact for the OOPSLA 2024 paper
"Hypra: A Deductive Program Verifier
for Hyperproperties"

Introduction
This document describes the artifact for the OOPSLA 2024 paper “Hypra: A Deductive
Program Verifier for Hyperproperties”, which consists of:

● Our tool Hypra.
● Our evaluation, with instructions to replicate it.
● An Isabelle/HOL proof of the soundness of the novel loop rule described in section

4.2 (Theorem 1), as well as Lemma 1.

Hardware Dependencies
The artifact is a VirtualBox VM image with Ubuntu 24.04 LTS that contains our tool Hypra, all
benchmarks used in our evaluation, Isabelle 2024, and our Isabelle/HOL formalization. It
uses 8GB of RAM and two cores by default; if these values are too high for your system, feel
free to adjust them, but the VM may not work correctly.

Getting Started Guide
In the following, we explain:

1. How to open the VM
2. How to run Hypra on two examples
3. How to reproduce the evaluation, with 1 repetition only
4. How to check the Isabelle formalization

Opening the VM
To run the VM, simply import it into an up-to-date version of VirtualBox (we tested with
version 7.0). The username is test and the password is test.

Running Hypra
To use Hypra to verify a program, type the command hypra <path_to_program> in the
terminal. By default, Hypra generates both overapproximation and underapproximation
encodings for the input program, emits overapproximation framing, verifies loop invariants
modularly, and does not automatically select loop rules when verifying loops.

1

To test that Hypra can run correctly, type the following in a terminal to run Hypra on a
program that should not verify:
> hypra ~/hypra/src/test/evaluation/forall/descartes/time_false.hhl

The expected output is as follows:

The input program is read from

/home/test/hypra/src/test/evaluation/forall/descartes/time_false.hhl

Parsing successful.

Type checking successful.

Translated program is being verified by Viper.

Carbon has been started to verify the program.

Silicon has been started to verify the program.

Carbon failed to verify the program:

Postcondition of compare1 might not hold. Assertion !(in_set_forall(_s1,

S): Bool) || !(in_set_forall(_s2, S): Bool) || (!((get(_s1, i): Int) ==

1) || !((get(_s2, i): Int) == 2) || (get(_s1, res): Int) == -1 *

(get(_s2, res): Int)) might not hold. (<no position>)

Silicon failed to verify the program:

Postcondition of compare1 might not hold. Assertion (forall _s1:

State[Int], _s2: State[Int] :: { (in_set_forall(_s1, S): Bool),

(in_set_forall(_s2, S): Bool) } { (in_set_forall(_s1, S): Bool),

(get(_s2, i): Int) } { (in_set_forall(_s1, S): Bool), (get(_s2, res):

Int) } { (in_set_forall(_s2, S): Bool), (get(_s1, i): Int) } {

(in_set_forall(_s2, S): Bool), (get(_s1, res): Int) } { (get(_s1, i):

Int), (get(_s2, i): Int) } { (get(_s1, i): Int), (get(_s2, res): Int) }

{ (get(_s2, i): Int), (get(_s1, res): Int) } { (get(_s1, res): Int),

(get(_s2, res): Int) } !(in_set_forall(_s1, S): Bool) ||

!(in_set_forall(_s2, S): Bool) || (!((get(_s1, i): Int) == 1) ||

!((get(_s2, i): Int) == 2) || (get(_s1, res): Int) == -1 * (get(_s2,

res): Int))) might not hold. (<no position>)

Verification failed

Postcondition of compare1 might not hold. Assertion !(in_set_forall(_s1,

S): Bool) || !(in_set_forall(_s2, S): Bool) || (!((get(_s1, i): Int) ==

1) || !((get(_s2, i): Int) == 2) || (get(_s1, res): Int) == -1 *

(get(_s2, res): Int)) might not hold. (<no position>)

Runtime: 8.708574176

Next, type the following command to run Hypra on a program that should verify:
> hypra ~/hypra/src/test/evaluation/forall-exists/orhle/gni/denning1.hhl

--auto

The option --auto in this command tells the verifier to automatically select a loop rule when
verifying the loop in the program.

