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Abstract 
 
The concepts of effective permittivity and 
permeability are used throughout the literature to 
describe heterogeneous materials, inhomogeneous 
materials, and small collections of molecules.   In this 
paper we study definitions of the permittivity and 
permeability based on the microscopic Maxwell's 
equations and then discuss the ramifications of the 
common usage of the term "effective".  

 
Introduction 

  
The goal of this paper is to critically evaluate the 
concept of effective permittivity and permeability at 
both the macroscopic and microscopic scales.  We 
will concentrate on the permittivity, but the 
permeability would follow a similar path.  
 
The permittivity is the constitutive parameter that 
relates the macroscopic time-harmonic electric field 
to the macroscopic displacement field D=ε E. If we 
consider electromagnetic wave propagation from 
macroscopic, to mesoscopic, to molecular scales, the 
effective response at each level is related to different 
degrees of homogenization. The concept of 
permittivity critically depends on how the   
inhomogeneities are treated.  There have been many 
types of ensemble and volumetric averaging methods 
used to derive the macroscopic fields from the 
microscopic fields (see Jackson and the reference 
therein [1]).  For example, in the most commonly 
used theory, materials are averaged at a molecular 
level to produce effective molecular dipole moments. 
Then these effective moments are assumed to form a 
continuum, which then forms the basis of  the 
macroscopic polarization. The procedure assumes 
that the wavelength in the material is much larger 
than the particle sizes. As Jackson [1] notes: the 
macroscopic Maxwell's equations can model 
refraction and reflection of visible light, but not X-
ray diffraction and therefore he states that the length 
scale  L0 =1 x 10 -8 m is the lower limit for the 
validity of the macroscopic equations. The 
microscopic electromagnetic theories developed in 
Jackson [1] replace the averaged molecular 
multipoles,  
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with averaged point multipoles usually located at the 
center-of-mass position. This approach works well down 
to near the molecular level, but breaks down at the 
molecular to submolecular level.  Also, for macroscopic 
heterogeneous materials the effective dipole moments of 
the inclusions must be treated as the effective molecular 
moments, and the wavelengths of the fields must adhere 
to these criteria. When this criterion does not hold then 
the spatial derivatives in Maxwell's equations are not well 
defined and the displacement field loses its meaning. 
Associated with this homogenization process at a given 
frequency is the number of molecules or inclusions that 
are required to define a displacement field and thereby the 
related permittivity. Definitions of the permittivity of 
plasmas and artificial structures will  be analyzed. 
 

Macroscopic, Mesoscopic, and Microscopic  
Descriptions  

 
 The microscopic Maxwell equations are ∂B/∂t = -∇ � E, 
ε0 μ0 ∂E/∂t =∇ � B - μ0 jm , ∇• B=0,  and ∇• E = ρm, 
where ρm  and jm  are the microscopic charge density and 
current density due to elementary charges and its motion. 
In order to form the displacement field D that appears in 
the macroscopic Maxwell's equations, we need to expand 
the ensemble-averaged charge density in a Taylor series 
as  < ρm (r, t)> ≈  ρ(r,t) - ∇ • P  (r,t) + ... where the first 
term in the series is identified as the macroscopic charge 
density ρ and the second term on the RHS defines the 
macroscopic polarization  P  =<∑ pn δ(x-xn )>, where  pn 
are the effective molecular moments. Higher order terms 
in the Taylor series can be neglected only when k L0 �1, 
where k=2π/λ.  Using this procedure the displacement can 
be defined as D  = ε0E  + P [1].   The macroscopic 
magnetic field H is formed through a Taylor series 
expansion of the microscopic current density that contains 
the macroscopic current density and magnetic polarization 
M, which yields B = μ0(H + M). Through these averaging 
procedures we obtain the macroscopic Maxwell equations 
∂B/∂t = -∇ � E,  ∂D/∂t =∇ � H  - j , ∇• B=0, ∇• D = ρ.  
The main feature we need to point out is that the Taylor 
series approximation depends on a long wavelength 
assumption where kL0 �1. The displacement vector needs 
to originate from a statistical model from the microscopic 
Maxwell equations. In addition, the permittivity must be 
an analytic, causal function that satisfies ε(-ω)= ε*(ω). In 
the constitutive modeling process, the key constituents are 
the polarization and macroscopic fields. From a 
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macroscopic aspect, the impulse- response function is 
used to express the most general linear relation 
between the displacement and electric fields 
   
                 D(t) =ε0E (t) + ∫ fp(τ) E(t-τ) dτ ,  
  
where fp(t) is the polarization impulse-response 
function and the permittivity is defined as ε(ω) =ε0  + 
∫fp(τ) e-iωτdτ. From this perspective the constitutive 
relationships delegate the effects of the 
microstructure into the definition of the impulse-
response function in the time domain or the 
permittivity and permeability in the frequency 
domain. From a statistical mechanical approach the 
polarization is defined as  
 
      P(t) =  ∫∫<dP(t)/dt  P(τ)> • E  (τ) dτ dV/kBT,   
  
where <> denotes averaging over a distribution 
function. We see that on a microscopic level the 
polarization has its basis in correlations between 
microscopic dipole moments. This requires a sample 
size large enough, relative to wavelength,  that a 
probability density can be defined to homogenize the 
fields. From a statistical-mechanical aspect the 
permittivity evolves from Laplace transforms of the 
pulse-response or the correlation functions whose 
real part are related to fluctuations and the imaginary 
part is related to losses due to intermolecular 
collisions. 

 
There are two approaches that are commonly used for 
dielectric measurements on discontinuous or 
heterogeneous media. The first is a rigorous method 
of matching the tangential components of the fields at 
all discontinuous interfaces.  This approach cannot be 
used for complicated materials structures. The second 
method involves a homogenization process that 
assumes that the media is continuous and the applied 
field has a long wavelength relative to inclusion size. 
 
Near the resonant frequency the breakdown in 
effective media theories will vary depending on the 
effects of multiple scattering. There are two classes 
of resonances in dielectrics. The first is a mechanical 
resonance where the resonant frequency between 
molecules or atoms is modeled by Hooke’s law with 
a resonance frequency ω=(kh/m)1/2, where kh is the 
force constant.  These resonant frequencies generally 
occur at wavelengths much, much larger than the 
particle size and therefore do no invalidate the 
permittivity concept. The second type of resonance is 
a geometric resonance that occurs when the inclusion 
size is comparable to one-half wavelength or where 
there are resonances in passive devices embedded in 

the material.  When wavelengths approach inclusion size 
then geometric resonances occur and the statistical 
averaging procedure is less apparent.  Many authors use 
the term effective permittivity even when the wavelength 
in the material approaches the inclusion sizes and 
geometrical resonances occur.  

 
Numerical Modeling 

  
We consider a specimen of length L that partially fills the 
length of a coaxial line. We examine the effective relative 
permittivity that is obtained as we include larger and 
larger amounts of the air regions in the coaxial line as part 
of the effective length of the  sample. The top curve is 
polyfluorotetraethylene (PTFE) measured alone.  We see, 
as expected, that as the sample length increases due to 
increasing air region included with the sample, the 
“effective” permittivity decreases.  Non-physical behavior 
is manifested in the oscillations due to one-half 
wavelength geometric resonances 
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Fig. 1: Measurements of PTFE in a coaxial waveguide for 
various effective lengths.  
 

Discussion 
 

The definitions of the permittivity and the 
displacement function require that kL0� 1 and the 
behavior must also be causal. Our simple example of 
an effective media in a coaxial line highlights 
nonphysical behavior that may result near 
geometrical resonances with different permittivities. 
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