The expected output is as follows:

2

The input program is read from

/home/test/hypra/src/test/evaluation/forall-exists/orhle/gni/denning1.hh

l

Parsing successful.

Type checking successful.

Carbon has been started to check a side condition.

Silicon has been started to check a side condition.

Carbon succeeded in verifying the side condition

Can use sync rule? true

Applying syncRule

Translated program is being verified by Viper.

Carbon has been started to verify the program.

Silicon has been started to verify the program.

Carbon succeeded in verifying the program

Verification succeeded

Runtime: 8.29586005

Running the Evaluation with One Repetition
To run the evaluation with 1 repetition, type the following command in the terminal (which
should take a few minutes):
> hypra_test 1

The parameter “1” in the command above can be replaced with an arbitrary positive integer
n to run the evaluation with n repetitions.

The following is the expected output of the command hypra_test 1:

Number of repetitions: 1

Evaluation No. 0 starts

src/test/evaluation/forall/descartes/defaultcookie.hhl OK

src/test/evaluation/forall/descartes/fileitem_false.hhl OK

src/test/evaluation/forall/descartes/namecomparator_false.hhl OK

...

Total: 84

Failed: 0

Runtime: 257.95726495799994 s

Test data is saved to: src/test/evaluation/output0.csv

If Hypra produces the expected verification result for a benchmark, “OK” is printed next to
the name of the benchmark; otherwise, “Failed” and the reason for failures are printed
instead. At the end of the n-th repetition, a summary of the evaluation result is printed on the
terminal, and a .csv file, named output0.csv, which contains all information of the evaluation,
is created in the directory ~/hypra/src/test/evaluation.

3

To automatically obtain the median and average verification time of the entire benchmark
suite, type the following command in the terminal after running the evaluation with at least 1
repetition:

> cd ~/hypra; python3 process_data.py src/test/evaluation

This produces a result.csv file located in the directory ~/hypra/result. The expected output of
the commands above can be found in ~/hypra/result/expected_result.csv.

Checking the Isabelle formalization
Our Isabelle formalization builds on the one for Hyper Hoare Logic. Our contribution can be
found in the file AutomatingHHL.thy.

To get started, we recommend making sure that all the files are successfully verified by
Isabelle.

Our mechanization is located in ~/artifact/mechanization, and it contains the following 11
Isabelle files (10 are from the Hyper Hoare Logic formalization):

● PaperResults.thy
● Language.thy
● Logic.thy
● ProgramHyperproperties.thy
● SyntacticAssertions.thy
● Loops.thy
● Expressivity.thy
● Compositionality.thy
● ExamplesCompositionality.thy
● TotalLogic.thy
● AutomatingHHL.thy (our contribution)

a. Using Isabelle’s CLI

One can check that Isabelle successfully verifies all 11 files using the Isabelle command line
interface (located at ~/Isabelle2024/bin/isabelle, accessible in the terminal via the alias
isabelle) with the command “isabelle build -c -d. -l HyperHoareLogic” (this command tells
Isabelle to build the HyperHoareLogic session, which is defined in the ROOT file), run from
the folder ~/artifact/mechanization.

This can be achieved with the following command:

> cd ~/artifact/mechanization

> isabelle build -c -d. -l HyperHoareLogic

Expected output:

The final lines of the output should look like the following:

4

...

Session Unsorted/HyperHoareLogic

/home/test/hypra/mechanization/AutomatingHHL.thy

/home/test/hypra/mechanization/Compositionality.thy

/home/test/hypra/mechanization/ExamplesCompositionality.thy

/home/test/hypra/mechanization/Expressivity.thy

/home/test/hypra/mechanization/Language.thy

/home/test/hypra/mechanization/Logic.thy

/home/test/hypra/mechanization/Loops.thy

/home/test/hypra/mechanization/PaperResults.thy

/home/test/hypra/mechanization/ProgramHyperproperties.thy

/home/test/hypra/mechanization/SyntacticAssertions.thy

/home/test/hypra/mechanization/TotalLogic.thy

Running HyperHoareLogic ...

Finished HyperHoareLogic (0:01:07 elapsed time, 0:01:47 cpu time, factor

1.61)

0:01:14 elapsed time, 0:01:47 cpu time, factor 1.45

This output indicates that Isabelle successfully verified the 11 files in 1 minute and 14
seconds (it might take a bit longer depending on your configuration). A different output might
indicate a problem.

b. Using Isabelle’s GUI

Isabelle’s graphical user interface can also be used to ensure that Isabelle can verify all files.
It is located at ~/Isabelle2024/Isabelle2024, and can be opened by typing the command
“isabelle_gui” in the terminal.

To check that our Isabelle formalization is successfully verified:
1. Open the file (File > Open…) ~/artifact/mechanization/AutomatingHHL.thy, which

contains the claims made in the paper as well as some explanations (at the top of the
file).

2. Open the Theories panel (Plugins > Isabelle > Theories panel). It should be visible on
the right of the window.

3. Activate "continuous checking" by ticking the box at the top of the Theories panel, if it
is not already activated.

4. Put the cursor at the end of the file.

The verification status can be seen on the right of the editor, next to the scrollbar:
● Pink indicates a part that has not been verified yet.
● Purple indicates ongoing verification.
● Clear or orange indicates successful verification. Orange indicates a warning

(warnings do not indicate invalid proofs, but correct proofs that can be optimized).
● Red indicates an error (this should not happen).

5

Moreover, the “Theories” panel shows the verification status of all files that are imported by
the opened file, which need to be checked before the opened file can be checked.

To jump to the definition of a term, click on it while holding the Control key.

6

Step by Step Instructions
In this section, we first explain how our benchmarks are classified, and how we obtained
them. We then describe minor changes that we made to the tool and evaluation since the
submission. Finally, we explain how to reproduce the evaluation.

Benchmarks
The benchmarks used in our evaluation are taken from the benchmark suites of 4
state-of-the-art verifiers:

● Descartes (https://github.com/marcelosousa/descartes)
● ORHLE (https://github.com/rcdickerson/orhle)
● HyPa (https://github.com/hypa-tool/hypa/tree/main)
● PCSat (https://github.com/hiroshi-unno/coar)

The criteria of benchmark selection can be found in Section 5 of our paper.

All benchmarks used in our evaluation can be found in the directory
~/hypra/src/test/evaluation. The path and the name of each benchmark express the type of
hyperproperty that it reasons about, the source of the original benchmark, and whether it
should verify or not:

● If a filename ends with “_false”, then verification is expected to fail.
● If a filename does not end with “_false”, then verification is expected to succeed.

Example 1: Benchmark ~/hypra/src/test/evaluation/forall-exists/hypa/counter_diff.hhl
It requires verifying a∀*∃*-hyperproperty. It has been adapted from a benchmark of HyPa.
It should verify since its name does not end with “false”.

Example 2: Benchmark ~/hypra/src/test/evaluation/exists/orhle/backjack_once_false.hhl
It requires verifying an∃*-hyperproperty. It has been adapted from a benchmark of ORHLE.
It should not verify since its name ends with “false”.

Translating the Benchmarks
At the beginning of each of our benchmarks, we have specified the location of the original
benchmark. In most cases, the translation from the original benchmark to our Hypra
benchmark is straightforward. The exceptions to this are listed below:

● For Descartes benchmarks, each of them is translated to a Hypra program with 3
methods that only differ in the specifications. Each of these methods reasons about a
distinct hyperproperty, so the entire Hypra program can reason about all 3
hyperproperties that the original Descartes benchmark reasons about.

● Some HyPa benchmarks repeat a block of code infinitely often. However, Hyper
Hoare Logic (on which Hypra is based) can only expresses hyperproperties over
terminating executions. Thus, to faithfully model those examples, we modeled an
arbitrary repetition of the code block (e.g., by forgetting the values of variables
modified by this block of code).

7

https://github.com/marcelosousa/descartes
https://github.com/rcdickerson/orhle
https://github.com/hypa-tool/hypa/tree/main
https://github.com/hiroshi-unno/coar

● For the benchmark named half_square_ni from PCSat, by analyzing its semantics
and specifications, we believe that the variable y should be incremented by i
instead of by y in the loop body. This adjustment is reflected in our translation.

● For invalid benchmarks (i.e., where verification failure is expected), we only
translated those without loops, because it is unclear whether examples with loops fail
because the hyperproperty does not hold, or because the loop invariant is too weak.

Obtaining valid∃* and∃*∀ benchmarks from invalid∀* and∀*∃* benchmarks

We also obtained benchmarks for∃* and∃*∀*-hyperproperties by taking invalid
Descartes and ORHLE benchmarks, i.e., benchmarks that do not satisfy some∀* or
∀*∃*-hyperproperties (i.e., verification with Descartes or ORHLE fails). We changed their
specification to formally prove that they indeed violate the relevant hyperproperty. To
do so, we strengthened the preconditions and proved the negation of the original
postconditions [Theorem 5, Dardinier and Müller 2023].

As a concrete example, the file ~/hypra/src/test/evaluation/forall/descartes/contact_false.hhl,
which is expected to not verify, is a translation of the file
https://github.com/marcelosousa/descartes/blob/master/benchmarks/pldi-16/stackoverflow/C
ontact-false.java. This example violates (for instance) transitivity (P2), a
∀∀∀-hyperproperty, and thus verification is expected to fail.
From this invalid benchmark, we additionally created the valid benchmark
~/hypra/src/test/evaluation/exists/descartes/contact_false_exists.hhl, in which we formally
prove that transivity is violated (by strenghtening the precondition and negating the
postcindition), i.e., we prove an∃∃∃-hyperproperty.

Minor changes since the submission
We have made the following changes to the implementation and evaluation of Hypra after
the initial paper submission:

● When Hypra is asked to automatically select loop rules to verify loops, it now
generates a separate Viper program to evaluate the condition of applying
syncRule/syncTotRule. Based on the result of this Viper program, Hypra decides
whether to apply syncRule/syncTotRule or other loop rules. Previously, this condition
was encoded as a Viper expression, and a Viper if-else statement was used to
handle both true and false scenarios. As a result, the generated Viper program
contained lots of nested code blocks, which made it extremely difficult to read and
debug.

● We have removed 1 benchmark1 from the benchmark suite. This benchmark fixes the
value of a program variable. It is redundant because a more generalized version of
this benchmark, where the program variable can take all possible values, already
exists (~/hypra/src/test/evaluation/forall/pcsat/double_square_ni.hhl).

1 Available at:
https://github.com/hiroshi-unno/coar/blob/299e979bfce7d9b0532586bfc42b449fd0451531/benchmark
s/pfwnCSP/cav2021rel/DoubleSquareNI_hFF.clp

8

https://github.com/marcelosousa/descartes/blob/master/benchmarks/pldi-16/stackoverflow/Contact-false.java
https://github.com/marcelosousa/descartes/blob/master/benchmarks/pldi-16/stackoverflow/Contact-false.java

Reproducing the Evaluation
To reproduce our evaluation, type in the following command to run the evaluation for 3
repetitions (as in the paper):

> hypra_test 3

The code performing this command can be found at
~/hypra/src/main/scala/viper/HHLVerifier/test/Test.scala. It calls the main function in the file
~/hypra/src/main/scala/viper/HHLVerifier/Main.scala, where the runtime measurement starts
immediately before the input program is being parsed (line 44) and ends immediately after
the verification result becomes available (line 89).

After this command (which lasts ~15 minutes in our experience), the results should be stored
in the files ~/hypra/src/test/evaluation/output0.csv (for the first repetition),
~/hypra/src/test/evaluation/output1.csv (for the second repetition), etc.

To obtain the summary results, first copy the output files produced by each repetition (i.e.,
output0.csv, output1.csv, output2.csv located in ~/hypra/src/test/evaluation) into a directory
(e.g., ~/hypra/data) without other .csv files, for example by running the following command:

> rm -rf ~/hypra/data; mkdir ~/hypra/data

> cp ~/hypra/src/test/evaluation/output*.csv ~/hypra/data

To obtain the summary results, run (if you directory is ~/hypra/data):

> cd ~/hypra; python3 process_data.py ~/hypra/data

This should produce a result.csv file located in ~/hypra/result. Open it and compare the
mean and median runtime with the data in Table 1. Note that the result.csv file does not
include the information about the number lines of program code or annotations, because this
information was obtained manually.

Notice that most data of verification time in Table 1 are different from those in Figure 11 of
our paper. This is caused by the changes stated above. The updated evaluation results will
be included in the revised version of our paper. Note that the following data of verification
time are collected on a MacBook Pro running macOS Ventura 13.3 with a 2.3 GHz 8-Core
Intel Core i9 processor and 32 GB RAM.

Type of
hyperproperties

Source no. Files
Mean (LoC)

Verification time Annotations
Mean (LoC)

Mean (s) Median (s)

∀* Descartes 15 129 2.25 1.62 0

PCSat 3 24 1.09 1.10 3

Overall 18 112 2.06 1.54 1

9

∃* Descartes 8 81 12.97 5.09 0

ORHLE 6 29 2.89 2.54 8

Overall 14 59 8.65 3.51 4

∀*∃* ORHLE 28 21 2.79 2.02 2

HyPa 8 14 1.18 1.11 3

PCSat 1 22 2.14 2.14 2

Overall 37 19 2.43 1.87 2

∃*∀* ORHLE 15 25 2.66 1.99 2

Table 1. Updated results of our evaluation.

10

Reusability Guide: Using Hypra on New Examples

Writing a Hypra program
To create a new Hypra program, make a new file with .hhl as its extension. You may use any
text editor to write the program, but vim is highly recommended since it provides syntax
highlighting for Hypra programs.

In the following subsections, we show the syntax of Hypra programs. The formal big-step
semantics of most commands can be found in Appendix A of Dardinier and Müller [2023].

Method declarations
Method declarations are the only top-level declarations allowed by Hypra. They:

● Are declared by the keyword method

● Have 0 or more input (e.g. x) and output (e.g. z) parameters of type Int

● Can have 0 or more hyper-assertions as preconditions
● Can have 0 or more hyper-assertions as postconditions
● Preconditions cannot talk about the set of erroneous states, as it is assumed to be

empty at the beginning of each method, which allows modular reasoning of method
calls

A method with precondition P, postcondition Q and body C verifies if and only if the
hyper-triple {P} C {Q} is valid (see Section 2 of our paper).

method foo(x: Int, y: Int) // parameter(s)

returns (z: Int, w: Int) // return value(s)

requires … // precondition P

ensures …// postcondition Q

{

// method body C

}

Hyper-assertions
A hyper-assertion is, informally, a quantified assertion over sets of program states (see
Section 2 of our paper).

forall <_s> :: A

forall <<_s>> :: A

forall _i: Int :: A

exists <_s1>, <_s2> :: A

exists _i1: Int, _i2: Int:: A

// Examples:

11

var x: Int

forall <_s1> :: exists <_s2> :: _s1[x] >= _s2[x] // Valid hyper-assertion

forall _i: Int :: true // Not a hyper-assertion but a normal assertion,

because it does not quantify over states

● They should include one or more forall and/or exists quantifiers, with at least one
of the quantifies over program states

● The variables that are being quantified over should have an identifier starting with an
underscore and a letter, followed by zero or more letters and/or numbers

● Use the syntax <_state_name> to declare a normal program state that is being
quantified over. For instance, <_s> declares a state _s that is in the current set of
normal program states

● Use the syntax <<_state_name>> to declare an erroneous program state that is
being quantified over. For instance, <<_s>> declares a state _s that is in the current
set of erroneous program states

● Use the syntax _var_name: Int to declare an integer variable that is being
quantified over

● The body of the hyper-assertion, A, is either a hyper-assertion or a boolean
expression

● In a hyper-assertion, it is possible to get the value of a program variable by using the
syntax _s[v], where _s is a normal or erroneous program state being universally or
existentially quantified over and v is a program variable

Boolean expressions
● Constants true and false

● Conjunction e1 && e2, disjunction e1 || e2 and implication e1 ==> e2 where e1

and e2 are both boolean expressions
● Equality e1 == e2 and inequality e1 != e2, where e1 and e2 are both arithmetic

expressions or both boolean expressions
● e1 > e2, e1 >= e2, e1 <= e2 and e1 < e2 where e1 and e2 are both arithmetic

expressions
● Normal assertions with quantifiers forall and exists (They should only quantify

over integers but not states, otherwise they are hyper-assertions)

Arithmetic expressions
● Constants of integer values
● Program variables of type Int

● Values of program variables in a state (e.g. _s[v], see the part about
hyper-assertions above)

● Variables that are quantified over by forall and exists

● Addition e1 + e2, subtraction e1 - e2, multiplication e1 * e2, division e1 \ e2,

modulus e1 % e2 where e1 and e2 are both arithmetic expressions

12

Variable declarations
● They are declared with keyword var

● The variable identifier must start with a letter, followed by 0 or more letters or
numbers, e.g. v1

● Program variables can only have integer values at the moment

var v1: Int

assume and assert statements
● assume statements filter out program states where the boolean expression e does

not hold.
● assert statements are similar to assume statements, except that program states

where e does not hold will be collected as erroneous states.

assume e // e is a boolean expression

assert e

hyperAssume and hyperAssert statements
Both hyperAssume and hyperAssert statements are useful for debugging programs

● hyperAssume statements add hyper-assertions to the program as additional
assumptions

● hyperAssert statements add hyper-assertions to the program as additional
assertions

hyperAssume A // A is a hyper-assertion

hyperAssert A

Conditional statements
Conditional statements divide a set of states into two groups based on the truth value of the
boolean expression b in the states, and then execute command C1 in states where b holds
and execute command C2 in states where b does not hold. Note that the else branch is
optional.

if (b) // b is a boolean expression

{

// command C1

} else { // The else branch is optional

// command C2

}

13

Deterministic assignments
In each program state, a deterministic assignment v := a evaluates the arithmetic
expression a in the state and assigns its value to the program variable v. Note that the
variable v cannot be a method argument, since method arguments cannot be reassigned to.

v := a // v is a program variable, e is an arithmetic expression

Non-deterministic assignments
To assign a non-deterministic value to a program variable v, use the syntax shown below.

As explained in Section 2.1 of our paper, hints can be declared with the syntax <hint_name>
as part of the non-deterministic assignments. They are useful for constructing witnesses,
which can be achieved with use statements, during underapproximation reasoning. Note that
the identifiers of hints must follow the same rule as the identifiers of program variables.

havoc v // v is a program variable

havoc v <h> // h is a hint

use statements
To construct witnesses during underapproximation reasoning, use the previously declared
hints with use statements as shown below. The statement use h(a) tells Hypra to construct
a witness state where the variable v, previously assigned non-deterministically with hint
declaration h, is set to the value of the arithmetic expression a.

use h(a) // h is a hint, a is an arithmetic expression

// Example

var x: Int

havoc x {hint1}

use hint1(2) // This construct a witness state where x is 2

Loops
Besides a loop guard b and a loop body C, a loop should also have one or more loop
invariants, at most one decreases clause and at most one rule annotation.

while rule (b) // b is a boolean expression

invariant A // A is a hyper-assertion

decreases a // a is an arithmetic expression

{

C // loop body

}

14

Hypra handles a loop as follows:
● Before the loop, the loop invariants, which are hyper-assertions, are asserted.
● The preservation of the loop invariants and the side conditions of using either a

user-specified or automatically selected loop rule are checked modularly via separate
Viper methods.

● After the loop, the set of program states is havoced (i.e. the set of states becomes
arbitrary), and the loop invariants are assumed. To preserve information about
program states from before the loop, overapproximation framing (i.e. Lemma 1 of our
paper) is emitted.

● After the loop, depending on the loop rule used, Hypra either assumes that every
state satisfies the negated loop guard, or selects those states where the negated
loop guard holds

● For modularity reasons, if the loop invariants were to talk about erroneous states,
they must only talk about the erroneous states yielded by the loop body but not any
erroneous states collected before the loop. In this way, after the loop, the set of
erroneous states produced by the loop, as described by the loop invariants, can be
easily added to the set of collected erroneous states via a set union operation.

Hypra supports 4 loop rules as shown in Figure 7 of our paper. To specify a loop rule for
Hypra to use, provide one of the following 4 keywords following the while keyword:
syncRule (corresponds to WhileSync rule), syncTotRule (corresponds to WhileSyncTerm
rule), forAllExistsRule (corresponds to While-∀*∃* rule), existsRule (corresponds to
While-∃ rule). When the loop rule is not specified, it is mandatory to run Hypra with the
option --auto to enable the automatic selection of loop rules. Figure 8 of our paper shows
how Hypra decides which loop rule to use. The same figure can also serve as a guidance on
how users should select a loop rule.

All loop rule come with side-conditions:
● syncRule: the loop guard must evaluate to the same value in all states.
● syncTotRule: the loop guard must evaluate to the same value in all states, and a

decreases clause (see below) must be provided to prove termination. In addition, if
the loop body contains another loop, the nested loop must have a decreases clause
as well.

● forAllExistsRule: in every loop invariant, there must not exist a forall quantifier
that quantifies over program states after any exists quantifier.

● existsRule: at least one of the loop invariants must contain a top-level exists
quantifier that quantifies over program states, and a decreases clause (see below)
must be provided to prove termination.

The decreases clause is useful for proving the termination of a loop. The arithmetic
expression a in the decreases clause, which is essentially a loop variant, is expected to be
non-negative in all program states. Its value in a state must strictly decrease after one
iteration of the loop. Note that the decreases clause is simply ignored when the rule
syncRule or forAllExistsRule is used, since these rules do not require termination (and
termination is not used elsewhere).

15

Method calls
To call a method with n parameters and m return values, provide exactly n program variables
as arguments and exactly m program variables to store the return values. A program
variable cannot simultaneously be used as an argument and store the return value in a
method call.
.

m1() // Method m1 takes 0 parameter and returns 0 value

v1, v2 := m2(v3) // Method m2 takes 1 parameter and returns 2 values

Hypra handles method calls modularly. Before a method call, the preconditions of the callee
are asserted. After a method call, the set of program states is havoced (i.e. the set of states
becomes arbitrary), and the postconditions of the callee are assumed. To preserve
information about program states from before the method call, overapproximation framing
(i.e. Lemma 1 of our paper) is emitted. In addition, the set of erroneous states produced by
the callee, as described by its postconditions, are added to the set of erroneous states of the
caller via a set union operation

Running Hypra with custom settings
To verify your own program with Hypra, run Hypra with the command hypra

<path_to_program> <option>*. You may customize Hypra by providing one or more of
the options below as part of the command:

● --forall: Only generates overapproximation encodings
● --exists: Only generates underapproximation encodings
● --output <path_to_file>: Saves the generated Viper program to the specified file
● --noframe: Turns off overapproximation framing after loops and method calls
● --existsframe: Turns on underapproximation framing after loops
● --inline: Verifies the loop invariants in an inline fashion (At the moment, this option

does not work well when the --auto option is also selected)
● --auto: Automatically selects a loop rule to verify loops when users do not specify

the rules

16

